1. I. Baglan, F. Kanca, The Continuous Dependence and Numerical Approximation of the Solution of the Quasilinear Pseudo-Parabolic Problem with Periodic Boundary Condition, Journal of Advances in Mathematics, 5(3), (2014),132-143. [
DOI:10.1186/1687-1847-2014-277]
2. J. R. Cannon , Y. Lin, Determination of Parameter p(t) in Hölder Classes for Some Semilinear Parabolic Equations, Inverse Problems, 4, (1988), 595-606. [
DOI:10.1088/0266-5611/4/3/005]
3. Y. Cao, J. Yin, C. Wang, Cauchy Problems of Semilinear Pseudo-Parabolic Equations, Journal of Differential Equations, 246(12), (2009), 4568-4590. [
DOI:10.1016/j.jde.2009.03.021]
4. C. Cesarano, G. M. Cennamo, L. Pilacidil, Humbert Polynomials and Functions in Terms of Hermite Polynomials Towards Applications to Wave Propagation, Wseas Transactions on Mathematics, 13, (2014), 595-60.
5. G. Dattoli, S. Lorenzutta, P. E. Ricci, C. Cesarano, On a Family of Hybrid Polynomials, Integral Transforms and Special Functions, 15(6), (2004), 485-490. [
DOI:10.1080/10652460412331270634]
6. G. Dattoli, P. E. Ricci, C. Cesarano, The Lagrange Polynomials the Associated Generalizations and the Umbral Calculus, Integral Transforms and Special Functions, 14(2) , (2003), 181-186. [
DOI:10.1080/1065246031000098186]
7. W. H. Ford, T. W. Ting, Stability and Convergence of Difference Approximations to Pseudo Parabolic Partial Differential Equations, Mathematics of Computation, 27(124), (1973), 739-743. [
DOI:10.1090/S0025-5718-1973-0366052-4]
8. H. Halilov, I. Ciftci, Fourier Method for a Qusilinear Pseudo-Parabolic Equation with Periodic Boundary Condition, Hacettepe Journal of Mathematics and Statistics, 37(2), (2008), 69-79.
9. F. Kanca, I. Baglan, Determination of an Unknown Heat Source from Integral Overdetermination Condition, Iranian Journal of Science and Technology, Transaction A: Science, 42(1), (2018), 1373-1382. [
DOI:10.1007/s40995-017-0454-z]
10. F. Kanca, I. Baglan, Inverse Problem for Euler-Bernoulli Equation with Periodic Boundary Condition, Filomat, 32(16), (2018), 5691-5705. [
DOI:10.2298/FIL1816691K]
11. F. Kanca, I. Baglan, Analysis for Two-Dimensional Inverse Quasilinear Parabolic Problem by Fourier Method, Inverse Problems in Science and Engineering, 29(12), (2021), 1912-1945. [
DOI:10.1080/17415977.2021.1890068]
12. K. H. Kwek, C. C. Qu, Alternative Principle for Pseudo-Parabolic Equations, Dynamic Systems and Applications, 5(2), (1996), 211-217.
13. W. Luther, Control Problems Governed by a Pseudo-Parabolic Partial Differantial Equation, American Mathematical Society, 250, (1979), 235-246. [
DOI:10.1090/S0002-9947-1979-0530053-5]
14. R. Pourgholia, M. Rostamiana and M.Emamjome, A Numerical Method for Solving a Nonlinear Inverse Parabolic Problem, Inverse Problems in Science and Engineering, 18(8), (2010), 1151-1164. [
DOI:10.1080/17415977.2010.518287]
15. S. Showalter, T.W. Ting, Pseudoparabolic Partial Differential Equations, SIAM Journal on Mathematical Analysis, 1, (1970), 1-26. [
DOI:10.1137/0501001]
16. T. W. Ting, Parabolic and Pseudo-Parabolic Partial Partial Differential Equations, Journal of the Mathematical Society of Japan, 21, (1969), 440-453. [
DOI:10.2969/jmsj/02130440]