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1. INTRODUCTION

Nonexpansive mappings are those mappings which have Lipschitz constant
equal to one. For example, contractions, isometries, and the resolvents of accre-
tive operators are all nonexpansive. Recently, a new direction of research has
been discovered dealing with the extension of the Banach contraction principle
to partially ordered metric spaces. For example, Bacher and Khamsi [4] con-
sidered the case of monotone nonexpansive mappings and tried to answer the
question whether the classical fixed point theorems for nonexpansive mappings
still hold for monotone nonexpansive mappings. The difficulty in dealing with
monotone nonexpansive mappings is that the monotone Lipschitzian mappings
enjoy suitable properties only on comparable elements. In fact, they may not
be even continuous, a property obviously shared by Lipschitzian mappings. In
continuity several generalizations have received attention, for example those
due to Goebel and Kirk [9, 11], Goebel et al. [10], Suzuki [16], Garcia-Falset
et al. [8] and Aoyama and Kohsaka [3].

Now, assume that A and B are two nonempty subsets of a metric space. It
might happen that a mapping T from A to B lacks any fixed point, so that
it is extremely important to know whether there exists a point x in A such
that the distance of x to Tz is minimum. Note that if this distance is equal
to zero, then x is a fixed point of T. A point z in A is said to be a best
proximity point of T provided that the distance of z to Tx is equal to the
distance of A to B. Indeed, best proximity point theorems are connected to
optimal approximate solutions of some equations. Existence of best proximity
points for a class of non-self mappings, called cyclic contractions, was studied
in [7] in the setting of uniformly convex Banach spaces. After that in [1,
2] the authors proved some fixed point theorems as well as best proximity
point theorems for cyclic contractions in partially ordered metric spaces using
appropriate geometric properties of uniformly convex Banach spaces, and so
extended the main conclusions of [13] (see also [15] for a different approach to
the same problem).

This paper is organized as follows: in Section 2, we recall some definitions
and notations which will be used in our coming discussion. In Section 3, we
extend the Goebel-Kirk’s fixed point theorem by considering the class of mono-
tone orbitally nonexpansive mappings in uniformly convex Banach spaces with
a partially ordered relation. Finally, in Section 4, we introduce a class of T-
cyclic contractions using a partially ordered relation and prove a common best
proximity point theorem in uniformly convex Banach spaces.

2. PRELIMINARIES

Throughout this paper, (X, || - ||) is a real Banach space endowed with a
partial order “<”. We will say that z,y € X are comparable whenever x < y
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or y = x. As usual we adopt the convention = > y if and only if y < . The
linear structure of X is assumed to be compatible with the order structure in
the following sense:

i)z xy=z+z=<y+zforalzyze€X;
(i) 2 Ry= az < ay for all z,y € X and a > 0.

Moreover, we assume that order intervals are closed. Recall that an order
interval is any of the subsets:
(i) [a,=)={z € X :a 2 a};
(i) («,al={r e Xz <a}.

Definition 2.1. Let (X, || - ||, <) be an ordered Banach space and C be a
nonempty subset of X. A mapping T : C — X is said to be:

(i) monotone or order-preserving if Tx < Ty whenever x =< y;

(ii) monotone k-Lipschitzian, if T is monotone and ||Tz — Ty|| < k||z — y||
for every x,y € X such that z and y are comparable, k € RT =
(0, +00).

If A is a nonempty subset of X, conv(A) will denote the convex hull of the
set A, that is the smallest convex set that contains A. From now on, C' stands
for a given nonempty, closed, convex, and bounded subset of X. A mapping
T : C — X is nonexpansive if and only if

[Tz = Ty|| < ||z —y|| foralaz,yeC.

If T:C — Cis amapping and xg € C, the sequence {T"xg:n =0,1,2,...}
is often called the orbit of T' starting at ¢, which will be denoted by ord(T, xo).
A point x € X is said to be a fixed point of T" whenever Tz = . The set of
fixed points of T" will be denoted by Fiz(T).

Recall that monotone Lipschitzian mappings are not necessarily continuous.
They usually have a good topological behavior on comparable elements but not
on the entire set on which they are defined.

We also recall that a sequence {z, },en in a partially ordered set (X, <) is
said to be

(i) monotone increasing if x,, < x, 1 for all n € N;
(ii) monotone decreasing if z,+1 < z, for all n € N;
(iii) monotone if it is either monotone increasing or decreasing.

Let A and B be nonempty subsets of a metric space (X,d). A mapping
T:AUB — AU B is said to be a cyclic mapping if T(A) C B,T(B) C A. A
point p € AUB is called a best proximity point of the cyclic mapping T provided
that d(p, Tp) = dist(A4, B), where dist(A, B) := inf{d(z,y) : (z,y) € A x B}.

We finish this section by recalling the notion of uniformly convexity of Ba-
nach spaces.
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Definition 2.2. A Banach space X is said to be uniformly convex if there
exists a strictly increasing function d : [0,2] — [0, 1] such that the following
implication holds for all z,y,p € X, R > 0 and r € [0, 2R]:

[l —pll < R, ety .
ly=pll <R, =l———»l<0-dH)R
[z —yll =7

It is well known that Hilbert spaces and [P spaces (1 < p < co) are uniformly
convex Banach spaces.

3. MONOTONE ORBITALLY NONEXPANSIVE MAPPINGS

Let C be a nonempty subset of a normed linear space X. A mapping T :
C — (' is said to be asymptotically nonexpansive if

[Tz — T"y|| < kyllz —y|| for all 2,y € C,

where {k,} is a sequence of real numbers such that lim, . k, = 1 (see [9]).
Very recently, the class of asymptotically nonexpansive mappings was extended
to monotone asymptotic nonexpansive mappings as follows.

Definition 3.1. (see [14]) Let C' be a nonempty subset of a normed linear
space X equipped with a partially ordered relation. A mapping T : C — C is
said to be monotone asymptotically nonexpansive if there exists a sequence of
real numbers {k,} such that lim, . k, = 1 and ||T"z — T™y|| < k,||z — yl|,
for every comparable elements z,y € C.

At the same time an interesting generalization of nonexpansive mappings,
called orbitally nonexpansive mappings, was introduced in [12].

Definition 3.2. A mapping T : C — C is said to be orbitally nonexpansive
if for every nonempty, closed, convex, T-invariant subset D C C, there exists
some zp € D such that limsup,,_, . |[|T"zo — Tz|| < limsup,, , . ||T"x0 — ||
for all x € D.

Motivated by Definition 3.1, we can generalize the class of monotone orbitally
nonexpansive mappings as follows.

Definition 3.3. A mapping T : C — (' is said to be monotone orbitally
nonexpansive if for every nonempty, closed, convex, T-invariant subset D C C,
there exists some zg € D with monotone increasing (resp. decreasing) orbit
{T™z} in D such that limsup,, . ||[T"x0 — Tz|| < limsup,,_, ., ||[T"zo — x|
for all z € D such that Tz < x (resp. © =< T"x) for all n € N.

Next example shows that the class of monotone orbitally nonexpansive map-
pings cannot be concluded from orbitally nonexpansive mappings.
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EXAMPLE 3.4. Let X = R be endowed with the usual metric and with the
natural partially ordered relation “<”. Suppose A = [—1,1] and define the
self-mapping T : A — A by

—z  ifz e (QtNnA)U{0},
Te=q+—2 fzeQ NA,
0 ifreQ°nNA,

where QT and Q~ denote the sets of positive and negative rational numbers,
respectively. Note that T is not continuous. Assume that D is a closed, convex
and T-invariant subset of A. Take D = [a,b], where a,b € A and a < b. In
view of the fact that D is T-invariant, we must have D = [—1,1]. Put g := 0.
Thus for any « € D with T"z¢ < x, we have z > 0. Now, if x € Q° N A then
Tz =0, and if z € Qt N A then Tx = —z. In both cases, we obtain

limsup [T"z¢ — Tx| < x = limsup |[T"z¢ — |,
n—roo n— oo

that is, 7' is monotone orbitally nonexpansive. We claim that 7" is not an
orbitally nonexpansive mapping. To this end, we consider the following cases:
Case 1. If zg € (QT N D) U {0}, then Tzg = —x¢, T%x9 = \/To and T"xg = 0
for all n > 3. Now for x € Q~ N D with & # —1 we have

limsup |T"zo — Tx| = vV—2 > —x = limsup [T"x¢ — z|. (3.1)

n— o0 n—00

Case 2. If zg € QN D, then Tzg = v/—x¢ and T™xy = 0 for all n > 2. For
x € Q7 N D with x # —1 the result follows from (3.1).
Case 3. If zp € Q°N D, then T"zy = 0 for all n € N. Again, if x € Q" N D
with « # —1, then the conclusion follows from (3.1).

The following technical lemma will be useful to prove our main result.

Lemma 3.5. (Lemma 3.2 of [14]) Let C be a nonempty closed convex subset
of an uniformly convexr Banach space (X,||-||). Let 7 : C — [0,4+00) be a
type function, i.e., there exists a bounded sequence {x,} € X such that 7(z) =
limsup,,_, o ||zn — ||, for every x € C. Then T has a unique minimum point
z € C such that 7(z) = inf{r(z);z € C} = 79.

We now state the first main result of this section.

Theorem 3.6. Let (X, || ||, =) be a partially ordered Banach space for which
order intervals are conver and closed. Assume that (X, || - ||) is uniformly
convex. Let C be a nonempty convex, closed, bounded subset of X not reduced
to one point. Let T : C — C be a monotone orbitally nonexpansive mapping.
Then T has a fived point iff there exists xog € C such that xg and Txy are
comparable.
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Proof. Obviously if x is a fixed point of T, then x and T'x = z are comparable.
Let zg € C be such that zg and T'zy are comparable. Without loss of generality,
assume that o < Txg. Since T is monotone, then we have T"zy < T" 'z,
for all n € N. In other words, the orbit {T"x,} is monotone increasing. Since
the order intervals are closed and convex and X is reflexive, we conclude that

Coo = ﬂ{m e C;T xg 2 x} #0.
n>0

Consider x € C. Then, T"zy < x and since T is monotone, we get

T'zog X T(T"zo) = T oy < Tx, for every n > 0, ie., T(Cwso) C Coo.
Consider the type function 7 : Coy — [0, +00) generated by {1z}, i.e.

7(z) = limsup ||[T"zo — z||.
n—oo
Lemma 4.5 implies the existence of a unique z € C,, such that
7(z) = inf{r(z);2 € Cx } = 70.
Since z € C, we have Tz € C, which implies that
7(Tz) = limsup ||[T"xg — Tz|| < limsup ||[T"xo — z|| = 70

n—oo n— oo

and so Tz = z, i.e. z is a fixed point of T'. O

Here, we recall a relevant geometric property of Banach spaces.

A Banach space (X, || -]|) is said to have normal structure if each nonempty,
bounded, closed and convex subset C of X with diam(C) = sup{||lz — y|| :
x,y € C} > 0 contains a point y € C such that

ro(y) :==sup{|ly — z|| : z € C} < diam(C).

It is well known that every uniformly convex Banach space has normal struc-
ture, but the converse is not true (see [5] for more details).

Theorem 3.7. Let C be a nonempty, weakly compact, convex subset of a par-
tially ordered Banach space (X, || ||, %) with normal structure. Let T : C — C
be a monotone orbitally nonexpansive mapping. Then T has a fized point iff
there exists xg € C' such that xo and Txq are comparable.

Proof. If T has a fixed point xq. It is clear that x¢y and Txy = zo are compara-
ble. Conversely, since C is a weakly compact set, from a standard application
of Zorn’s lemma, there is a nonempty, closed, convex, T-invariant subset D of
C with no proper subsets joining these characteristics. From the definition of
monotone orbitally nonexpansive mapping, there exists g € D with monotone
increasing (resp. decreasing) orbit {T™xz(} in D such that

limsup ||T"xg — Tz|| < limsup ||[T"z¢ — ||
n—roo n— oo
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for all x € D such that T"xz¢ < x (resp. © < T™x¢) for all n € N. Without loss
of generality, we can assume that {T™z¢} is increasing. Note that orb(T, z¢) is
bounded and not (eventually) constant. Since the Banach space (X, || - ||) has
normal structure, the real function g : C' — [0, 00) defined by

g(x) :=limsup ||z — T"xo||
n—oo

is not constant on conv{T™xy:n =1,2,...}, see [6]. Then g takes at least two
different real values, that is, there exist vy, vs € conv{T"zg:n=1,2,...} C C
such that 71 := g(11) < g(v2) =t r5. Take r := (r1 + r2) and consider the set
M :={x € C:g(x) <r}. Because of v € M and v ¢ M thus ) # M C C.
On the other hand, if 1,25 € M then

g(Az1 + (1 = Nag) = limsup ||[T"zo — (Az1 + (1 — A)z2)||
n—oo
= lim sup H)\(Tnl‘o — 1‘1) + (1 — )\)(Tnl‘o — Z‘Q)H
n—oo
< Alimsup ||[T"zg — 21| + (1 — A) limsup ||[T"z¢ — x2|
n—o0 n— oo

< Ag(x1) + (1= N)g(w2).

Moreover, for every x € M, since T is a monotone orbitally nonexpansive
mapping, we have

g(Tx) = limsup ||T"zo — Tz|| <limsup ||T"zo — z|| = g(z) < r.
n—oo n—r oo

Thus, M is a nonempty, closed, convex and T-invariant proper subset of C,
a contradiction to the minimality of C. Thus there exists z € C such that
T"xy = z for large enough n. Note that

||Tz — z|| = limsup ||[T"xo — Tz|| < limsup ||T"zg — z|| = 0.
n—oo n—oo
Therefore Tz = z, and hence T has a fixed point in C. [

In what follows, we present some sufficient conditions to obtain the class of
monotone orbitally nonexpansive mappings. To this end, we need the following
concepts.

Definition 3.8. Let C be a nonempty, closed and convex subset of a Banach
space X. A mapping T : C — C is said to be asymptotocally regular at zo € C
provided that lim,, o ||[T"zg — T 20| = 0.

Definition 3.9. T : ' — X satisfies the monotone E,-condition for some
@ > 1, 0on C,if T is monotone and ||z — Ty|| < p||lz — Tz|| + ||z — y|| for all
x,y € C such that x and y are comparable. Indeed, T satisfies the monotone
E-condition on C if T satisfies the monotone F,,-condition on C for some p > 1.

Theorem 3.10. Let C be a nonempty, closed and convex subset of an ordered
Banach space (X,|| -], =) and T : C — C satisfies the monotone E-condition
on C. If T is asymptotically reqular on C and there is at least one element in
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every nonempty, closed, conver and T-invariant subset of C' comparable with
its image under T, then T is monotone orbitally nonexpansive.

Proof. Let D be a nonempty, closed, convex and T-invariant subset of C. By
assumption there is xy € D comparable with Txg. Without loss of generality,
take g = T'zg so that orb(T, x¢) is increasing. Now let x € D and T"z¢ < z for
all n € N. Since T satisfies the monotone E-condition, it satisfies the monotone
E,,-condition for some y > 1 and we have

T z0 — Ta|| < pl||T"xo — T o] + [T w0 — =,
for all n € N. Hence

limsup |[T"zo — Tz|| < plimsup ||[T"2z — T ao|| 4+ limsup ||[T™ 2o — z]|.

The asymptotical regularity of T" implies that
limsup ||T"z¢ — Tz|| < limsup ||[T"zo — z||.
n—oo n—oo
Therefore T is orbitally nonexpansive. (]

It is remarkable to note that the inverse of Theorem 3.10 does not hold,
necessarily.

ExAMPLE 3.11. Consider X = [0,1] with the usual ordered relation to “ < 7.
Let T : [4,1] — [$,1] be given by Tw = \/z. Clearly T is monotone and each
closed, convex and T-invariant subset of [0, 1] is just of the form C' = [a, 1] for
1
some % <a <1. Now if 9 € [a,1], then T"xy = 2" — 1 as n — oco. Thus
the only element comparable with the orbit of zg is z = 1 and so
limsup |[T"zo — Tz| = 0 = limsup [T"zo — |,
n—oo n—oo

that is, T is an orbitally nonexpansive mapping. We now show that T does not
satisfy the monotone F-condition. Let xo = 1 and y € (%, 1) be an arbitrary
element. Then

VY = |zo = Ty| > nlzg — Tl +|z0 —y| =1~y
for all n > 1.
Next corollary is a straightforward consequence of Theorems 3.10 and 4.7.

Corollary 3.12. Let (X,]|| - ||, %) be a partially ordered uniformly convex
Banach space for which order intervals are conver and closed. Let C' be a
nonempty convex, closed, bounded subset of X not reduced to one point. If T
is asymptotically regular and satisfies the monotone E-condition on C, then T
has a fized point iff there exists xq € C such that xy and Txzy are comparable.
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4. T-CYCLIC CONTRACTIONS

In this section, we study some sufficient conditions to ensure the existence
of common best proximity points for two cyclic mappings. We begin our dis-
cussion by introducing the following notions.

Definition 4.1. Let (A, B) be a nonempty pair in a metric space (X, d) and
let “<” be a partially ordered relation on A. The mappings S,T : A — B are
said to be order preserving provided that Sz =Ty = z <y, for z,y € A.

Let us illustrate this notion with the following examples.

ExaMPLE 4.2. Consider X = R with the usual metric and the natural relation
“<”. Assume that A = B = [0, 00) and define the mappings S, T : A — B with
Sz = 2% and Ty = y2. Then S,T are order preserving. Indeed, if Sz = Ty,
then 23 = y? which implies that © = {"/372 <.

ExAMPLE 4.3. Consider the Banach space X = C([0,1]) of all complex-valued
continuous functions defined on [0, 1]. Consider the partially ordered relation
“X"on X as f g fi <g1, fo < g2, where f = f1 +ify and g = g1 + igo.
Suppose

A={f=hH+if2e€X:f(0)=0}, B={g=g1 tig2 € X : 91 > 0,9(0) = 1}.
Define S,T : A — B with Sf = (fi + 1) +ifs and Tg = 1 4 igs. Now if

Sf = Tg, then we must have f; = 0 and fo = g9 which implies that f < g,
that is, S, T are order preserving.

Definition 4.4. Let (A, B) be a nonempty pair in a metric space (X, d) and
let “<” be a partially ordered relation on X. Let S,7: AUB — AU B be two
cyclic mappings. The mapping S is said to be a T-cyclic contraction provided
that

d(St,S%*r) < ad(T#,T?r) + (1 — a)dist(A, B), (4.1)
for some a € (0,1) and for all (z,4) € A2U B? with z < 7.
Next lemma plays an important role in our results of this section.

Lemma 4.5. Let (A, B) be a nonempty pair in a metric space (X, d) and let
“<” be a partially ordered relation on X. Assume S, T : AUB — AU B are
two cyclic mappings such that S, T are commuting and order preserving on X
and S(A) CT(A) C B,S(B) CT(B) C A and let S be a T-cyclic contraction
mapping. Then there exists an increasing sequence {x,} € A for which the
following implications hold:
(a) d(Swan, S%x2,) < a™d(Sz,, S?x0) + (1 — a™)dist(A, B);

) d(Swan41,8%Tan) < ad(STpi1,S%20) + (1 — a™)dist(4, B);
(¢) d(Sz2n—1,5%T2n_1) < a"1d(Szy,, S?z1) + (1 — o™ 1)dist(4, B);

) d(Szan, S%*wa,—1) < a" 1d(Szpi1, S?21) + (1 — o™ 1)dist(A, B).
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Proof. Choose g € A. Since S(A) C T(A), there exists an element x; € A
such that Sxqg = Tx;. By the fact that S,7T are order preserving, we have
xo = x1. Again since S(A) C T(A), there exists an element x5 € A such that
Sx1 = Txo and so x1 < xo. Continuing this process we obtain a sequence
{zn} in A such that Sz, = Ta,q; and 29 227 =X -+ Xz, <X ---. By the
contractive condition in (4.1) we conclude that
d(Sxon, S*wa,) < ad(Txo,, T?x2,) + (1 — a)dist(A4, B) (22, =< x2,)
= ad(Szan—_1,T(Sx2n-1)) + (1 — a)dist(4, B)
= Ozd(S.’,Egn_h S(Tﬂjgn_l)) + (1 — Ot)dlSt(A, B)
(S, T are commuting)
= ad(Swa, 1,529, _2) + (1 — a)dist(A, B)
< afad(Txan_1,T*Ton_2) + (1 — a)dist(A, B)]
+ (1 — a)dist(A, B)(r2,-2 =< T2n—1)
Pd(Txon_1,T*xon_2) + (1 — o?)dist(A, B)
@?d(Son_2, 5T, _4) + (1 — ?)dist(A, B)
- < a™d(Szy, S%xo) + (1 — a™)dist(A, B),

IN

which implies that (a) is satisfied. Similarly, we can see that the relations (b),
(c) and (d) hold true. O

Remark 4.6. Under the assumptions of Lemma 4.5 if moreover B is bounded,
then

d(SQ?Qn, SQLL'Q”) — diSt(A, B), d(Sl‘Qn,l, Sgwgnfl) — diSt(A, B),

d(S,TQnJrh SZQTQH) — diSfC(A7 B), d(SLL'Qn, 52.%‘2”,1) — d.iSt(A7 B)
Proof. Tt follows from (a) that

d(Sxon, S%ra,) < ad(Sz,, S2xg) + (1 — o™)dist(A, B)
< a"[d(Szy,, Sxo) + d(Szo, S?20)] + (1 — a™)dist(A, B)
< a"[diam(B) + d(Swxo, S*xo)] + (1 — a™)dist(A, B)
— dist(4, B).
Equivalently, the other implications hold. O

Here, we establish the following fixed point theorem for two cyclic mappings.

Theorem 4.7. Let (A, B) be a nonempty pair in a metric space (X,d) such
that B is bounded and complete and let “X” be a partially ordered relation on
A. Assume S, T : AUB — AU B are two cyclic mappings such that S, T are
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commuting and order preserving on A and S(A) C T(A) C B,S(B) CT(B) C
A. Suppose
d(St, S%z) < ad(T, T?x), (4.2)

for some a € (0,1) and for all z,& € A with x < & and let T|p be continuous.
Then AN B # 0, Fix(T) is nonempty and S(Fix(T)) C Fix(S). Furthermore,
if S|p is continuous, then Fix(T) N Fix(S) # 0.

Proof. Consider the increasing sequence {z,} in A as in the proof of Lemma
4.5. We claim that {Sz,} is a Cauchy sequence in B. From the relations (a)
and (b) of Lemma 4.5 we have

d(Szan, Stont1) < d(Swon, S*2n) + d(ST2ns1, SP2n)
< a™d(Sxn, S*xg) + a™d(Swpy1, S2xo)
< 2a™[diam(B) + d(Sxzg, S*x0)],

which leads to > 7, d(Sxapn, Stont1) < co. Similarly, by using the relations
(c) and (d) we can see that > - | d(Szon—1,Sz2,) < co. Thereby,

Z d(Sxy, Stpi1) < 00,

n=0

that is, { Sz, } is Cauchy. In view of the fact that B is complete, Sz, = p € B
and so, Tx,, — p. Since T|p is continuous, 7%z, — Tp and STz, = TSz, —
Tp. We now have

d(Sxp, STx,) = d(an,S2xn_1) < ad(T:cn,TQ:rn_l) (Tp—1 =X Ty).

Letting n — oo in the above relation, we obtain d(p,Tp) < ad(p,Tp) which
implies that p = Tp. Besides, d(Sp, S?p) < ad(Tp,T?p) and so Sp = S?p.
Thus Sp € Fix(S) which implies S(Fix(T)) C Fix(S). Now assume that S is
continuous on B. Then S%z, — Sp and

S?z,_1 = STz, =TSz, — Tp=p.
Thereby, Sp = p and hence p € Fix(T) N Fix(S) # 0. O
EXAMPLE 4.8. Consider X = R? with the metric
d((z1,91), (v2,92)) = max{|zy — 22|, [y1 — y2l},
where (z;,v;) € R? for i = 1,2. Let
A={(z,00:0<z<1}, B={(0,y):0<y<1}.
We define S,T: AUB — AU B by

r y
5 50y =(,

S(x,0) = (0, 0, T(x,0=(0.3), T(0,y) =(3,0).
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Clearly, S(A) CT(A) C B,S(B) CT(B) C Aand S,T are commuting. Define
the partial order “ <” on A in the following way:

(,0) < (£,0) & x < .

Then S, T are order preserving on A. Moreover, if (z,0) < (2’,0), then

. !

xr
3 (g, 0) =max{g, =} ==
@ z o
<a— = — == 5 ) (7
<ag =amax{}, 5} = ad(0,%).(3,0)

= ad(T(2',0),T?(z,0)),
where o € [%, 1). Hence, all of the conditions of Theorem 4.7 hold and S,T
have a common fixed point which is p = (0,0) € AN B.

~

d(S(a',0), 5%(z, 0)) = d((0,

Next lemmas will be used in the main result of this section.

Lemma 4.9. (Lemma 3.7 of [7]) Let (A, B) be a nonempty and closed pair in
a uniformly convex Banach space X such that A is convex. Let {x,} and {yn}
be sequences in A and B, respectively, such that either of the following holds:

m—r oo n

lim sup ||@m — ynl| = dist(4, B) or lim sup ||, — yn|| = dist(4, B).
>m n—oo m>n

Then {zy} is a Cauchy sequence.

Lemma 4.10. (Lemma 3.8 of [7]) Let (A, B) be a nonempty and closed pair
in a uniformly convexr Banach space X such that A is convex. Let {x,} and
{zn} be sequences in A and {y,} be a sequence in B, satisfying ||Tn — ynll —
dist(A, B), ||zn — ynl|| — dist(A4, B). Then ||z, — z,|| — 0.

We are now ready to state the main result of this section.

Theorem 4.11. Let (A, B) be nonempty, closed and convex pair in a uniformly
convexr Banach space X such that B s bounded, and let “<X” be a partially
ordered relation on AU B. Let S, T : AUB — AU B be two cyclic mappings,
such that S, T are commuting and order preserving on A, S(A) C T(A),S(B) C
T(B), and let S be a T-cyclic contraction mapping. If T is continuous, S|a
is monotone then there exists an element g € B such that ¢ € BPP(T), Sq €
BPP(S). If in addition S|g is continuous, then ¢ € BPP(T)(BPP(S).

Proof. Consider the increasing sequence {z,} as in the proof of Lemma 4.5.
Thus

S, = Txpy1, |Stn — S%2,|| — dist(A, B), ||Szni1 — S%2,|| — dist(A, B).
It follows from Lemma 4.10 that ||Sx, — Sxpq1]| — 0. Again
stn—i-l — S2.Z‘n|| — dlSt(z47 B)

and
|S2ni1 — S*xpyr| — dist(A, B), ||S?2n — S*xpyq| — 0.
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We claim that for every € > 0 there exists Ny € N such that, for all m >
n > Ny, we have ||Sz,, — S?z,||* < ¢, where ||a — b||* := ||a — b|| — dist(A, B)
for any (a,b) € A x B. Suppose the contrary. Then there exists ¢ > 0 such
that for all k € N there exist my > ng > k for which

1% m, — S2xn, I > &, 1S2m,—1 — S2xn,||* <e.
Thus
£ < |18z, — S @, |I* < 1STmy — STy 1l + [1STmy -1 — S22, ||,
which implies that limy_ oo ||SZm, — S22, ||* = . We now have

152, — S22z, ||

< NSz, — Syl + 1St = S*Tppra |* + 1872 n, 1 — 5%, |

< NSz = STyl + QT T = T2 | + 1220, 11 — 5%z, |
(Tnjp+1 = Tmyy1)

1, — Sy 1|+ 1Sy — Sy 1+ 1520y 1 — S, |

NS, — STy 1|l + 2T Ty, — T2, 1 ||* + 1220, 41 — S22, ||
(xnk—l = xmk)

= Sz, — Syl + &[St 1 — SPan—sl" + 1w 11 — S, |

< NSz, — Syl + P[[[Smy—1 = S2@n, " + 1S%2n,, — 5?20, —s]l]

+ 18220, 11 — S, ||

< Sy, — Syl + P8z, -1 = S0, "+ 118% 20, — S22, 1|

+ 18220, —1 — S%xp, ol + 15?2, —2 — SPxp, 3|l] + 192 Tn, 41 — S%2n, |-

Letting k — oo we obtain € < a?e which is a contradiction and so the relation
(4.2) holds. Thereby

lim sup ||Sz,, — Sz, | = dist(A, B).
>m

m—0o0 n

It now follows from Lemma 4.9 that {Sz,} is a Cauchy sequence in B. Since
B is complete, there exists an element ¢ € B such that Sz,, - q and Tz,, — q.
By the fact that S, T are commuting and 7T is continuous, we get

STx, =TSz, — Tq, Tz, — Tq.

Thus |l¢ — Tq|| = limpeo [|STn — STzy| = limy oo |S2n — S%201]|| =
dist(A, B), that is, ¢ € BPP(T). On the other hand, we have

S35 = S(S(Stn_2)) = S(S(Txn_1))
= S(T(Sxp_1)) = S(T(Tx,)) = T*(Sx,) — T?q.
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Similarly, S%z,, = S(Sz,) = S(Txny1) = T(STpy1) — Tq. In view of the fact
that S|4 is monotone, we have

ITa T2 =t [15%, — §%, 3] = [S(Se) ~ $(Sz0 )]
< a||T(Sxy,) — T?(Sxp_2)|| + (1 — @)dist(A, B) (Swp_2 = Sz,).
Letting n — oo, we conclude that ||Tq — T?q|| = dist(A, B). We now have
Sq — S%q|| < a||Tq— T?q|| + (1 — a)dist(A, B) = dist(A, B),
and so Sq € BPP(S). Note that if S|p is continuous, then
lg = Sqll = lim [|Szy — S%2,|| = dist(4, B),
and so ¢ € BPP(T') " BPP(S). O

EXAMPLE 4.12. Consider the Hilbert space X = [? with the canonical basis
{en} and let

A={tey +e:0<t <1}, B={tes +2e:0<t <1}
Then dist(A, B) = 1. Define S,T: AUB — AU B by

/

t 4
S(tel + 62) = 561 + 262, S(t'el + 262) = 561 + €2,

/

t t
T(tel + 62) = 5 + 262, T(t’el + 262) = 561 + es.
Clearly, S(A) € T(A) C B,S(B) C T(B) C A and S,T are commuting.
Define the partial order “ <” on AU B as follows: if x := te; + kes € AU B
and y := t'e; + k'es € AU B, where t,t' € [0,1] and k, k" € {1,2}, then
x 2yt <t k<K.Itis easy to see that S,T are order preserving on

A, and S is a T-cyclic contraction. It now follows from Theorem 4.11 that
BPP(T) N BPP(S) # 0.
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