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ABSTRACT. In the present investigation, we use the Horadam Polynomials
to establish upper bounds for the second and third coefficients of functions
belongs to a new subclass of analytic and A-pseudo-starlike bi-univalent
functions defined in the open unit disk U. Also, we discuss Fekete-Szego

problem for functions belongs to this subclass.
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1. INTRODUCTION

Let A stand for the family of functions f which are analytic in the open unit
disk U = {z € C: |z| < 1} that have the form:

f(z) :z—i—Zanz”. (1.1)
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Further, let S indicate the subclass of A consisting of the form (1.1) which
are univalent in U. It is well known (see [3]) that every function f € S has
an inverse f~! defined by f~1(f(2)) =z, (z € U) and f(f 1 (w)) = w, (Ju| <
ro(f),mo(f) = 1), where

g(w) = fHw) =w — axw?® + (243 — az) w* — (5a3 — basaz + as) w + -+ .
(1.2)

A function f € A is said to be bi-univalent in U if both f and f~! are
univalent in U. Let X stands for the class of bi-univalent functions in U given
by (1.1). In fact, Srivastava et al. [13] has apparently revived the study of
analytic and bi-univalent functions in recent years, it was followed by such
works as those by Frasin and Aouf [4], Goyal and Goswami [5], Caglar et al.
[2] and others (see, for example [9, 10, 11, 12, 14]).

A function f € S is said to be A-pseudo-starlike function of order 50 < 5 < 1
in U, if it satisfies (see [1]): This class of functions was denoted by £3(5). It
is observed that for A = 1, we have the class of starlike functions.

With a view to recalling the principal of subordination between analytic
functions, let the functions f and g be analytic in U. We say that the function
f is said to be subordinate to g, if there exists a Schwarz function w analytic
in U with w(0) = 0 and |w(2)| < 1 (2 € U) such that f(z) = g(w(z)). This
subordination is denoted by f < g or f(z) < g(z) (z € U). It is well known
that, if the function ¢ is univalent in U, then f < g if and only if f(0) = g(0)
and f(U) C g(U).

The Horadam polynomials h,,(r) are defined by the following repetition re-
lation (see [6]):

ho(r) = prhn_1(r) + ghn_a(r) (r € R,n €N),

with
hi(r)=a and hy(r)=br, (1.3)
for some real constant a, b, p and q.
The generating function of the Horadam polynomials h,,(r) (see [7]) is given
by
a+ (b—ap)rz

1.4
1—prz—qz? (1.4)

I(r, z) = Z B (r)z" 1 =

2. MAIN RESULTS
We begin this section by defining the subclass Lx(d, A, r) as follows:

Definition 2.1. For 6 € C\ {0}, A > 1 and r € R, a function f € ¥ is said to
be in the class Lx(d, A, r) if it satisfies the subordinations:

1 (z(f’(Z))k

)

1+ = ) —1><H(r,z)—|—1—a
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and

H}(wwww

s\ fw)

where a is real constant and the function g = f~1 is given by (1.2).

—1) <I(r,w)+1-—a,

Theorem 2.2. For 6 € C\ {0}, A >1 and r € R, let f € A be in the class
Ly (6,\,7). Then

las| < V23 Jor] \/W
\/‘ [5(4)\2 —5A+1)b—2p(A—1)2] br2 — 2qa (A — 1)

and
0 |b7"| 52b%r?

T3A-1 0 (A-1)*
Proof. Let f € Lx(d, A\, 7). Then there are two analytic functions u,v : U — U
given by

|as| <

u(z) = urz +ugz® +uzz® +--- (2 €0) (2.1)
and
v(w) = viw + vow? Fvsw® + -+ (w e V), (2.2)
with 4(0) = v(0) =0, |u(z)| < 1, |v(w)| < 1, z,w € U such that

1e A
1+§<M—1> =II(r,u(z))+1—a

f(z)
and R
(w0 @) ) e 1
1+5< o 1)—m,<»+1 -
Or, equivalently
1+(15 < 1) —1+h1 +h2( ) (z)—|—h3(7‘)u2(z)+ (23)
and
14 % ( 1) 1t () + ha(r)o(w) + hs ()02 (w) + - . (2.4)
Combining (2.1), ), (2.3) and (2.4) yields

122 2] ,2
1+ 5 <f(2) - 1) =1+ ho(r)urz + [ha(r)us + ha(r)ui] 2> +--- (2.5)

and

’ A
1+% (11}(]{(53;)) - 1) = 1+ ho(r)viw+ [ha(r)vs + ha(r)vf] w?+--- . (2.6)
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It is quite well-known that if |u(z)| < 1 and |v(w)| < 1, z,w € U, then

lu;| <1 and |v;| <1 foralli e N. (2.7)
Comparing the corresponding coefficients in (2.5) and (2.6), after simplifying,
we have X — 1
5 ag = ha(r)uy, (2.8)
3 -1 2A0(A—=2)+1
5 ( 5 ) a3 = ha(r)ug + hz(r)u?, (2.9)
22 —1
- /\5 as = hg(’l“)’l}l (2.10)
and
3 -1 220(A—=2)+1
5 (205 — a3) + %a% = ha(r)vy + ha(r)vi. (2.11)
It follows from (2.8) and (2.10) that
Uy = —U1 (212)
and )
2(A—1
%a% = h3(r)(ui + v7}). (2.13)
If we add (2.9) to (2.11), we find that
47 —B5A+1
fag = ho(r)(ug 4 v2) + ha(r)(u? + v?). (2.14)

Substituting the value of u? + v? from (2.13) in the right hand side of (2.14),
we deduce that

2 §2h3(r)(ug + v2) (2.15)
275 (AN2 — BA+ 1) h2(r) — 2hs(r) (A — 1)? '

Further computations using (1.3), (2.7) and (2.15), we obtain

V26 [br| /Tor] |

las| <

Next, if we subtract (2.11) from (2.9), we can easily see that

2O 0y — 3) = o) (2 — )+ ha(r) (0~ (236)

In view of (2.12) and (2.13), we get from (2.16)
_ oha(r)(uz — v) | PR +13)

2BA—1) 20 1)?
Thus applying (1.3), we obtain
las| < o |br| 52b%r?
TEI -1 )Y
This completes the proof of Theorem 2.2 O
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In the next theorem, we discuss the Fekete-Szego problem for the subclass
£E (57 )‘a T) .

Theorem 2.3. For 6 € C\ {0}, A>1 and r,u € R, let f € A be in the class
Ly (6,\,7). Then

slbr| |
3A-12

for ln—1]< !

[6(4X\%—5X+1)b—2p(A—1)*]br® —2qa(A—1)?|
286277 (3A—1) ’

2
az — paz| < 262 [br[? 1] .
[[6(ax2—5x+1)b—2p(A—1)2|br2—2qa(A—1)|’

[[6(42% —5A+1)b—2p(A—1)?]br?* —2qa(A—1)|
for |p—1]> 25052 (3a—1) :

Proof. Tt follows from (2.15) and (2.16) that
(5h2(T)(U2 - 7)2)

a3_:u’a’§ = 2(3)\_1) +(1 —/J,)G,g
_ Oha(r)(ug — v2) 82h3(r) (uz + v2)(1 — p)
2(3A—-1) 5 (402 — X+ 1) h3(r) — 2ha(r) (A — 1)
o 0
= ha(r) [(w(ﬂar) + 2(3)\1)) uz + (T/)(Mﬂ“) - 2(3)\1)> 02} )
where

52h2(r)(1 —

Bl = 2(2)( 1) .
0 (4X2 —BA+ 1) ha(r) — 2hs(r) (A — 1)

According to (1.3), we find that

Slor| 5
3A—-1" 0< |1/)(:U/7T)‘ < 2(3x—1)°
|a3 — ,ua%’ <
200 )], ()] > i
After some computations, we obtain
§lbr|
o (35102017 g
§(4X*—5X+1)b—2p(A—1)%|br*—2ga(A—1)
for |p—1] < 256272(31—1) ’
2 .
as — paj| < 282 |br|? |u—1]|

[[6(4X2—51+1)b—2p(A—1)2]br2 —2qa(A—1)?| ;

[6(422—52+1)b—2p(A—1)?]br? —2ga(A—1)?|

for |p—1] > | 256272(3x—1)

Putting 1 = 1 in Theorem 2.3, we obtain the following result:
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Corollary 2.4. For 6 € C\ {0}, N> 1 andr € R, let f € A be in the class
L (0, A\, 7). Then
las — a2 < d |br|
PollEg T
Remark 2.5. If we put A = 1 in our Theorems, we have the result for well-
known class S&(r) of bi-starlike functions which was considered recently by
Srivastava et al. [8].
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