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Abstract. Let G be a weighted digraph, s and t be two vertices of G,

and t is reachable from s. The logical s-t min-cut (LSTMC) problem

states how t can be made unreachable from s by removal of some edges

of G where (a) the sum of weights of the removed edges is minimum and

(b) all outgoing edges of any vertex of G cannot be removed together. If

we ignore the second constraint, called the logical removal, the LSTMC

problem is transformed to the classic s-t min-cut problem. The logical

removal constraint applies in situations where non-logical removal is either

infeasible or undesired. Although the s-t min-cut problem is solvable in

polynomial time by the max-flow min-cut theorem, this paper shows the

LSTMC problem is NP-Hard, even if G is a DAG with an out-degree of

two. Moreover, this paper shows that the LSTMC problem cannot be

approximated within αlogn in a DAG with n vertices for some constant

α. The application of the LSTMC problem is also presented in test case

generation of a computer program.
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1. Introduction

Given a weighted digraph G = (V,E), the min-cut problem states how we

can partition V into two nonempty sets S and T in order to minimize the total

weights of the edges from S to T . The min-cut problem has a variant called

the s-t min-cut, which requires that the two special vertices s and t be on

opposite sides of the cut. The value of the min-cut in a digraph is equal to

the minimum, taken over all pairs of vertices s and t, of the s-t min-cut [1].

The min-cut problem has lots of applications in various fields. A matching in a

graph is a set of edges, no two of which share a vertex and a maximum matching

is a matching of maximum cardinality. Matching problems occur in many

practical applications such as scheduling. We can use the min-cut approach

to find a maximum matching in an unweighted bipartite graph in polynomial

time [2]. The problem of determining the connectivity of a network arises in

the network reliability field [1]. Karger showed a connection between the min-

cut and network reliability [3]. Picard and Querayne studied the applications

of the min-cut problem in weighted graphs, including partitioning items in a

database [4]. The s-t min-cut problem can be rephrased as follows. How a

target vertex t can be made unreachable from a source vertex s in a digraph G

where the sum of the weights of the removed edges is minimum. This definition

of the s-t min-cut problem is more appropriate in the context of reachability.

In some situations, in order to make the target vertex unreachable from the

source vertex, we cannot remove all outgoing edges of any vertex of G together.

If a removal of the edges of a digraph follows the latter constraint, we say the

removal is logical. The notion of the logical removal is borrowed from the

nature of the control flow graph of computer programs. The label of any edge

of the control flow graph G of a program indicates a logical expression and the

OR of the labels of all outgoing edges of any vertex of G is always True. In such

digraphs, the removal of an edge e of G is equivalent to making False the label

of e. Thus, we cannot remove all outgoing edges of any vertex of G together.

Adding the logical removal constraint to the classic s-t min-cut problem, we

call it the logical s-t min-cut or the LSTMC problem, in short.

Related Work. Minimum cut is one of the most basic problems in computer

science and has various applications in different contexts [5, 6]. The LSTMC

problem is a variant of the s-t min cut problem having the constraint of logical

removal. The s-t min-cut problem is dual of the s-t max-flow problem. G. B.

Dantzig is credited with development of the general max-flow problem in 1951

[7]. Ford and Fulkerson [8, 9] developed the first known algorithm in 1955.

After that, new algorithms have been designed using more efficient methods

to compute the max-flow. However, up to this time, no one has studied the

max-flow/min-cut problem by considering the logical removal constraint.
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Contribution. Let G = (V,E) be a weighted DAG with n vertices, s and

t be two vertices of G, and LSTMC be an instance of the logical s-t min-

cut problem. We show LSTMC problem is NP-Hard. Moreover, we show

LSTMC problem is NP-Hard, even if G is a binary DAG. We demonstrate the

LSTMC problem cannot be approximated within αlogn for some constant α.

Let OPTR be the following problem: how to remove some edges of G where

all paths starting from s pass through t and the removal is both minimal and

logical [10]. We show that both problems of LSTMC and OPTR are reducible

to each other. Then, based on this reduction, we show an application of the

LSTMC problem in test case generation of a computer program.

Organization. The remaining part of the paper is organized as follows. The

next section presents the necessary concepts and notations. Section 3 shows

basic properties of the LSTMC problem. Section 4 discusses the computational

complexity of the LSTMC problem in both acyclic and binary digraphs. Sec-

tion 5 studies the inapproximability of the LSTMC problem. Section 6 provides

application of the LSTMC problem in test case generation of a computer pro-

gram. Finally, Section 7 concludes the research findings and proposes future

works.

2. Preliminaries and Notations

Let G be a digraph. We use V (G) and E(G) to denote the vertex and edge

set of G, respectively. A path on a digraph is an alternating series of vertices

and edges, beginning and ending with a vertex, in which each edge is incident

with the vertex immediately preceding it and the vertex immediately following

it. A simple path is a path in which all vertices are distinct. We denote the

outgoing and incoming edges of a vertex v of G as oe(v) and ie(v), respectively.

Let vi and vj be two vertices of G and e = (vi, vj) be an edge of G. We refer to

vi and vj as the tail and head of the edge e, respectively. Let G′ be a subgraph

of G and e be an edge of G. The edge e is called an incoming edge of G′ if we

have tail(e) /∈ V (G′) and head(e) ∈ V (G′). In contrast, the edge e is called

an outgoing edge of G′ if we have tail(e) ∈ V (G′) and head(e) ∈ V (G′). Two

distinct edges e1 and e2 of G are called sibling if the tail of the two edges is the

same. The out-degree of G is the maximum out-degree of the vertices of G. A

digraph G is called a binary digraph if the out-degree of G is two. A digraph

G is called a binary DAG if it is acyclic and the out-degree of G is two. An

induced subgraph H of G is a subset of the vertices of G together with any

edges whose endpoints are both in this subset. If the vertex set of H is the

subset S of V (G), then H can be written as G[S] and is said to be induced

by S. Flow graph (FG) is a triple (V,E, s) where (V,E) is a digraph, s ∈ V
is the unique source vertex of the digraph, and there is a path from s to each

vertex of G [11]. If G = (V,E) is a digraph and vi ∈ V , then we can construct
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a flow graph with the source vertex Vi, by removal of any vertex of G (and

its adjacent edges), which is not reachable from vi. The function FG(G, vi) is

used for this purpose. Hence, we have FG(G, vi) = (V ′, E′, vi) = G[V ′] such

that V ′ = {v ∈ V |v ∈ reach(vi)}. A control flow graph is the flow graph of

a computer program that associates an edge with each possible branch in the

program, and a node with sequences of statements [12]. We denote the logical

s-t min-cut problem in the underlying digraph G as the triple (G, s, t). In this

paper, by LSTMC, we refer to the generic logical s-t min-cut problem and by

LSTMC, we refer to a specific (an instance of) logical s-t min-cut problem.

Symbol Description

LSTMC Logical s-t min-cut problem

OPTR Optimal reach problem

FG Flow graph

FG(G,Vi) The function converting the digraph G to a flow

graph with the source vertex vi by removal of

any vertex of G which is not reachable from vi

CFG Complete flow graph

HS Hitting set problem

DFS Depth-first-search traversal of a digraph

starting from a given vertex

ie(v)/oe(v) Incoming/Outgoing edges of the vertex v of a digraph

ie(G′/oe(G′) Incoming/Outgoing edges of the subgraph G′ of a digraph

Table 1. Notations.

3. Properties of Logical s-t Min-Cut Problem

Proposition 3.1. Let G = (V,E) be a digraph, s and t be two vertices of G,

and (G, s, t) be an instance of the LSTMC problem. We have that (G, s, t) can

be transformed to (G′, s, t) where G′ = FG(G, s)− oe(t).

Proof. It is clear from definition of the LSTMC problem. �

Note that the removal of all outgoing edges of t is not a logical removal.

However, Proposition 3.1 states that the outgoing edges of t have no effect

on the LSTMC problem. So, prior to computing the answer to the LSTMC
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problem, we can remove them safely. Proposition 3.1 also states that all non-

reachable vertices from s have no effect on the LSTMC problem. Since we can

transform any logical s-t min-cut problem (G, vi, vj) in the digraph G to the

corresponding logical s-t min-cut problem (G1, s, vj) in the flow graph G1 with

the source vertex s = vi such that G1 = FG(G, vi), in the following, we usually

consider a flow graph instead of a digraph in studying the LSTMC problem.

Proposition 3.2. Let G = (V,E, s) be a flow graph, t be a vertex of G, and

(G, s, t) be an instance of the LSTMC problem. If there exists a vertex k in G

such that t is not reachable from k, then the LSTMC problem has an answer.

Proof. It is obvious that the LSTMC problem has an answer (not necessarily

optimal) if and only if there exists a logical removal of edges of G such that

the removal makes t unreachable from s. Now, we find a simple path p from

s to k. By considering the path p as a subgraph of G, an answer to the

LSTMC problem is to remove all outgoing edges of the subgraph p. Removing

all outgoing edges of p, if we start moving from the vertex s in G, as we have

only one path to move, we finally reach the vertex k, which never reaches t. As

the edges of the path p are not removed, the removal is logical. Indeed, each

removed edge has at least one un-removed sibling edge in p. �

Proposition 3.3. Let the flow graph G = (V,E, s) be acyclic, t be a vertex of

G, and (G, s, t) be an instance of the LSTMC problem. The LSTMC problem

has an answer if and only if there exists a vertex k in G such that t is not

reachable from k.

Proof. By Proposition 3.2, the if-part of the proposition holds. Now, suppose

that t is reachable from every vertex of G. If we start moving from the vertex

s, then, since G is acyclic, we finally reach the vertex t after passing through

at most |E| edges of G. Now, let E1 ⊂ E be an arbitrary logical removal of

the edges of G. If we start moving from the vertex s in the digraph G − E1,

then, since the removal is logical, the vertex s has at least one un-removed

outgoing edge called e1. Thus, by passing through e1, we can exit from s and

reach a vertex v1 of G. As the removal is logical, the vertex v1 has at least

one un-removed outgoing edge such that we can use it to exit from v1 and

reach a vertex v2 of G. If we repeat this scenario, we finally reach the vertex

t, which is the final vertex of G. Hence, by any logical removal of the edges of

G, we cannot make t unreachable from s, implying the LSTMC problem has

no answer. �

Note that the acyclicity condition cannot be dropped in this proposition as

the simple example in 1 shows.

Definition 3.4 (Complete Flow Graph). A quadruple G = (V,E, s, f) where

(V,E) is a digraph, s ∈ V is the unique source vertex of G, f ∈ V is the unique
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Figure 1. The vertex t is reachable from every vertex of the

flow graph G. However, since G is cyclic, we can make t un-

reachable from s by removal of the edge (v, t), which is also a

logical removal. Note that the sibling edge (v, s) of the edge

(v, t) is not removed.

final vertex of G, there is a path from the source vertex to each vertex of G,

and there is a path from each vertex of G to the final vertex.

Corollary 3.5. Let G = (V,E, s, t) be an acyclic complete flow graph with the

source and final vertices s and t, respectively. We have the LSTMC problem

(G, s, t) has no answer, implying it is infeasible to make t unreachable from s

by a logical removal.

Proof. By Definition 3.4, we have t is reachable from every vertex of G. So, by

Proposition 3.3, we have the LSTMC has no answer. �

4. Computational Complexity of Logical s-t Min-Cut Problem

This section demonstrates the LSTMC problem in a weighted digraph is

NP-Hard, even if the digraph is a binary DAG. The decision problems of the

LSTMC and Hitting Set are shown in the following tables. We use the latter

problem to prove the NP-Completeness of the LSTMC problem.

Input: A weighted digraph G = (V,E), two vertices s and t of G,

and a real value w1.

Question: Can t be made unreachable from s by removal

of some edges of G such that the removal is logical and sum

of weights of the removed edges is at most w1?

Table 2. Decision problem of logical s-t min-cut.
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Input: A ground set {a1, a2, . . . , am}, a collection of n subsets si

of that ground set, and an integer k1.

Question: Does there exist the subset A of the ground set such that

|A| ≤ k1 and for each i = 1 . . . n, we have si ∩A 6= ∅?

Table 3. Decision problem of hitting set (HS).

Algorithm HS2LSTMC(s1, s2, . . . , sn)

1. G′ = (V ′, E′), V ′ = {s, t, k}, E′ = φ

2. for each element aj of the union of the input sets do

3. V ′ = V ′
⋃
{aj}

4. E′ = E′
⋃
{(aj , k), (aj , t)}

5. w(aj , k) = 1, w(aj , t) = 1 // w(e) indicates the weight of the edge e.

6. end for

7. for each si do

8. V ′ = V ′
⋃
{si}

9. E′ = E′
⋃
{(s, si)}, w(s, si) =∞

10. for each element aj of si do

11. E′ = E′
⋃
{(si, aj)}, w(si, aj) = 0

12. end for

13. end for

14. return G′

/*Reduction of the hitting set (HS) problem to the LSTMC problem*/

Theorem 4.1. The LSTMC problem is NP-Complete even if the underlying

digraph is acyclic.

Proof. Let G = (V,E) be a weighted DAG, s and t be two vertices of G, and

(G, s, t) be an instance of the LSTMC problem. First, we show the LSTMC

problem is NP. We can verify a given answer to the decision problem of the

LSTMC in polynomial time as follows. Let E1 ⊂ E be a given answer to be

verified. We remove every edge of E1 from G and call G′ the new digraph.

If each removed edge e of G has at least one un-removed sibling edge and

the vertex t is unreachable from s in G′, then E1 is an answer, otherwise,

it is not an answer. It is obvious that this verification can be performed in

polynomial time. Also, we can check the sum of the weights of elements of E1

in polynomial time. Now, we should show the LSTMC is NP-Hard. We reduce

the hitting-set problem to the LSTMC problem. The hitting-set is a classic

NP-complete problem proved by Karp in 1972 [13]. Let S = {s1, s2, . . . , sn}
be the given sets and {a1, a2, . . . , am} be the union of all the sets. Given the

number k1, the decision problem of the hitting set problem states whether
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there exists a set A with k1 elements such that every element of S (every set

si where i = 1 . . . n) contains at least one element of A. We denote the hitting

set problem as HS(S). We construct the weighted DAG G′ from the set S

by Algorithm HS2LSTMC (see Figure 2 (a) as an example). This algorithm

considers s as the source vertex of the DAG G′. For each set si of HS where

i = 1 . . . n, the algorithm considers the new vertex si and adds an edge with

infinite weight from s to each si. Then, for each element aj of the union of the

input sets where j = 1 . . .m, the algorithm considers the new vertex aj and

adds an edge with zero weight from each si to any aj where aj ∈ si in HS.

Finally, the algorithm considers two final vertices called t and k, and add two

edges from each aj where j = 1 . . .m to the both final vertices. It is clear that

G′ can be constructed in polynomial time.

Now, we demonstrate that HS(S) has an answer with k1 elements if and

only if the LSTMC problem (G′, s, t) has an answer with some logically removed

edges such that the sum of the weights of the removed edges is k1.

HS → LSTMC. Let A be a set with k1 elements such that each element of S

(each set si ∈ S where i = 1 . . . n) contains at least one element of A. We intend

to show (G′, s, t) has an answer with some logically removed edges such that

the sum of weights of the removed edges is k1. For each element aj ∈ A where

1 ≤ j ≤ m, we remove the outgoing edge (aj , t) of aj from G′. This removal is

logical, as the edge (aj , t) has the un-removed sibling edge (aj , k) in G′. As the

weight of any edge (aj , t) is 1, the cost of this removal is k1. Furthermore, for

each set si ∈ S in HS(S) where i = 1 . . . n, we remove all outgoing edges of the

vertex si from G′ except those edges, which are in the form of (si, ap) where

ap ∈ si
⋂
A. This removal is also logical, as A contains at least one element

of any element of S (any si) which is not removed from G′. Since the weight

of any edge (si, ap) of G′ is zero, the cost of the latter removal is zero. Now,

if we start moving from s in G′, first we reach a vertex si where 1 ≤ i ≤ n.

Then, moving from si, we reach a vertex ap where ap ∈ A (1 ≤ p ≤ m), as

we have not removed any edge (si, ap) of G′ such that ap ∈ A. Finally, as we

have removed the outgoing edge (ap, t) of any ap where ap ∈ A, we reach the

vertex k, which never reaches t, implying t becomes unreachable from s. Note

that the sum of weights of the total removed edges is k1. Also, note that k is

a vertex of the digraph G′ whereas k1 is the number of the elements of the set

A.

LSTMC → HS. Let the edge set E1 ⊂ E(G′) with the total weight k1 be an

answer to (G′, s, t), implying the removal of E1 from G′ makes t unreachable

from s and the removal is logical. The answer to the LSTMC problem cannot

remove any outgoing edge of s, as the weight of any outgoing edge of s is

infinite. The answer to the LSTMC problem may remove some outgoing edges

of some si’s such that 1 ≤ i ≤ n. However, since the weight of every outgoing
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edge of any si is zero, the cost of this removal is zero, too. As the removal

is logical, at least one outgoing edge of every vertex si of G′ (i = 1 . . . n) is

not removed. We call A1 the heads of the un-removed outgoing edges of every

vertex si of G′ (i = 1 . . . n). Hence, there are some paths from s to some aj ’s

in G′(1 ≤ j ≤ m) such that aj ∈ A1. The answer to the LSTMC problem

definitely removes the outgoing edge (aj , t) of any vertex aj of A1 (1 ≤ j ≤ m),

otherwise, we have that t is reachable from s in G′, which is a contradiction.

Let E2 ⊆ E1 be those removed edges of G′, which are in the form of (aj , t),

namely the removed edges of G′ with the head t. Note that A1 is the tail set

of E2. Since the total weight of E1 is k1, we have that the total weight of E2 is

also k1, because the weight of any removed outgoing edge of any si (1 ≤ i ≤ n)

is zero. So, the size (the number of elements) of A1 is k1. Now, we claim that

A1 with the size k1 is an answer to HS(S). Suppose that A1 does not hit

one of the elements of S such as sl (1 ≤ l ≤ n), implying that A1 contains

no elements of sl in HS(S). It means that in the digraph G′, we have not

removed the outgoing edge (ap, t) of any ap (1 ≤ p ≤ m) where ap ∈ sl in

HS(S). Since the removal is logical, at least one outgoing edge of sl is not

removed in G′. Moreover, since A1 contains no elements of sl in HS(S), the

head of any outgoing edge of the vertex sl in G′ does not belong to A1. Hence,

there exists at least one un-removed edge from sl to an ap in G′ (1 ≤ p ≤ m)

such that the outgoing edge (ap, t) of ap is not removed in G′. Thus, there

exists the path s.sl.ap.t in G′, implying t is reachable from s in G′, which is a

contradiction. �

Example 4.2. Let S = {s1, s2, s3} such that s1 = {1, 2, 3}, s2 = {1, 4}, and

s3 = {2, 5}. Figure 2 (a) shows the weighted DAG G′ of the LSTMC problem

corresponding to the hitting set problem HS(S). In this example, the set A,

namely the union of all elements of S, is A = {1, 2, 3, 4, 5}. We have |S| = 3

and |A| = 5. This example shows how an arbitrary instance of the hitting set

problem can be solved by the help of a specific instance of the logical s-t min-cut

problem in a weighted DAG. If we compute an answer to (G′, s, t) and consider

those removed edges of the answer which are in the form of (aj , t) called E1(1 ≤
j ≤ m), then the tail set of E1 is an answer toHS(S). An answer to the LSTMC

problem is the edge set E1 = {(s1, 2), (s1, 3), (s2, 4), (s3, 5), (1, t), (2, t)}. So,

the tail set of the subset E2 = {(1, t), (2, t)} of the edge set E1, namely the set

{1, 2}, is an answer to the HS(S).

Theorem 4.3. The LSTMC problem is NP-Complete even if the underlying

digraph is a binary DAG.

Proof. Let the weighted digraph G = (V,E) be a binary DAG, s and t be two

vertices of G, and (G, s, t) be an instance of the LSTMC problem. By Theorem

4.1, we have the LSTMC problem is NP-Complete. This theorem intends
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Figure 2. (a) The weighted DAG G′ of the LSTMC problem

corresponding to the hitting set problem HS(S) such that S =

{s1, s2, s3}, s1 = {1, 2, 3}, s2 = {1, 4}, s3 = {2, 5}, n = |S| =

3, m = |A| = 5, and A is the union of all elements of S. (b)

The modified instance of G′, called G′′, such that the weight

of all outgoing edges of every vertex aj of A is m ∗ n where

1 ≤ j ≤ m.

to show that the out-degree of a DAG has no effect on the computational

complexity of the logical s-t min-cut problem. The proof is the same as the

proof of Theorem 4.1, except that in the reduction of the HS(S) to the LSTMC,

we consider a new binary DAG, G′′, instead of the DAG G′. In the DAG G′

constructed by Algorithm HS2LSTMC, the out-degree of s and any si where

i = 1 . . . n (n = |S|) is generally more than 2. However, the out-degree of any

aj (j = 1 . . .m) is 2 where m is the number of elements of the union of all

elements of S. Therefore, to transform G′ to a binary DAG, we should change

the structure of the outgoing edges of s and si’s (i = 1 . . . n). We transform the

DAG G′ to the binary DAG G′′ in polynomial time as follows. We demonstrate

the idea on an example with n = 4 and m = 5. The idea is easily extendable

to arbitrary values of n and m. The Figure 3 (a) shows the DAG G′ of an

instance of HS(S) with n = 4 and m = 5.

We replace the outgoing edges of s with the binary DAG given in Figure 3

(b). In Figure 3 (b), as the weight of any edge of the binary DAG is infinite,

none of these edges are removed. Hence, replacing the outgoing edges of s with

the binary DAG given in Figure 3 (b) does not alter the answer to the LSTMC

problem. Also, for each vertex si (i = 1 . . . n) with the out-degree greater than

two, we replace the outgoing edges of si with a binary DAG similar to the one

given in Figure 3 (c). In Figure 3 (a), as the out-degree of only the vertex s1 is

greater than two, the conversion is just performed for s1. Note that two edges

(s1, a1), (y2, a1) in Figure 3 (c) are the representative of the edge (s1, a1) in

Figure 3 (a). Also, the edges (y1, a2), (y2, a3) in Figure 3 (c) are the represen-

tatives of the edges (s1, a2), (s1, a3) in Figure 3 (a), respectively. Now, we claim
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that replacing the outgoing edges of s1 with the binary DAG given in Figure 3

(c) does not alter the answer to the LSTMC problem. To prove this claim, we

should show that the removal of any subset of the outgoing edge set of s1 in Fig-

ure 3 (a) is also feasible with the same cost in Figure 3 (c). As a rule of thumb,

the removal of multiple outgoing edges {e1, e2 . . .} of an si (1 ≤ i ≤ n) with

the out-degree greater than 2 in Figure 3 (a) can be performed by the removal

of the representatives of {e1, e2, . . .} in Figure 3 (c), unless the removal of the

representatives is not logical. In this special case, instead of the removal of two

outgoing edges of a vertex v in Figure 3 (c), we remove the incoming edge of v.

Hence, we have that the removal of the edge (s1, a1) in Figure 3 (a) is equiva-

lent to the removal of two edges (s1, a1) and (y2, a1) in Figure 3 c. The removal

of (s1, a2) or (s1, a3) in Figure 3 (a) equals the removal of (y1, a2) or (y2, a3)

in Figure 3 (c), respectively. The removal of {(s1, a1), (s1, a2)} in Figure 3 (a)

equals the removal of {(s1, a1), (y2, a1), (y1, a2) in Figure 3 (c). The removal

of {(s1, a2), (s1, a3)} in Figure 3 (a) equals the removal of {(y1, a2), (y2, a3)}
in Figure 3 (c). The removal of {(s1, a1), (s1, a3)} in Figure 3 (a) equals the

removal of {(s1, a1), (y1, y2)} in Figure 3 (c). In the latter removal, we have

considered the removal of (y1, y2) instead of {(y2, a3), (y2, a1)}, because the re-

moval should be logical, implying we cannot remove every outgoing edge of the

vertex y2 in Figure 3 (c).

Hence, replacing the outgoing edges of s and any si with the binary DAG’s

given in Figure 3 (b)-(c) does not alter the answer to the LSTMC problem,

implying we have (G′, s, t) = (G′′, s, t). Therefore, we can consider G′′ instead

of G′ in the proof of Theorem 4.1 and the theorem holds. This proof was

provided for n = 4 and m = 5. However, for any values of n and m, only the

height of the binary DAG’s given in Figure 3 (b)-(c) is increased polynomially.

So, the idea naturally generalizes to different values of n and m. �

Proposition 4.4. The LSTMC problem is NP-complete even if the underlying

digraph is a binary DAG and all weights are non-zero and finite.

Proof. We should show that in Theorem 4.3, the zero and infinite weights on

the edges of the digraph are not restrictive. The zero and infinite weights on the

edges of the digraph can be substituted with the natural numbers as follows.

Let N = (n∗m)+1 where n = |S| and m is the number of elements of the union

of all elements of S in the HS(S). We can replace the weight 0 of the outgoing

edges of si’s (1 ≤ i ≤ n) with 1, the weight 1 of the outgoing edges of aj ’s

(1 ≤ j ≤ m) with N , and the weight∞ of the outgoing edges of s with N2. We

can remove at most (n∗m) outgoing edges of all si’s, even in the binary mode.

Since the new weight of the outgoing edges of any si is 1, the total cost of the

removal is (n∗m), which is always less than N (the new weight of one outgoing

edge of any aj). It implies that any answer to the LSTMC problem does not

try to remove some outgoing edges of aj ’s instead of that of si’s, otherwise, it
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Figure 3. (a) The digraph G′ of the LSTMC problem cor-

responding to an instance of the hitting set problem HS(S)

with n = 4 and m = 5. (b) The conversion of the outgoing

edges of s to binary mode; (c) The conversion of the outgoing

edges of s1 to binary mode.

will not be a minimum removal, which is a contradiction. Moreover, we can

remove at most m outgoing edges of all aj ’s, because the removal should be

logical. Since the new weight of the outgoing edges of any aj is N , the total

cost of the removal is (m ∗ N), which is always less than N2, implying any

answer to the LSTMC problem does not try to remove some outgoing edges of

s instead of that of aj ’s. �

Proposition 4.5. The LSTMC problem is NP-complete in a binary DAG even

if the weights of any two sibling edges are the same.

Proof. In the DAG G′ of Theorem 4.1 and its corresponding binary DAG (refer

to Figure 3), we have that the weights of any two sibling edges are the same.

Hence, the proposition holds. �

5. Inapproximability of Logical s-t Min-Cut Problem

Theorem 5.1. If the underlying digraph with n vertices is a weighted DAG,

then the LSTMC problem cannot be approximated within αlogn for some con-

stant α.

Proof. We modify the constructed DAG G′ from the set S by the Algorithm

HS2LSTMC in Theorem 4.1 as follows: change the weight of all outgoing edges

of every vertex aj of A to m ∗ n where A is the union of all elements of S, 1 ≤
j ≤ m, n = |S|,m = |A|. The modified digraph is called G′′ (See Figure 2

(b) as an example). In this case, we can easily see that HS(S) has an answer

with k1 elements if and only if (G′′, s, t) has an answer with some logically

removed edges where the sum of the weights of the removed edges is mnk1.

The reduction of HS to LSTMC and vice-versa is exactly the same as the
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reduction provided in Theorem 4.1. We call the hit edges, the tail set of the

edge set (aj , k) of an answer to the LSTMC problem in G′′.

As hitting set problem cannot be approximated within αlogn for some con-

stant α [14], we can show that the LSTMC problem cannot be approximated

within αlogn for some constant α. Suppose size of the optimal solution of an

instance of the hitting set problem is B, then size of the optimal solution of

the corresponding LSTMC problem in the constructed digraph G′′ (Figure 2

(b)) will be mnB. If we can find a logical s-t cut in which the total number

of all hit edges is B1, then the logical s-t cut has a weight mnB1. Assume
mnB1

B < α1log(n ∗m) for some constant α1. Note that size of the digraph G′′

is O(n ∗m). Then, we have that B1

B < α1log(n ∗m). For the hitting set prob-

lem with n sets and m = poly(n) elements, it cannot be approximated within

αlogn [14]. Since m is bounded by some polynomial in n, we can see that
B1

B < α1log(n ∗m) < α1α2log(n), where α2 is another constant. If we choose

α1 ≤ α
α2

, then B1

B ≤ αlog(n) . Now, we have a contradiction, which means that

the LSTMC problem cannot be approximated within αlogn for some constant

α. �

6. Application of Logical s-t Min-Cut Problem

Suppose that G = (V,E, s) is the control flow graph of a computer program

with the source vertex s. The vertices of the control flow graph G indicate

the processing statements of the program and the edges of G indicate the

conditional or iteration statements. Let G be a binary DAG. Note that the

control flow graph of a computer program can be transformed to a semantically

equivalent binary flow graph. The main problem is to generate a set of test

cases for the program such that each statement of the program is reached by at

least one test case. In the software testing terminology, this method is called

the node coverage [12]. The common approach to generate such test cases is to

find a path p from s to each vertex t of G and then to satisfy (make True) the

label (Boolean expression) of every edge of p. It results in n Boolean equations

where n is the length of the path p. By solving these equations, a test case

for reaching the vertex t is obtained. When the length of the shortest path

from s to t is increased, the number of the equations is increased, too. Thus, it

becomes more complex to satisfy all Boolean equations. Now, we propose an

alternative and better approach to reach any vertex of G.

In order to reach a vertex t from s in G, we can make True the labels of a

set of edges (and not necessarily a sequence of the edges of a path from s to

t). Figure 4 (a) shows the acyclic control flow graph G of a computer program

with the out-degree of two.

The length of the shortest path from the source vertex s = v1 to the target

vertex t = v12 in G is 4. So, to reach t from s in G by the common approach

of the shortest path, we need to make True the labels of four edges. However,
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Figure 4. (a) The acyclic control flow graph G of a computer

program with the out-degree of two. The goal is to guarantee

to reach the target vertex, t = v12, from the source vertex,

s = v1, inG. The important vertices of the digraph are shaded.

The vertex t is not reachable from any vertex of the set K =

{v8, v11}. (b) Using Algorithm Condense, the induced sub-

graph G[K] of G is substituted with the new vertex, k = v811,

and the head of any edge with the head h where h ∈ K is

changed to k. The resulting digraph is called G′. (c) The

conversion of G′ to a complete flow graph with the final vertex

f = v13. The new vertex, v13, and the two edges, (k, f), (t, f),

are added to G′ and the resulting graph is called G′′.

we can guarantee to reach t from s by making True the labels of only two

edges (v4, v9) and (v9, v12), because making True the labels of the edges (v4, v9)

and (v9, v12) is equivalent to removal of (making False the labels of) their

sibling edges namely (v4, v8) and (v9, v11). Note that the Boolean expressions

of any two sibling edges in the control flow graph of a computer program are

complement of each other. Now, in Figure 4 (a), you can observe that, by

removal of the edges (v4, v8) and (v9, v11) from G, any path starting from the

source vertex v1 finally reaches the target vertex v12. Let A be the problem to

guarantee to reach the target vertex t from the source vertex s of the binary

DAG G by making True the labels of the minimum number of edges. Moreover,

let E1 ⊂ E be an answer to the problem A, implying that it is guaranteed to

reach t from s by making True the label of every edge of E1 and there is no

answer smaller than the size of E1. If a vertex of G has only one outgoing edge,

then according to the semantic of the program, the label of that outgoing edge

is always True. As E1 is a minimum answer, the set E1 has no such always-true

edges, implying that any edge of E1 has a distinct sibling edge in G. As the

out-degree of G is 2, that sibling edge is unique. Hence, instead of making True

the label of an edge, e1, of E1, we can make False the label of the unique sibling

edge e2 of e1. It means that the problem A has an answer by making False
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Input: A weighted digraph G = (V,E) and the two vertices s and t of G.

Question: How can we remove some edges of G such that, by following any

path starting from s, it is guaranteed to reach t and the removal is both

minimal and logical?

Table 4. Optimal reach problem (OPTR), denoted by the

triple (G, s, t).

the labels of a set of edges of G. As G indicates the flow graph of a computer

program, making False the label of an edge e of G is equivalent to the removal

of e from G. Also, according to the semantic of a computer program, we cannot

remove (make False the labels of) all outgoing edges of a vertex of G together,

implying that the removal should be logical. Therefore, the problem A can be

rephrased as the following problem called OPTR (Optimal Reach) [10].

Note that both problems of A and OPTR are equivalent. In Figure 4 (a),

as mentioned above, the answer to the problem A is to make True the labels of

the edges (v4, v9) and (v9, v12) of G. Hence, the answer to the problem OPTR

is to remove (make False the labels of) the edges (v4, v8) and (v9, v11) of G.

Up to this point, the test case generation problem has been transformed to

the problem OPTR by using the idea of minimum logical removal. However,

the goal of the problem OPTR is to guarantee to reach the target vertex t from

the source vertex s in G, which is the opposite of making t unreachable from s

(the LSTMC problem). Lemma 6.1 demonstrates that the problem OPTR can

be reduced to an LSTMC problem. This application shows a case in which,

non-logical removal of the edges of a digraph is infeasible.

Lemma 6.1. Let G = (V,E, s) be an acyclic weighted flow graph and t be a

vertex of G. Also, let OPTR = (G, s, t) be an instance of the optimal reach

problem. Moreover, let K ⊂ V be the set of the vertices of G such that t is

reachable from no vertices of K. Furthermore, let Algorithm Condense(G, t)

condense all vertices of K as well as their adjacent edges in one vertex called

k and return the new flow graph G′. Finally, let LSTMC = (G′, s, k) be an

instance of the LSTMC problem. We have that any answer to the LSTMC

problem (G′, s, k) is an answer to the OPTR problem (G, s, t) and vice-versa.

Proof. Algorithm Condense substitutes the induced sub-graph G[K] of G with

a new vertex named k and considers the incoming edges ofG[K] as the incoming

edges of k and calls G′ the new flow graph (See Figure 4 (b) as an example).

For each vertex v of G, if there exists only one incoming edge of K with the

tail v in G, then, the corresponding edge e′ = (tail(v), k) is added to G′ and

the weight of e′ is considered same as the weight of e. Otherwise, if there
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exists multiple incoming edges of K with the same tail v in G, then, although

only one corresponding edge e′ = (tail(v), k) is added to G′, the weight of e′

is considered as the sum of weights of all incoming edges of K with the tail v

(lines 5-13). Hence, the cost of removal of any subset of the incoming edges of

K is the same in the both digraphs G and G′. As the outgoing edges of t have

no effect on the reachability of t from s, we also remove every outgoing edge

of t in G′ (line 3). Now, we claim that any answer to the LSTMC problem

(G′, s, k) is an answer to the OPTR problem (G, s, t) and vice-versa. It means

that in order to guarantee to reach the target vertex t from the source vertex s

in the DAG G it is enough to make k unreachable from s in G′ by the approach

of the minimum logical removal such that G′ = Condense(G, t).

The latter claim can be demonstrated as follows. We add a new vertex called

f to G′ and two edges from k and t to f . We call G′′ the new flow graph (See

Figure 4 (c) as an example). Since f is reachable from any vertex of the flow

graph G′′, by Definition 3.4, we have that G′′ is a complete flow graph with the

source and final vertices s and f , respectively. Thus, by Corollary 3.5, we have

that it is impossible to make f unreachable from s in G′′ by a logical removal

of the edges of G′′. On the other hand, as the edges (t, f) and (k, f) have

no siblings, they cannot be logically removed. So, by performing any logical

removal in G′′, we will definitely reach either k or t. Hence, if we make k

unreachable from s in G′ by a logical removal of the edges of G′, then t will be

reachable from s and since t becomes the final vertex of G′, it is guaranteed to

reach t by moving any path starting from s in G′. Conversely, if we guarantee

to reach t from s in G′ by a logical removal of the edges of G′, then, as t has no

paths to k, the vertex k becomes unreachable from s. Note that the digraph

G′ is the same as G except that the vertex k in G′ is the replacement of the

induced sub-graph G[K] in G. Therefore, to make k unreachable from s in G′

by a logical removal of the edges of G′, we should guarantee to reach t from s

in G′ (or G) and vice-versa. It is obvious that G′ is computable in polynomial

time in the size of G. �

Remark 6.2. In Lemma 6.1, let E1 = E(G[K]). As the edges of E1 have no

effect on the reachability of t from s in G, we have that an answer to the OPTR

problem (G, s, t) contains no edge of E1. That is why we removed E(G[K]) in

G′ and substituted V (G[K]) with one vertex called k. Moreover, suppose that

E′1 ⊂ E(G′) is an answer to the LSTMC problem (G′, s, k) in G′. If e′1 ∈ E′1
be an edge with the head k in G′, then the corresponding edges of e′1 in G are

the edges of G with the tail tail(e′1) and the head h where h is a vertex of K.

Figure 4 (b) shows the corresponding flow graph, G′ = Condense(G, t), of

the acyclic flow graph G of a program such that s = v1 and t = v12. As

the outgoing edges of t have no effect on the reachability of t from s in G,

they have already been removed from the figure. The set K = {v8, v11} is
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the set of vertices of G such that t is reachable from no vertices of K. Using

Algorithm Condense, the induced sub-graph G[K] of G is substituted with the

new vertex, k = v811 and the head of any edge with the head h where h ∈ K is

changed to k. By Lemma 6.1, an answer to the LSTMC problem (G′, s, k) by

a logical removal of the edges of G′ is also an answer to the OPTR problem

(G, s, t). An answer to the LSTMC problem (G′, s, k) is to remove the edge set

E′1 = {(v4, v811), (v9, v811)}. Hence, in order to guarantee to reach the target

vertex t = v12 from the source vertex s = v1 in G′ by a logical removal, it is

enough to remove the edge set E′1. The corresponding edges of E′1 in G are the

edge set E1 = {(v4, v8), (v9, v11)}. Therefore, an answer to the OPTR problem

(G, s, t) is to remove the edge set E1 from G.

Algorithm Condense (G, t) // G = (V,E, s)

1. K = {v ∈ V |t /∈ reach(v)}
2. EK = {e ∈ E| ∃ v1, v2 ∈ K where head(e) = v1 and tail(e) = v2)}
3. G′ = (V ′, E′, s), V ′ = V −K,E′ = E − EK − oe(t)
4. V ′ = V ′

⋃
k

5. for each incoming edge e of the induced subgraph G[K] do

6. e′ = (tail(e), k)

7. if (e′ /∈ E′) then

8. E′ = E′
⋃
{e′}

9. w(e′) = w(e) // w(e) indicates the weight of e.

10. else

11. w(e′) = w(e′) + w(e)

12. end if

13. end for

14. return G′

/*Let G = (V, E, s) be an acyclic weighted flow graph and t be a vertex of G.

Let K ⊂ V be the set of vertices of G such that t is reachable from no vertices

of K. This algorithm condenses all vertices of K as well as their adjacent edges

in one vertex called k and returns the new flow graph G′. Also, the outgoing

edges of t are removed in G′.*/

Remark 6.3. In Lemma 6.1, we demonstrated that the OPTR problem is re-

ducible to the LSTMC problem. By a similar proof, we can show that the

LSTMC problem is reducible to the OPTR problem, too. The proof stems

from this fact that the roles of the vertices of t and k can be transformed to

each other. In other words, in order to guarantee to reach the target vertex

t from the source vertex s in the underlying DAG G by a minimum logi-

cal removal, we should guarantee not to reach the vertex k in the digraph

G′ = Condense(G, t). In contrast, to guarantee not to reach t from s in G
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by a minimum logical removal, we should guarantee to reach the vertex k in

G′ = Condense(G, t).

Conjecture 6.4. The LSTMC problem is NP-Complete and it cannot be approx-

imated within αlogn even if the underlying digraph is an unweighted binary

DAG.

This section showed why the LSTMC approach is superior to the current ap-

proaches, such as shortest path, in the context of program test case generation.

As previously mentioned, in order to generate a test case to reach the target

vertex in the flow graph of Figure 4, we need to satisfy 4 edges in the com-

mon approach of the shortest path but 2 edges in the OPTR (or, equivalently

LSTMC) approach. It implies that in order to find the test case, we have to

solve 4 Boolean equations in the shortest path approach but 2 equations in the

LSTMC approach. When the size of the underlying digraph becomes bigger,

the shortest path approach needs to solve more Boolean equations, implying it

becomes more difficult to find an input to satisfy all Boolean expressions. In

this state, the LSTMC approach can be used to find a test case easily comparing

to the shortest path approach.

7. Conclusion and Future Works

The logical removal constraint applies in situations where non-logical re-

moval is either infeasible or undesired. We introduced the Logical s-t Min-Cut

(LSTMC) problem as a cut problem having both constraints of the minimal

and logical removal. We presented the basic properties as well as the applica-

tion of the LSTMC problem. We showed why the LSTMC approach is superior

to the current approaches in the context of program test case generation. Al-

though the s-t min-cut problem is solvable polynomially in any digraph, we

showed that the LSTMC problem is NP-Hard, even if the underlying digraph

is acyclic with an out-degree of two. Moreover, we showed that the LSTMC

problem cannot be approximated within αlogn in a DAG with n vertices for

some constant α. Given the results presented in this research paper, new areas

for further works are identified, including:

• To show whether or not the LSTMC problem is NP-Hard in unweighted

DAG’s, and especially in unweighted binary DAG’s.

• Assuming the LSTMC problem is NP-Hard in unweighted DAG’s, is it

also inapproximable? What about unweighted binary DAG’s?

• To provide a necessary and sufficient condition for verifying the exis-

tence of an answer to the LSTMC problem in cyclic flow graphs.
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