[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

Iranian Journal of Mathematical Sciences and Informatics
Vol. 19, No. 1 (2024), pp 117-133
10.61186/ijmsi.19.1.117

A Parametric F; Algorithm

Mahdi Dehghani Darmian®®*, Amir Hashemi®*

“Department of Mathematics, Technical and Vocational University (TVU),
Tehran, Iran
bSchool of Mathematics, Institute for Research in Fundamental Sciences
(IPM), Tehran, 19395-5746, Iran
“Department, of Mathematical Sciences, Isfahan University of Technology,
Isfahan, 84156-83111, Iran

E-mail: m.dehghanidarmian@ipm.ir; m.dehghanidarmian@gmail.com
E-mail: amir.hashemi@ipm.ir

ABSTRACT. In this paper, we present a parametric Fy algorithm (so-
called PF4) which can be considered as a generalization of Faugere’s
F4 algorithm [8] to polynomial ideals with parametric coefficients. Our
approach is based on the F4 algorithm, Montes DISPGB algorithm [21]
and the parametric linear algebra method developed in [6]. The PFy4
algorithm takes as input a parametric polynomial ideal and two monomial
orderings on the variables and the parameters and returns a Groébner
system of the ideal with respect to a compatible elimination product of
the given monomial orderings. We have implemented our new algorithm
in MAPLE and give timings to compare its performance with those of
(our implementation) of the Kapur et al. algorithm [16] and the DISPGB
algorithm [21].

Keywords: Grobner bases, Grobner systems, Fy algorithm, PFy algorithm,
PGBMAIN algorithm, DisSPGB algorithm.

2000 Mathematics subject classification: 13P10, 68W30.

*Corresponding Author

Received 07 September 2019; Accepted 28 December 2020
©2024 Academic Center for Education, Culture and Research TMU
117

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

118 M. Dehghani Darmian, A. Hashemi

1. INTRODUCTION

Grobner bases are a powerful tool and an important theoretical concept
in the polynomial ring theory. The theory of Grobner bases was introduced
by Buchberger [4] in 1965, who named them after his supervisor Grébuer.
Buchberger’s algorithm is the first and most reputed method for computing
Grobuer bases which was presented in Buchberger’s Ph.D. thesis [2, 4]. Then,
he proposed [3] two criteria to improve the performance of his algorithm. In [10]
Gebauer and Moller presented an improvement of the Buchberger algorithm to
apply efficiently Buchberger’s criteria. In 1983, Lazard described an algorithm
by using linear algebra methods [18] for the computation of Grébner bases.
Later on, Faugere proposed his two well-known algorithms, namely F, and F5
for computing Grobner bases (see [8, 9]). The main idea of the F4 algorithm is
the use of linear algebra techniques to perform simultaneously the reduction of
a large number of critical pairs. This algorithm has been implemented in some
of the computer algebra systems like MAPLE and MAGMA.

In this paper, we adapt the F4 algorithm to compute comprehensive Grobner
systems (CGS’s) for parametric polynomial ideals. For simplicity, throughout
this paper we employ the terminology Grobner system instead of CGS. Roughly
speaking, Grobner systems can be considered as an extension of Grébner bases
for polynomial ideals over fields to polynomial ideals with parametric coeffi-
cients. More precisely, a Grobner system is a finite set of triples (so-called
branches or segments); each branch contains a couple of null and non-null
parametric sets (parametric constraints) and also a set of polynomials so that
for every values of the parameters (specialization) one can find a branch so
that the specialization satisfies its constraints, and the specialization of the
corresponding polynomial set forms a Grobner basis for the parametric ideal
under the substitution of the values of the parameters. Grobner systems have
numerous applications in Mathematics and other field of sciences. In partic-
ular, we can point out algebraic geometry [11, 20, 21, 28], parametric linear
algebra [6, 13], robotics [19, 21], automated geometry theorem proving [20, 22],
automated geometry theorem discovery [22], electrical network [23] and so on.
Since our study is focused on the theory of Grébner systems, we review briefly
this topic. The concept of Grébner system was introduced by Weispfenning
in [28]. He established also the existence of a Grobner system for any given
parametric polynomial ideal [28, Proposition 3.4 and Theorem 2.7] and pre-
sented the first algorithm to compute it [28, Theorem 3.6]. It should be noted
that the solutions of parametric systems were studied at the same time using
different methods by Kapur [15] and Sit [26], independently. In 2002, Montes
[21] proposed a more efficient algorithm (D1sSPGB) for computing Grébner sys-
tems (see also [7, 12]). Manubens and Montes in 2006, utilizing the concept

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

A Parametric Fy Algorithm 119

of discriminant ideals improved the DISPGB algorithm [19] and then intro-
duced an algorithm to compute minimal canonical Grébner systems [20]. In
[27] Suzuki and Sato propounded an impressive improvement for computing
Grobner systems based on Kalkbrener’s results [14] concerning specialization
of parametric polynomial ideals and stability of the Grobner bases under spe-
cialization. The Suzuki-Sato algorithm employed recursively computations of
reduced Grobner bases in an extension of the base polynomial ring. Afterward,
Nabeshima proposed an improvement of this algorithm in [25] by reducing the
number of branches generated by the Suzuki-Sato algorithm. Furthermore, Ka-
pur et al. in 2010 proposed an efficient algorithm (PGBMAIN algorithm) for
computing Grébner systems by using combination of the Weispfenning [29] and
the Suzuki-Sato algorithms, see [16, 17]. Finally, Montes and Wibmer in 2010
presented GROBNER COVER algorithm [24] based on a result for parametric
polynomial systems proved by Wibmer in [30]. GROBNER COVER algorithm is
the canonical algorithm for solving parametric polynomial systems and it plays
a role similar to the reduced Grobner basis for parametric systems. This algo-
rithm computes a finite partition of parameter space into locally closed subsets
together with certain polynomial data, from which the reduced Grébner basis
for each parameter point can be determined. The interested reader is referred
to [22] for more details on theory of Gébner systems and their applications.
As mentioned above, PGBMAIN algorithm was presented by Kapur et al.
in 2010. This algorithm at each iteration computes the Grébner basis over a
polynomial ring in terms of the variables and the parameters. Therefore, this
step may be very expensive in practice, because the complexity of Grobner ba-
sis computation is extremely influenced by the number of variables and degree
of the given polynomials. Hence, it is important to design an efficient algorithm
to reduces the computation in a polynomial ring in terms of only the variables.
On the other hand, the DISPGB algorithm works in a polynomial ring in terms
of only the variables and in addition benefits from almost all the improvements
of the Buchberger algorithm which are applicable in the non-parametric set-
ting. So, in this algorithm, like the conventional Buchberger’s algorithm, a
parametric S-polynomials is constructed and if its remainder is non-null then
it is added to the basis set (see also [12]). In consequence, DISPGB creates
new branches when a new polynomial with an undecidable coefficient is con-
structed and this may end with many number of branches which may turn the
algorithm inefficient in practice. In order to tackle this problem, we present
a parametric version of the Fy algorithm. As the first step in this direction,
we shall need a parametric linear algebra technique to achieve our purpose.
It is worth noting that Grobner systems may be not a powerful tool in solv-
ing any parametric polynomial system and that is why we already developed
parametric linear algebra tools for studying parametric polynomial systems
(in [6, Section 3], it is shown that applying parametric Gaussian elimination

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

120 M. Dehghani Darmian, A. Hashemi

method to solve a parametric polynomial system may be faster than applying
Grobuer system method). Based on this approach using the basic ideas from
the DISPGB structure [21], we present a parametric Fy algorithm to compute
Grobner systems for parametric polynomial ideals. The proposed algorithm
along with the algorithm due to Kapur et al [16] and the DISPGB algorithm
have been implemented in MAPLE and the comparison of their efficiency is
discussed via a set of benchmark polynomials.

The rest of the paper is organized as follows. In Section 2, we review the
basic definition and notations related to the theory of Grobner systems. Then
we present a parametric version of the F4 algorithm in Section 3. Furthermore,
in this section we illustrate the steps of this algorithm through a simple ex-
ample. The efficiency of the proposed algorithm (compared to the PGBMAIN
and DISPGB algorithms) is discussed using several benchmark polynomials in
Section 4.

2. GROBNER SYSTEMS

In this section, we review the basic definitions and notations that we use
in the subsequent sections, for more details we refer the reader to [5, 22].
Throughout this paper, we consider R = K[zy,...,x,] the polynomial ring in
terms of x1,...,x, over a field K. Let Z = (f1,..., fr) C R be the polynomial
ideal generated by the f;’s. We consider a monomial ordering < on the set of
all monomials (power products of the z;’s) of R. For any f € R, the leading
monomial of f, denoted by LM<(f), is the greatest monomial (with respect
to <) appearing in f and its coefficient is the leading coefficient of f which
denoted by LC<(f). The leading term of f with respect to < is the product
LTZ(f) = LC<(f)LM<(f). The leading monomial ideal of T is defined to be
LM (Z) = (LM<(f) | f € Z). A finite subset {g1,...,9m} C Z is called a
Grébner basis for T with respect to < if LM (Z) = (LM< (g1),- .., LM< (gm))-
We refer e.g. to [5] for more details on the theory of Grobner bases. Using these
notations, we recall the definition of Grébner systems for parametric polynomial
ideals. For this purpose, let us consider S = K[a,x| as a polynomial ring

with parametric coefficients where a = a4, ..., a,, is a sequence of parameters,
X = 1,...,&y is a sequence of variables and {x} N {a} = (). Thus a monomial
x]t .- x% is denoted by z® where o = (aq,...,). Let <x be a monomial

ordering on the variables and <, a monomial ordering on the parameters. For
defining Grobner systems, we shall need also to give recall a product ordering
to specify an ordering on §. The product of <4 and <, denoted by <y a, is
defined as follows: For all o, 5 € N™ and «,d € N, we write x*a¥ <xa xPal
if either x* <y x” or (x* = x’and a7 <, a’%).

In addition, if K denotes the algebraic closure of K then from a specialization
of parameters we mean a morphism

o:Kla] - K.

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

A Parametric Fy Algorithm 121

Therefore, for each f, we can write o(f) = fla=t,,...t,, Where o(a;) = t;.
Furthermore, we say that a specialization o satisfies (N, W) C K[a] x K[a] if
o(p) =0 for all p € N and o(q) # 0 for some ¢ € W. Equivalently, o satisfies
(N, W) if (t1,...,tm) € V(N)\ V(W) where o(a;) = t;. X V(N)\ V(W) =10
then (N, W) is said to be inconsistent. Also, N; and W; are called the null and
non-null condition sets, respectively. The set of common zeros of N C R is
denoted by V(N), for a set of polynomials N.

Definition 2.1. [27, Definition 1] Let FF C §,G; C S and (IV;, W;) C KJa] x
Kla] for i = 1,...,¢. The triple set ¢4 = {(IV;, Wl, G;)}o_, is called a Grobner
system for (F) Wlth respect to <x 5 over V C K™ if for any ¢ we have

e 0(G;) C K[x] is a Grobner basis of (o(F)) with respect to <y, for any

specialization o : K[a] — K satisfying (N;, W;)

o VUL, V(N)\ V(Wy).
For each i, (N;, W;, G;) is called a branch (segment) of the Grobuner system .
Furthermore, if V = K" then ¢ is called a Grébner system of F'.

The concept of Grébner system was introduced by Weispfenning in [28]. He
proved that any parametric polynomial ideal has a Grobner system and de-
scribed an algorithm to compute it. Kapur et al. in [16] presented the efficient
PGBMAIN algorithm for this computation. However, the output Grobner sys-
tem of this algorithm may contain several branches so that the corresponding
Grobner basis is {1}. On the other hand, by substituting only one branch in-
stead of considering all these branches may reduce the consistency check and
this can improve significantly the performance of the PGBMAIN algorithm, see
[11] for more details. In the rest of the paper when we refer to the PGBMAIN
algorithm we mean the modified version of this algorithm proposed in [11].

EXAMPLE 2.2. Let F = {ay® + v*r + 2,cy® + bz} C Kla,b,c, 2,vy, 2] where
x,y, z are variables and a, b, ¢ are parameters. We consider the monomial or-
derings z <4 Y <gri © and ¢ <gr b <gr a. Using our implementation of the
PGBMAIN algorithm, we can compute a Grébner system for (F') as follows

([, [be], [abyz + bxz — 2c,cy® + bz])
(e, 1], [ay +y x+2])

(e, B, [bz,ay® + y?z +2]))

(o], le, 1))

For instance, if we set a = 1,b = 2 and ¢ = 3 then the first branch corre-
sponds to these values of parameters and so {zx +zy — 3, 3y% + 22} is a Grobner
basis for the ideal (F) |4=1,b=2,c=3

3. DESCRIPTION OF A PARAMETRIC F4, ALGORITHM

Faugere’s F4 algorithm [8] has a structure similar to that of the Buchberger
algorithm, however in contrast to it which computes S-polynomial remainders

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

122 M. Dehghani Darmian, A. Hashemi

one by one, several S-polynomial remainders are performed simultaneously via
row-reduction on a suitable matrix (generally sparse matriz) to do the reduc-
tions in parallel. This structure, along with the use of linear algebra methods,
is the cornerstone of the Fy algorithm. We refer e.g. to [5, 8] for more details
on the structure of the F, algorithm. In this section, we present a parametric
F4 algorithm which can be considered as a generalization of the Fy algorithm
to polynomial ideals with parametric coefficients. We remark that our gener-
alization is non-trivial in the sense that, in several stages in the F4 algorithm
we shall perform linear and non-linear reductions, and it is non-trivial to han-
dle the parametric variants of all these reductions. In this direction, we apply
the GES algorithm [6] with slight modifications. This algorithm computes a
Gaussian elimination system for a parametric matrix (equivalently a paramet-
ric linear system corresponding to the input matrix). However, we apply this
algorithm on non-linear polynomials to make a linear inter-reduction, and we
look for their Gaussian forms according to parametric constraints. To this end,
we shall linearize the input polynomials by replacing each monomial appearing
in the polynomials by new variables. The engine of the GES algorithm is the
LDS algorithm [6] which discusses the dependency of a linear parametric poly-
nomial with respect to a given set of parametric polynomials without the use of
Grdobner systems. For the convenience of the reader, we review shortly the LDS
algorithm from [6]. Below, we let Sys be a variable which is initialized to empty
set, and finally it is the output linear dependency system. In addition, the LDS
algorithm receives as input (N, W, F, f) where (N, W) is a pair of condition sets,
F is a set of linear parametric polynomials (which forms a parametric Grobner
basis with respect to the given condition sets) and f is a linear parametric poly-
nomial and returns a finite set of triples of the form (N1, W1, [flag, @, g]) where
(N1, W) is a pair of condition sets, flag is a Boolean variable, @ represents the
quotients of the division and g is the normal form of f with respect to F. If
flag is true then ¢ = 0 and in consequence f is linear dependent on F with re-
spect to (N7, W7), and if it is false then f is linear independent modulo F' with
respect to (N1, W1). We use below the function NORMALFORM which receives
as input a polynomial p, a Grébner basis G = {¢1,...,9m} and a monomial
ordering < and returns f and Q = [q1,-..,¢m]| where f is the normal form of
pby Gandp=qg1+- -+ Gmgm + f. Finally, we shall mention that the LDS
algorithm uses an arbitrary monomial ordering on the variables appearing in
F and f to discuss the parametric linear dependency of f on F' and this does
not change the correctness of the output.

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

A Parametric Fy Algorithm 123

Algorithm 1 LDS (Linear Dependency System)

Require: G C S; a linear set which is a reduced Grobner basis w.r.t. the product of the
monomial orderings <x and <a provided that a conditions pair (N, W) is satisfied and
g € S; a parametric linear polynomial

Ensure: A linear dependency system of g on (N, W, G)
Sysi= {}
£, Q :=NORMALFORM(g,GROBNERBASIS(NN, <a), <a)
f', Q" :=NORMALFORM(f, G, <x)

if f/ =0 then
Sys:=Sys UL(N, W, [true, @, 0])}
else
A:={a;;,...,a;, } where f' = a;, x;, +---+a;,x;, with a;, #0and z;; =x - >x T4,

for j from 1 to ¢t do
if a;; is not constant then
Sys:=Sys (H{(N U {ai;, ..., aij—1}7 wWu {aij}, [false,Q’, f’|ai1:0,...,a”71:0])}
else
Sys:=Sys U{(NV U {aiy,...,ai;_, }, W, [false,Q’, f/|ai1:07~-7”4ij71:0})}
Return(Sys)
end if
end for
Sys:=Sys U{(N U A, W, [true, Q’,0])}
end if
Return(Sys)

The behavior of the above algorithm is illustrate by a simple example.

ExAMPLE 3.1. Consider (N,W,G) = ([],[a — 1,b — 1,¢], [z + av,y + bu, z])
and g = (a — 2)z + ty + cz + du + (3 — b)v. We fix the monomial orderings
t <lex d <jex € <jex b <jex @ and U <jep U ez Z <lex Y <lex T oOn the
parameters and the variables, respectively. At the beginning, we set

f,Q := NORMALFORM(g, N, <a) = (a —2)z +ty +cz+du+ (3 —b)v,[]

f,Q = NORMALFORM(f, G, <x) = (bt + d)u + (—a® + 2a + 3 — b)v,[a — 2,1, .
Since f' # 0 we consider the set A = {=bt + d,—a® + 2a — b + 3} of the
coefficients of f’. By the structure of the algorithm, we consider first two pairs
([],[a —1,b—1,¢,—bt +d]) and ([-bt +d],[a —1,b—1,¢,—a® + 2a — b + 3])
which are consistent and therefore we have
Sy — ([1,]a — 1,b—1,¢,—bt +d], [false, [a — 2,t,c], (=bt + d)u + (—a® + 2a + 3 — b)v]),

5= ([=bt +d],[a —1,b—1,c,—a® +2a — b+ 3], [false, [a — 2,t,c], (—a® 4 2a + 3 — b)v]).
Since A does not contain any constant and the pair (N U{A}, W) is consistent
then a linear dependency system of g on (N, W, G) is as follow:

([1,[a—1,b—1,c,—bt +d], [false, [a — 2,t,c], (bt + d)u + (—a® + 2a + 3 — b)v]),
Sys=14 ([-bt+d],[a—1,b—1,¢c,—a? +2a — b+ 3], [false, [a — 2,t,c],(—a® + 2a + 3 — b)v]),
([=bt +d,—a® +2a —b+3],[a — 1,b—1,], [true, [a — 2,t,c],0]).
Using this algorithm, we are willing to present an efficient algorithm to
compute a Gaussian elimination system for a set of (non necessary linear)
parametric polynomials. Below, the notion Sys stands for a variable which

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

124 M. Dehghani Darmian, A. Hashemi

is initialized to empty set, and finally it is the output Gaussian elimination
system. We note that each recorded branch in Sys contains a triple (N, W, Q)
where (N, W) is a pair of condition sets and G is a Gaussian elimination form of
the input parametric polynomials set with respect to (N, W). In the following
algorithm Y'[i] denotes i-th element of a list or set Y.

Algorithm 2 GES (Gaussian Elimination System)

Require: N C K[a]; null condition set, W C K[a]; non-null condition set, F C K|a,x]; a
parametric polynomial set

Ensure: A Gaussian elimination system of F' according to N and W

Sysi= {}
M := Mon(F) = [m1,...,m¢] (the set of all monomials in terms of the x;’s appearing in
F)

[Y1,...,Y:] :=A list of tag variables corresponding to Mon(F)
L := ¢(F) where ¢ is a linear map sending each m; into Y;
A= {(N,W,{}, L[1], L)}
while A # {} do

a:= A[l] and A := A\ {a}

if a[5] = {} then

G := ¢~ (a[3))

Sys:=Sys U{(al1], al2], G)}
else

G = a[5]\ {a[4]}

g:=G[1]

P :=LDS(a[l], a[2], a[3], a[4])
for i from 1 to |P| do
Let P[i] = (N1, W1, [flag, Q, f])
if flag = true then
A:=AU{(N1,W1,a[3],9,G)}
else
A= AU{(N1,W1,a[3]U{f} g,G)}
end if
end for
end if
end while

Return (Sys)

Theorem 3.2. The GES algorithm terminates in finitely many steps and is
correct.

Proof. Since F is finite and for any f € F the LDS algorithm computes the
linear dependency system of f in finitely many steps then the GES algorithm
trivially terminates in finitely many steps. Also, the correctness of the LDS
algorithm guarantees the correctness of this algorithm. More precisely, by the
structure of the algorithm, we discuss a new polynomial f € F' using the LDS
algorithm. If it is linear dependent on the computed basis, then it is removed.
Otherwise, its normal form with respect to the computed basis is added into

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

A Parametric Fy Algorithm 125

the basis. Thus, each branch contains a Gaussian elimination form of the
input parametric polynomial set with respect to the corresponding conditions
pair. (I

EXAMPLE 3.3. Let us consider F' = {ax?+by+1,c2®+(a—1)y—b, (a —b)y*+
(c—1)ay—2} C Kla, b, c][z, vy, 2] as a set of polynomials with parameters. Using
the GES algorithm, we get the following Gaussian elimination system for F’
when (N, W) = ([a — 1], [c])-

([a - 1]7 [C,C*]-]a [$2 +by+ 17023 - b7 (1 - b>y2 +cry —xy — 2})7
([e=1,a—1],[b—1], [z?4+by+1,2%—b,(1—b)y*—2]),
(le=1,0—1,a—1],[], [z +y+1,2°—1,-2]).

We deal now with presenting a parametric F, algorithm, so-called PF, to
compute Grobner systems for parametric polynomial ideals. This algorithm,
which is a generalization of F, algorithm to parametric coefficients, receives as
input a parametric polynomial set F' and two monomial orderings on variables
and parameters and outputs a Grobner system for the ideal generated by F'. In
this algorithm, we use a global variable OUTSYS which is initially the empty
sequence and at each iteration of two algorithms PF, and PF4BASISs, some
new segments are added to this sequence. At the end, OUTSYS is a Grobner
system of the input parametric polynomial ideal.

Algorithm 3 PF,

Require: F C K[a,x] =Kla1,...,am,Z1,...,Tn], <x, <a; two monomial orderings

Ensure: G; A Grobner system of (F') with respect to <x,a
OUTSYS :=NULL
A=GES([],[],F)
for (Ny,,Wp, F,) € A do
if F, =[] then
OUTSYS:= OUTSYS, (Npn, Wn,[])
end if
if there is any constant or non-zero parameter in F, then
OUTSYS:= OUTSYS, (Np, Wy, [1])

else
t := |Fy| (the cardinality of F},)
B = [[{i,j} degllem(LM< (Fali]), LM< (Fa[))] | 1 < & < j <
t, ged(LM < (Frli]), LM< (Fulj]) # 1]
if B=] then
OUTSYS:= OUTSYS, (Np, Wh, Fp)
else
SY S := [[Nn, Wh, Fn,t, B]]
end if
end if
PF4BAsIS(SY'S)
end for

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

126 M. Dehghani Darmian, A. Hashemi

We continue this section with the description of the PF,BAasIs algorithm
which is the most important part of the PF, algorithm. Below, we used the
CoMPUTEM sub-algorithm proposed by Faugere in [8] and its simple version
was presented in [5, page 571]. This sub-algorithm receives two sets of poly-
nomials L and G and its goal is to produce a polynomial set H so that the
following conditions hold:

i) LCH,
i) if there exists f, € G with LM(f;)|z? for some monomial 2# appearing
in some element in H then z® f, is included in H where LM (z® f,) = .

So, it is clear that this sub-algorithm can construct H within a finite loop.
Furthermore, in the next algorithm, the NEWPOLYS is a procedure which gets
two lists of polynomials F,G and returns the list of those polynomials f € F
so that LM(f) ¢ (LM(G)). Also, NORMALSET(F, G, <) computes the normal
form of all polynomials of F' modulo G with respect to a monomial ordering
=<, namely NORMALSET(F, G, <) = {?i|f € F'} where ff is a remainder of f
on division by G with respect to <. The algorithm maintains a list B of pairs
whose corresponding S-polynomials have not be reduced. But it is worth noting
that B is now a set of not ordered pairs. For this purpose, the degree of a pair
{i,7} is defined to be deg(lem(LM<, (f;), LM<, (f;))) and then one can use the
degree-normal selection strategy to order the pairs. Like the original form of
the F4 algorithm, the degree-normal selection strategy consists of choosing the
set of all pairs of the minimal degree in each step.

It should be mentioned that the PF, algorithm has a structure similar to
the Buchberger algorithm in which we consider the set of critical pairs to study
and therefore applying Buchberger’s criteria may be helpful to skip some un-
necessary critical pairs. In this direction, the PF4BASIS algorithm benefits
from the UPDATE algorithm exhibited in [1, page 230] to discard apriori super-
fluous critical pairs by employing Buchberger’s criteria (this algorithm is due
to Gebauer-Moller [10], and it has been presented in a more clear manner in [1,
page 230]). Moreover, in order to enhance the efficiency of the PF4BAsIs algo-
rithm, we keep track of the computations as follows: Each branch sys € SY S
in the PF,BasIs algorithm is of the form sys = (a[1],...,a[5]) containing the
following information:

e a[l]: The null condition set

e a[2]: The non-null condition set

e a[3]: The set of polynomials which forms a Grébner basis for (F') with
respect to <x

e a[4]: The cardinality of a[3]

e a[5]: A list of pairs so that the first component each element is a pair
{1, 7} and second component is deg(lem(LM~_(a[3][¢]), LM<, (a[3][4])))-

If L={[f1,...,fe is a list, then sequence fi,...,d, is denoted by op(L).

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

A Parametric Fy Algorithm 127

Algorithm 4 PF,BAsIs

Require: N C Kla]; null condition set, W C K[a]; non-null condition set, F' C Kl[a,x]; t;
the cardinality of F' and Cpairs; a list of pairs so that the first component is a pair of
integers {4, j} and second component is deg(lem~, (LM(F[i]), LM<, (F[4])))

Ensure: Decomposing the space of parameters into a finite set of parametric cells and for
each cell associating a finite set of parametric polynomials
B := Cpairs
while SY S # [] do

sys := SY S[1] and remove it from SYS

G := sys[3]

B := sys[5]

Select Bp C B using degree-normal selection strategy

B:=B\ Bp

Bsys := B

L= (O, SO | i) € Be)

H :=CoMPUTEM(L, G)
Ges :=GES(sys[1], sys[2], H)

allNPi := [NewpoLys(Gesli][3], H),i = 1,...,| Ges |]
for j from 1 to } allN Pi | do
t = sys[4]
G := NormalSet(sys[3], Ges[j][1], <a);
B := Bsys
for ¢ from 1 to | allNPi[j] | do
t:=t+1

B :=UPpDATE(allN Pi[j][¢], G, B)
G := [op(G), allN Pi[j][4]]
if B =[] then
OUTSYS:= OUTSYS, (Ges[j][1], Ges[j][2], G)

else
SY S := [op(SYS), [Ges[j][1], Gesj][2], G, t, B]]
end if
end for
end for
{PF4Basis(SY S[m])} lfzf |
end while

Return (OUTSYS)

Theorem 3.4. The PFy algorithm terminates in finitely many steps and is
correct.

Proof. The termination of this algorithm is essentially ensured by those of the
GES and Fy4 algorithms. More precisely, we can consider this computation like
a tree graph and each node corresponds to a triple which is the output of the
GES algorithm. The number of branches is finite (due to the termination of the
original F4 algorithm). Moreover, the number of nodes in this tree is finite (by
termination of the GES algorithm) and all these arguments together conclude
the termination of the algorithm.

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

128 M. Dehghani Darmian, A. Hashemi

Also, the correctness of the algorithm is guaranteed by the correctness of
the GES and the F,4 algorithms. Indeed, by the structure of the algorithm, at
each step we have a condition sets (sys[1], sys[2]), a set of polynomials G and
a list of critical pairs B. Then, we choose the critical pairs with lowest possible
degree and start discussing them using the GES algorithm. We obtain in turn
new polynomials by decomposing (sys[1], sys[2]). For each new polynomial
with its own condition sets, we add it into G and also update B. Since, we
basically follow the structure of the Fy algorithm, we get at the end a Grobner
system of the input ideal. O

We illustrate the steps of the PF4 algorithm by the following simple example.

EXAMPLE 3.5. Let F = [(¢? —1)2? +b? — 1, (a® — 1)zy® + c+b] C K|a, b,][z, y]
where z,y are varibles and a, b, ¢ are parameters. We consider the monomial
orderings Yy <jes T and ¢ <jez b <jer a. We want to compute a Grobner system
of the ideal generated by F' using the PF, algorithm. At the beginning, the
GES algorithm is called to compute a Gaussian elimination system of F' and
the output of this algorithm is as follows

([lla=1,a+1,c—1,c4+1], [x®+b*>—ax®—1,a°2y® —xy®> +b+d]),
([a®> =1],[b+¢c,c—1,c+1], [z? 4+ b — 2% —1,b+ (),
([b4c,a® —1],[c —1,c+1], (2?4 2 —2® — 1)),
A ([¢* =1],[a*> —1,b—1,b4+1], [V* —1,a%zy* — 2y?]),
([*=1,a> =1],[b—1,b+1], [B*—1)),
([=1,0> —1],[a—1,a+1], [a®zy® — 29> +b+d]),
([—1,0> = 1,a®> —1],[b+], [b+d]),
([= Lb+ca® = 1], (], [

A has eight segments and as it is seen the last Grobner basis is []. Furthermore,
the associated Grobner bases of the second, fourth, fifth and seventh branches
are all [1]. Thus, the corresponding branches are added in advance to OUTSYS:

([(JL2—1]7 b+c,c—1,c+1], 1,
([¢* — 1], [a—1,a+1,6—1,b+1], [1]),
OUTSYS = ¢ ([—1,a* —1], [b—1,b+1], 1),
([=1,0> —1,a®> — 1], [b+], 1),
([(;2—1,Z)—|—<:,(12—1]7 [, [D.

Now for simplicity, we select the first triple of A namely;
([la—1,a+1,c—1,c+1],[2a? +b* — 2% — 1,a*xy® — 2y® + b+ c])
and ignore the other branches. Therefore, we set SYS as the following
[, la—1,a+1,c—1,c+1], [z +b* —2® -1, a*zy® —2y® + b+, 2, [[[1, 2], 4]]]-
Now, PF,BAsIs is called and receives a quintuple of SY'S. Let sys be the only
element of SY'S. In the while loop, we have

z(a?xy? —xy?> +b+c) y*(a? + b2 — 22 - 1)

L=H={ a? —1 ’ 2 -1 b

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

A Parametric Fy Algorithm 129

Now, the GES algorithm receives as input sys[1], sys[2], H and gives a Gaussian
elimination system of H as follows

([, b+c,a—1,a+1,c—1,c+ 1], [a*z*y® — 2%y* + bx + cx, a®b*y® + 32
Ges = —a*y? — b*y? — b’x — x4 b + cx]),

(b+dla—Ta+1e—1Le+1],[a%2® — 2%, (a2 — a? — ¢ + 1)y?)).
Since, Ges has two branches so NEWPOLYS function is called twice and so we
can write

NewpoLYS(Ges[1][3], H) = [a*b?y® — a®y® — b*y? — bc*x — Px + br + cx +]
NEwpPOLYS(Ges[2][3], H) = [a*c®y? — a®y? — 2y* + 7).

Notice that NEWPOLYS is a procedure which receives two lists of polynomials

F, G and returns those polynomials f € F so that LM(f) ¢ (LM(G)). Hence,

in this step, the list of all new polynomials added to allN Pi is

allN Pi = [a*b*y* —a*y? —b*y* —b*r—catbrtcr+y?], [a*Py? —a’y* —y* +y?).

The cardinality of all N Pi is 2. So after passing two for loop and applying the
UPDATE algorithm, one gets
t=3,G=[2"+ —2° —1,a°zy® —x°, d’y° — a’y” — y° + 4%, B = [[{2,3}, 3]

Note that each element of B contains the indices corresponding to a critical
pair along with the degree of the corresponding S-polynomial. Therefore, SY' .S
is enlarged by two new quintuples as the following

([Lla=1,a+1,b+c,c—1,c+1], [c2ax?+b%—22—-1,a%2y® —2y® +b+c,
a2b2y? — a2y? — b2y? — b2z — Bat
bx + cx + y?],
3, 1,3}, 2], [{2, 3}, 3])),

e [61,3),2] 2,3}, 3])

(b+d,la—1,a+1l,c—1,c+1], [22? + ¢ — 2% — 1,a%xy? — 292,
a2cy? — a%y® — 2y + 2],
3, [[{2,3}3]]).

Since SY'S has two segments the computation is continued into two branches
and again for simplicity, we focus on the second member and ignore the first
one. The PF4BAsIS algorithm is called again and receives as input the following
data

[b+d], [a—1,a+1,c—1,c+1], [Pa?+c2—2?—1, a®zy® —21?, (a® P —a? =2 +1)y?], 3, [[{2, 3}, 3]].

Since SY S is not empty, so we enter into the while loop by setting L = H =
{xy?}. The Gaussian elimination system of H is

Ges=[[[b+d,[a—1,a+1,c—1,c+ 1], [zy*]].

On the other hand, Ges[1][3] = H = [zy?]. Accordingly,
NeEwpPOLYS([zy?], [ry?]) = [] which deduces that allNPi =[] and we have

t=3,G =[?2?* +? —2? — 1,a*zy® — xy?, a*Py® — a*y* - Py +9%, B =]

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

130 M. Dehghani Darmian, A. Hashemi

Since, B = [] so the sixth triple of Grobuner system of (F') added to OUTSYS
is

[[b+c], [a—1,a+1, c—1,c+1], [Ea?+c2—2®—1, a*xy* —xy?, (a** —a® —c*+1)y?]].

If we consider all the ignored branches during the calculation then we obtain
the following Grébner system of (F') saved in OUTSYS:

([a® =1],[b4+c,c —1,c+ 1], 1]
([= 1], [afl a+1,b—1,b+1], 1]
([¢? =1,a® —=1],[b—1,b+ 1], [1]
([= 1,6 —1,a% — 1], [b+], [1]
(e = 1,b+c,a2 — 1], [], [

),
)

D,

b2 —1],[a—1,a+1,b+c,c—1,c+1,2bc+ c® + 1], ?z? — 22, a%zy? — 2y? + b+ ¢, bz

(I Y Yy
+c3szxfcx,2bc3 +c* — 2bc — 1]),

(b+¢,a? —1],[c—1,c+1], [c22? + ¢ — 2?2 —1]),

(¢~ 1,6° — 1], [a — 1,a+ 1], [a%2y® — oy + b+),

([b+cl,la—1,a+1,¢c—1,c+ 1], [c2w2+62 — 22— 1,a%zy? — zy?,
a?c?y? — a®y? — Py? + 7)),

([Jyla=1l,a+1,b—1,b4+1,b+c,c—1,c+1], [cgz2+b27w271,a2zy27$y2+b

+c, (a?b? — a® — b)y? — bz — S

+bx + cx + y2, (a4b2 —a* - 2(12172)y4
+2a%y* + b%c? + (y* — 1)b2 + 2bc3 —
2bc + ¢* — 2 — yt)).

4. Experiments and Results

In this section, we aim to compare the performance of the PF, algorithm
with PGBMAIN and DI1SPGB algorithms. For this purpose, we have im-
plemented all the algorithms described in this paper in MAPLE 15. Below,
we refer to the Kapur et al. algorithm as “PGBMAIN”) and to the Montes
DisPGB algorithm as IMPROVED-DISPGB which involves an improvement
of the Di1sPGB algorithm [21] by installing UPDATE algorithm [12]. In this
direction, the following parametric ideals have been chosen in the ring S =

Qla, b, e, d,m,n,r,t][z,y, z,u,v,w], and we aimed to compute a Grobner sys-
tem of the ideal generated by each list of polynomials with respect to the
product of the orderings v <jez W <jez U <iez 2 <lex Y <lex T and t <jeq
T <lex M <lex M <lex d <lex C <lex b <lex G-

EX.1= [ab*cuzz — a — ¢, aby® — a® + b, abuzz —]
EX.2= [(a — ¢)zz — z, (—b° + a®)uzz — ab, (a + b)y — a?]
EX.3=[(c* — 12’y +b*— 1, (a* —1)z*2 +c+b, (a—b)y*z —x — 1, bay +a— (]

EX.4=

3 3

[bz22® — n® +n,cx®y® — a® — a, dz®y? — m> —m]

EX.5=[(c— 1)2®* +a’b—¢,(1 = b)zy*z +b+a, (1 — c)yze —a — b — (|

EX.6=

3

[abexyz —a — b — ¢, abzy — a — b, az® — be, by® — ¢, ¢2® — a)

EX.7= [(be— 1)x2+cz—a (ab—1)22—0+a, y?—(b—1)xz—1, (b+c+a)z*+a+b+c
EX.8= [(c—a—b)z*23 4+ —a—b, (b—a—c)2*y® —c—a—m, (a—m+n)z* —a+b]
EX.9= [(a — Dayz + a, (b — 2)y* + ab, (¢ + a)zy — a — 1]

EX.10=

[b*z? + ac® — ¢, aby® + b5 — a,bez® — 3ac + 1]

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

A Parametric Fy Algorithm 131

EX.11= [ab*tuz® — z — a® — n, abzy® + b* — a® + a,anzz® + a — 1]
EX.12= [(m® —b)z +n — 1,y + (*m? —n)z — 1,6%2° — mz — 1]
o EX.13= [ra® 4 (ab — ¢)z — n,cy® 4+ acx + dn, 2° — (c — t)y]

o EX.14= [abzy + ay® — cz + 1, az® + ax + cu, tu® + tu, bz® + mnx — bz]

l Example “ Method [Time (sec.) [Used Memory (GB)]
PF4 0.38 0.007
EX.1 PGBMAIN 0.51 0.016
FirstGB 0.2 0.006
IMPROVED-DISPGB 0.54 0.018
PF4 0.9 0.02
EX.2 PGBMAIN 0.41 0.012
FirstGB 0.3 0.005
IMPROVED-DISPGB 1.44 0.035
PF4 11.64 0.72
EX.3 PGBMAIN — —
FirstGB — —
IMPROVED-DISPGB — —
PF4 3.52 0.09
EX.4 PGBMAIN 27.81 1.91
FirstGB 0.32 0.015
IMPROVED-DISPGB 6.1 0.23
PF4 24.26 1.84
EX.5 PGBMAIN — —
FirstGB 8.41 0.82
IMPROVED-DISPGB 17.93 1.99
PF4 12.48 1.2
EX.6 PGBMAIN
FirstGB
IMPROVED-DISPGB
PF4 1.13 0.041
EX.7 PGBMAIN 2.17 0.1
FirstGB 0.02 0.016
IMPROVED-DISPGB 1.84 0.048
PF4 1.43 0.036
EX.8 PGBMaAIN — —
FirstGB 197.25 27.64
IMPROVED-DISPGB 2.59 0.075
PF4 0.67 0.022
EX.9 PGBMAIN 031 0.007
FirstGB 0.14 0.001
IMPROVED-DISPGB 1.04 0.029
PF4 0.21 0.005
EX.10 PGBMAIN 1.89 0.16
FirstGB 1.41 0.12
IMPROVED-DISPGB 0.32 0.01
PF4 9.71 0.45
EX.11 PGBMAIN 11.23 0.85
FirstGB 4.81 0.51
IMPROVED-DISPGB 50.21 6.3
PF4 0.27 0.01
EX.12 PGBMAIN 56.11 5.62
FirstGB 40.54 5.19
IMPROVED-DISPGB 0.31 0.014
PF4 65.87 3.41
EX.13 PGBMAIN — —
FirstGB 15.12 1.12
IMPROVED-DISPGB 3.21 0.45
PF4 265.13 10.78
EX.14 PGBMAIN 523.17 57.91
FirstGB 59.23 7.98
IMPROVED-DISPGB 2.41 0.32

The results are shown in the above tables where the third and fourth columns
show respectively the CPU time (in seconds) and the amount of used memory
(in gigabytes) of the total computation by the corresponding method. Further-
more, the row “First GB” stands for the computation of the reduced Grébner

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

132 M. Dehghani Darmian, A. Hashemi

basis of the corresponding ideal in the polynomial ring K[a,x] with respect
to <x,a using the MAPLE function Basis. It is worth noting that, this com-
putation is needed the first step in the PGBMAIN algorithm to compute a
Grobner system with respect to <x a. Also, the symbol “—” means that the
results can not computed within 600 seconds. The timings were conducted on
personal computer with 5 core, 4 GB RAM and 64 bits under the Windows 10
operating system.

ACKNOWLEDGEMENT

The authors would like to thanks anonymous reviewers for their helpful
comments. This work was partially supported by IPM.

REFERENCES

1. T. Becker, V. Weispfenning, Grébner Bases: a Computational Approach to Commutative
Algebra, New York: Springer-Verlag, 1993.

2. B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassen
Ringes nach einem Nulldimensionalen Polynomideal, Innsbruck: Univ. Innsbruck, Math-
ematisches Institut (Diss.), 1965.

3. B. Buchberger, A Criterion for Detecting Unnecessary Reductions in the Construction
of Grobner Bases, Symbolic and algebraic computation, EUROSAM 79, int. Symp.,
Marseille 1979, Lect. Notes Comput. Sci., 72, (1979), 3-21.

4. B. Buchberger, Bruno Buchberger’s Ph.D. Thesis 1965: An Algorithm for Finding the
Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal Trans-
lation from the German, J. Symb. Comput., 41(3-4), (2006), 475-511.

5. D. Cox, A. Little, D. O’Shea Ideals, Varieties, and Algorithms. An introduction to Com-
putational Algebraic Geometry and Commutative Algebra, 4th edition, Springer, 2015.

6. M. Dehghani Darmian, A. Hashemi, Parametric FGLM Algorithm, J. Symb. Comput.,
82, (2017), 38-56.

7. M. Dehghani Darmian, A. Hashemi, A. Montes, Erratum to “A new algorithm for dis-
cussing Grobner bases with parameters” [J. Symbolic Comput. 33 (1-2) (2002) 183-208],
J. Symb. Comput., 46(10), (2011), 1187-1188.

8. J.-C. Faugere, A New Efficient Algorithm for Computing Grobner Bases (F4), J. Pure
Appl. Algebra, 139(1-3), (1999), 61-88.

9. J.-C. Faugere, A New Efficient Algorithm for Computing Gréobner Bases without Reduc-
tion to Zero (F5), In Proceedings of the 2002 international symposium on symbolic and
algebraic computation, ISSAC 2002, Lille, France, July 07-10, 2002. New York, ACM
Press, (2002), 75-83.

10. R. Gebauer, H. Moller, On an Installation of Buchberger’s Algorithm, J. Symb. Comput.,
6(2-3), (1988), 275-286.

11. A. Hashemi, M. Dehghani Darmian, M. Barkhordar, Groébner Systems Conversion,
Math. Comput. Sci., 11(1), (2017), 61-77.

The Maple codes of the algorithms are available at
http://amirhashemi.iut.ac.ir/softwares under the names PF4.mpl, PLA-PFGLM.mpl
and Montes.mpl. The first file contains a MAPLE implementation of our algorithm for
computing Groébner systems. The second file contains a MAPLE implementation of the
Kapur et al. algorithm (PGBMAIN algorithm) and the last one is a MAPLE implementation
of the improvement of the Montes DISPGB algorithm.

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html

[Downloaded from ijmsi.ir on 2025-10-19]

[DOI: 10.61186/ijmsi.19.1.117]

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.
29.

30.

A Parametric Fy Algorithm 133

A. Hashemi, M. Dehghani Darmian, B. M.-Alizadeh, Applying Buchberger’s Criteria on
Montes’s DISPGB Algorithm, Bull. Iran. Math. Soc., 38(3), (2012), 715-724.

A. Hashemi, B. M.-Alizadeh, M. Dehghani Darmian, Minimal Polynomial Systems for
Parametric Matrices, Linear Multilinear Algebra, 61(2), (2013), 265-272.

M. Kalkbrener, On the Complexity of Grobner Bases Conversion, J. Symb. Comput.,
28(1-2), (1999), 265-273.

D. Kapur, An Approach for Solving Systems of Parametric Polynomial Equations, In
Saraswat, Vijay, Van Hentenryck, Pascal (Eds.), Principles and Practice of Constraint
Programming. MIT Press, (1995), 217-224.

D. Kapur, Y. Sun, D. Wang, A New Algorithm for Computing Comprehensive Grobner
Systems, In Proceedings of the 85th international symposium on symbolic and algebraic
computation, ISSAC 2010, Munich, Germany, July 25-28, 2010. New York, NY: Asso-
ciation for Computing Machinery (ACM), (2010), 29-36.

D. Kapur, Y. Sun, D. Wang, An Efficient Algorithm for Computing a Comprehensive
Grobner System of a Parametric Polynomial System, J. Symb. Comput., 49, (2013),
27-44.

D. Lazard, Grobner Bases, Gaussian Elimination and Resolution of Systems of Algebraic
Equations, Computer algebra, EUROCAL ’83, Proc. Conf., London 1983, Lect. Notes
Comput. Sci., 162, (1983), 146-156.

M. Manubens, A. Montes, Improving the DISPGB Algorithm Using the Discriminant
Ideal, J. Symb. Comput., 41(11), (2006), 1245-1263.

M. Manubens, A. Montes, Minimal Canonical Comprehensive Grobner Systems, J.
Symb. Comput., 44(5), (2009), 463-478.

A. Montes, A New Algorithm for Discussing Grobner Bases with Parameters, J. Symb.
Comput., 33(2), (2002), 183-208.

A. Montes, The Grébner Cover, 27, Cham: Springer, 2018.

A. Montes, J. Castro, Solving the Load Flow Problem Using the Grobner Basis, SIGSAM
Bull., 29(1), (1995), 1-13.

A. Montes, M. Wimber, Grobner Bases for Polynomial Systems with Parameters, J.
Symb. Comput., 45(12), (2010), 1391-1425.

K. Nabeshima, A Speed-up of the Algorithm for Computing Comprehensive Grobner
Systems, In Proceedings of the 2007 international symposium on symbolic and algebraic
computation, ISSAC 2007, Waterloo, ON, Canada, July 29-August 1, 2007. New York,
NY: Association for Computing Machinery (ACM), (2007), 299-306.

W. Y. Sit, M. Wimber, An Algorithm for Solving Parametric Linear Systems, J. Symb.
Comput., 13(4), (1992), 353-394.

A. Suzuki, Y. Sato, A Simple Algorithm to Compute Comprehensive Grobner Bases
Using Grobner Bases, In Proceedings of the 2006 international symposium on symbolic
and algebraic computation, ISSAC 06, Genova, Italy, July 9—12, 2006. New York, NY:
Association for Computing Machinery (ACM), (2006), 326-331.

V. Weispfenning, Comprehensive Grobner Bases, J. Symb. Comput., 14(1), (1992), 1-29.
V. Weispfenning, Canonical Comprehensive Grobner Bases, J. Symb. Comput., 36(3-4),
(2003), 669-683.

M. Wimber, Grobner Bases for Families of Affine or Projective Schemes, J. Symb. Com-
put., 42(8), (2007), 803-834.

http://dx.doi.org/10.61186/ijmsi.19.1.117
https://ijmsi.ir/article-1-1718-en.html
http://www.tcpdf.org

