Volume 19, Issue 2 (9-2024)                   IJMSI 2024, 19(2): 111-117 | Back to browse issues page

XML Print


Abstract:  
In this paper, we consider a population model with piecewise constant argument and show that every nonoscillatory solution approaches the equilibrium point as t tends to infinity. Moreover, we investigate every positive solution of the model that oscillates about the positive equilibrium point. Also, we give two examples to support the theorems.
Type of Study: Research paper | Subject: General

References
1. A. R. Aftabizadeh, J. Wiener, Oscillatory Properties of First Order Linear Functional Differential Equations, Applicable Analysis, 20(3-4), (1985), 165-187. [DOI:10.1080/00036818508839568]
2. A. R. Aftabizadeh, J. Wiener, J. M. Xu, Oscillatory and Periodic Solutions of Delay Differential Equations with Piecewise Constant Argument, Proceedings of the american mathematical society, (1987), 673-679. [DOI:10.1090/S0002-9939-1987-0877038-7]
3. M. Akhmet, Nonlinear Hybrid Continuous/discrete-time Models, Springer Science and Business Media, 8, 2011. [DOI:10.2991/978-94-91216-03-9]
4. H. Bereketoglu, G. Seyhan, F. Karakoc, On a Second Order Differential Equation with Piecewise Constant Mixed Arguments, Carpathian Journal of Mathematics, 27(1), (2011), 1-12. [DOI:10.37193/CJM.2011.01.13]
5. S. Busenberg, K. L. Cooke, Models of Vertically Transmitted Diseases with Sequentialcontinuous Dynamics, Nonlinear phenomena in mathematical sciences, (1982), 179-187. [DOI:10.1016/B978-0-12-434170-8.50028-5]
6. K. S. Chiu, T. Li, Oscillatory and Periodic Solutions of Differential Equations with Piecewise Constant Generalized Mixed Arguments, Mathematische Nachrichten, 292(10), (2019), 2153-2164. [DOI:10.1002/mana.201800053]
7. K. L. Cooke, J. Wiener, Retarded Differential Equations with Piecewise Constant Delays, Journal of Mathematical Analysis and Applications, 99(1), (1984), 265-297. [DOI:10.1016/0022-247X(84)90248-8]
8. K. L. Cooke, J. Wiener, A Survey of Differential Equations with Piecewise Continuous Arguments, Delay differential equations and dynamical systems, (1991), 1-15. [DOI:10.1007/BFb0083475]
9. K. Gopalsamy, M. R. S. Kulenovi'c, G. Ladas, On a Logistic Equation with Piecewise Constant Arguments, Differential and Integral equations, 4(1), (1991), 215-223. [DOI:10.57262/die/1371569646]
10. K. Gopalsamy, G. Ladas, On the Oscillation and Asymptotic Behavior of N′(t) = N(t)[a + bN(t − τ) − cN2(t − τ), Quarterly of Applied Mathematics, 48, (1990), 433-440. [DOI:10.1090/qam/1074958]
11. K. Gopalsamy, P. Liu, Persistence and Global Stability in a Population Model, Journal of Mathematical Analysis and Applications, 224(1), (1998), 59-80. [DOI:10.1006/jmaa.1998.5984]
12. F. Gurcan, S. Kartal, I. Ozturk, F. Bozkurt, Stability and Bifurcation Analysis of a Mathematical Model for Tumor-immune Interaction with Piecewise Constant Arguments of Delay, Chaos, Solitons and Fractals, 68, (2014), 169-179. [DOI:10.1016/j.chaos.2014.08.001]
13. F. Karako¸c, Asymptotic Behaviour of a Population Model with Piecewise Constant Argument, Applied Mathematics Letters, 70, (2017), 7-13. [DOI:10.1016/j.aml.2017.02.014]
14. T. K¨upper, R. Yuan, On Quasi-periodic Solutions of Differential Equations with Piecewise Constant Argument, Journal of mathematical analysis and applications, 267(1), (2002), 173-193. [DOI:10.1006/jmaa.2001.7761]
15. C. G. Philos, On Oscillations of Some Difference Equations, Funkcial. Ekvac, 34(1), (1991), 157-172. [DOI:10.1016/0022-247X(91)90134-L]
16. M. Pinto, Asymptotic Equivalence of Nonlinear and Quasi Linear Differential Equations with Piecewise Constant Arguments, Mathematical and Computer Modelling, 49(9-10), (2009), 1750-1758. [DOI:10.1016/j.mcm.2008.10.001]
17. Y. Rong, H. Jialin, The Existence of Almost Periodic Solutions for a Class of Differential Equations with Piecewise Constant Argument, Nonlinear Analysis: Theory, Methods and Applications, 28(8), (1997), 1439-1450. [DOI:10.1016/0362-546X(95)00225-K]
18. S. M. Shah, J. Wiener, Advanced Differential Equations with Piecewise Constant Argument Deviations, International Journal of Mathematics and Mathematical Sciences, 6, (1983). [DOI:10.1155/S0161171283000599]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.