An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f:E →{1,... ,|E|} such that for any pair of adjacent vertices x and y, f^{+}(x)≠ f^{+}(y), where the induced vertex label f^{+}(x)= ∑ f(e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by X_{la}(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, the sharp lower bound of the local antimagic chromatic number of a graph with cut-vertices given by pendants is obtained. The exact value of the local antimagic chromatic number of many families of graphs with cut-vertices (possibly given by pendant edges) are also determined. Consequently, we partially answered Problem 3.1 in [Local antimagic vertex coloring of a graph, Graphs and Combin., 33, (2017), 275--285].

Type of Study: Research paper |
Subject:
General

1. 1. S. Arumugam, Y. C. Lee, K. Premalatha, T. M. Wang, On Local Antimagic Vertex Coloring for Corona Products of Graphs, (2018), arXiv:1808.04956v1.

2. S. Arumugam, K. Premalatha, M. Bača, A. Semaničová-Feňovčíková, Local Antimagic Vertex Coloring of a Graph, Graphs and Combin., 33, (2017), 275-285. [DOI:10.1007/s00373-017-1758-7]

3. G. C. Lau, H. K. Ng, W. C. Shiu, Affrmative Solutions on Local Antimagic Chromatic Number, Graphs and Combin., 36, (2020), 1337-1354. [DOI:10.1007/s00373-020-02197-2]

4. G. C. Lau, W. C. Shiu, H. K. Ng, On Local Antimagic Chromatic Number of Cyclerelated Join Graphs, Discuss. Math. Graph Theory, 41, (2021), 133-152. [DOI:10.7151/dmgt.2177]

5. T. R. Hagedorn, Magic Rectangles Revisited, Discrete Math., 207, (1999), 65-72. [DOI:10.1016/S0012-365X(99)00041-2]

6. J. Haslegrave, Proof of a Local Antimagic Conjecture, Discrete Math. Theor. Comput. Sci., 20(1), (2018). [DOI:10.23638/DMTCS-20-1-18]

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |