Volume 19, Issue 1 (4-2024)                   IJMSI 2024, 19(1): 35-49 | Back to browse issues page


XML Print


Abstract:  
Let R be a prime ring with center Z(R) and G be a generalized α-derivation of R for  α∈ Aut(R). Let a ∈ R be a nonzero element and n be a fixed positive integer.
(i) If aG(x)n ∈ Z(R) for all x ∈ R then aG(x) = 0 for all x ∈ R unless dimCRC = 4.
(ii) If aG(x)n ∈ Z(R) for all x ∈ L, where L is a noncommutative Lie ideal of R then aG(x) = 0 for all x ∈ R unless dimCRC = 4.
Type of Study: Research paper | Subject: General

References
1. 1. N. Baydar Yarbil, N. Arga¸c, Annihilators of Power Values of Generalized Skew Derivations in Prime Rings, Algebra and its applications, 307-316, De Gruyter Proc. Math., De Gruyter, Berlin, 2018. [DOI:10.1515/9783110542400-023]
2. K. I. Beidar, W. S. Martindale, V. Mikhalev, Rings with Generalized Identities, Pure and Applied Math., Dekker, New York, 1996.
3. M. Breˇsar, A Note on Derivations, Math. J.Okayama Univ., 32, (1990), 83-88.
4. M. Breˇsar, Introduction to Noncommutative Algebra, Springer International Publishing Switzerland, 2014.
5. C. M. Chang, T. K. Lee, Annihilators of Power Values of Derivations in Prime Rings, Communications in Algebra, 26(7), (1998), 2091-2113. [DOI:10.1080/00927879808826263]
6. J. C. Chang, Right Generalized (α, β)-derivations Having Power Central Values, Taiwanese J. Math., 13(4), (2009), 1111-1120. [DOI:10.11650/twjm/1500405495]
7. J. C. Chang, Annihilators of Power Values of a Right Generalized (α, β)−derivation, Bull. Inst. Math. Acad. Sin. (N.S.), 4(1), (2009), 67-73.
8. J. C. Chang, Generalized Skew Derivations with Power Central Values on Lie Ideals, Comm. Algebra, 39, (2011), 2241-2248. [DOI:10.1080/00927872.2010.480957]
9. J. C. Chang, Generalized Skew Derivations with Nilpotent Values on Lie Ideals, Monatsh. Math., 161, (2010), 155-160. [DOI:10.1007/s00605-009-0136-9]
10. J. C. Chang, On the Identity h(x) = af(x) + g(x)b, Taiwanese J. of Math. Soc., 7(1), (2003), 103-113. [DOI:10.11650/twjm/1500407520]
11. C. L. Chuang, GPI's Having Coefficients in Utumi Quotient Rings, Proc. Amer. Math. Soc., 103(3), (1988), 723-728. [DOI:10.1090/S0002-9939-1988-0947646-4]
12. C. L. Chuang, Differential Identities with Automorphisms and Anti-automorphisms I, J. Algebra, 149, (1992), 371-404. [DOI:10.1016/0021-8693(92)90023-F]
13. C. L. Chuang, Differential Identities with Automorphisms and Anti-automorphisms II, J. Algebra, 160, (1993), 292-335. [DOI:10.1006/jabr.1993.1181]
14. C. L. Chuang, T. K. Lee, Identities with Single Skew Derivation, J. of Algebra, 288, (2005), 59-77. [DOI:10.1016/j.jalgebra.2003.12.032]
15. B. Felzenswalb, On Result of Levitzki, Canad. Math. Bull., 21, (1978), 241-241. [DOI:10.4153/CMB-1978-040-0]
16. I. N. Herstein, Topics in Ring Theory, Univ. Chicago Press, 1969.
17. A. Giambruno, I. N. Herstein, Derivations with Nilpotent Values, Rend. Circ. Mat.Palermo, (2)30, (1981), 199-206. [DOI:10.1007/BF02844306]
18. I. N. Herstein, Center-like Elements in Prime Rings, J. Algebra, 60, (1979), 567-574. [DOI:10.1016/0021-8693(79)90102-9]
19. I. N. Herstein, Derivations of Prime Rings Having Power Central Values, Contemp. Math., Amer. Math. Soc., Providence, R.I., 13, (1982), 163-171. [DOI:10.1090/conm/013/685947]
20. N. Jacobson, Structure of Rings, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island, 1964.
21. V. K. Kharchenko, Generalized Identities with Automorphisms, Algebra i Logika, 14(2), (1975) 215-237 [DOI:10.1007/BF01668425]
22. Engl. Transl: Algebra and Logic, 14(2), (1975), 132-148. [DOI:10.1007/BF01668425]
23. T. K. Lee, Semiprime Rings with Differential Identities, Bull. Inst. Math. Acad. Sinica, 20(1), (1992), 27-38.
24. P. H. Lee, T. L. Wong, Derivations Cocentralizing Lie Ideals, Bull. Ins. Math. Acad. Sinica, 23, (1995),1-5.
25. T. K. Lee, J. S. Lin, A Result on Derivations, Proc. Amer. Math. Soc., 124, (1996), 1687-1691. [DOI:10.1090/S0002-9939-96-03234-0]
26. T. C. Lee, A result of Levitzki Type with Annihilator Conditions on Multilinear Polynomials, Algebra Colloq., 4(3), (1996), 347-354.
27. T. K. Lee, Generalized Derivations of Left Faithful Rings, Comm. Algebra, 27, (1999), 4057-4073. [DOI:10.1080/00927879908826682]
28. T. K. Lee, Differential Identities of Lie Ideals or large Right Ideals in Prime Rings, Comm. Algebra, 27, (1999), 793-810. [DOI:10.1080/00927879908826462]
29. T. K. Lee, K. S. Liu, Generalized Skew Derivations with Algebraic Values of Bounded Degree, Houston J. Math., 39(3), (2013), 733-740.
30. W. S. Martindale III, Prime Rings Satisfying a Generalized Polynomial Identity, J. Algebra, 12, (1969), 576-584. [DOI:10.1016/0021-8693(69)90029-5]
31. X. W. Xu, J. Ma, F.W. Niu, Annihilators of Power Central Values of Generalized Derivation(Chinese), Chin. Ann. Math. Ser. A, 28, (2007), 131-140.
32. T. L. Wong, Derivations with Power Central Values on Multilinear Poynomials, Algebra Colloq., 3(4), (1996), 369-378.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.