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ABSTRACT. In this paper, we propose a numerical method based on the
generalized hat functions (GHF's) and improved hat functions (IHFs) to
find numerical solutions for stochastic Volterra-Fredholm integral equa-
tion. To do so, all known and unknown functions are expanded in terms
of basic functions and replaced in the original equation. The operational
matrices of both basic functions are calculated and embeded in the equa-
tion to achieve a linear system of equations which give the expansion
coefficients of the solution. We prove that the rate of the convergence
is O(h?) and O(h*) for these two different bases under some conditions.
Two examples are solved and the results are compared with those of block
pulse functions method (BPFs) to show the accuracy and reliability of
the methods.
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1. INTRODUCTION

Stochastic equations are one of the most important and applied topics in
today’s world. They arise in modelling of different problems in science such as
finance [1, 2, 3], chemistry [4, 5, 6], mechanics [7], physics [8, 9, 10], mathematics
and statistics [11, 12, 13], biology [14, 15, 16], etc.. This sometimes results in
a stochastic Volterra-Fredholm integral equation and in many cases they have
no explicit form of the solution [17]. Consequently, numerical methods come
to solve the problem and find an appropriate approximation.

Consider the following stochastic Volterra-Fredholm integral equation,

B t t
X(t):f(t)+/ Kl(s,t)X(s)ds—f-/O Kg(s,t)X(s)ds—i—/o Ks(s,t) X (s)dB(s),

where s,t € [0,T), X, f, K1, K5 and K3 are the stochastic processes defined on
the same probability space (2, F, P) and X is unknown.
Also fg K3(s,t) X (s)dB(s), is the 1t6 integral and B(t) is a Brownian motion

[20].

Different basic functions have been used to find an approximation for stochastic
integral equations such as block pulse functions [17, 18, 19], hat functions [21],
modified hat functions [22, 23], triangular functions [24, 25], hybrid functions
[26, 27], wavelet methods [28, 29], etc..

In this paper, we use both generalized hat functions (GHF's) and improved
hat functions (THFs) to find approximations of the solution of the original
equation. In these methods, the operational matrices and approximations of
all functions are found according to basic functions. They are replaced in the
original equation and a linear system of equations is concluded. The rate of
convergence is shown to be O(h?) and O(h*) respectively for these methods,
which is acceptable.

This paper is organized as follows. In Section 2, we describe GHFs, their
properties and operational matrices. In Section 3, IHFs, their properties and
operational matrices are reviewed. In Section 4, the method of the solution is
studied. In Section 5, the error analysis is discussed. Some numerical examples
are solved and compared with those of BPF's in Section 6. And finally in Section
7, some tentative conclusions will be drawn.

2. GENERALIZED HAT FUNCTIONS (GHF'S)

In this section, we get to know GHF's and their properties, function expansions
and operational matrices [21, 30].
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Hat functions, also known as triangular or tent functions and whose graphs
take the shape of triangles or hats, work to solve differential equations by
Galerkin method. They are useful in signal processing and communication sys-
tem engineering, and have applications in pulse code modulation for transmit-
ting digital signals. These functions are continuous and defined on [0, 1]. Gen-
eralized hat functions (GHF's) are created by extending the domain of definition
to [0,T]. To do so, we divide [0,T] into n equal subintervals [ih, (i + 1)h],i =
0,1,...,n—1, where h = % and n is an arbitrary positive integer and defines
a set of GHFs as

bt 0<t<h
0, otherwise.

EZGDh (G 1)k <t <ih

h
hi(t) = ¢ CEORZLE g <4 < (i 4 1)h,
0, otherwise,

and
I=h) o _p<t<T
By, (t) _ h ; >0
0, otherwise.
From the definition of GHF's, the following properties come as a result.
(1) They are linearly independent.
1, i=j

(2) hi(jh) = {0 it

(8) ha(D)h(6) = 0, i — j] > 2.

(4) S halt) = 1.

Suppose
H(t) = [ho(t), h(t), ..., hn(t)]T, (2.1)
then, we have
ho(t) 0 0

ouonTp~| o 0o

0 0 0

(6) H(t)H(t)T F ~ diag(F)H(t), where F is an (n + 1)-column vector.

(7) Let K be an (n + 1) x (n + 1) matrix, then H(t)"KH(t) ~ H()TK,

where K is a column vector with (n 4 1) entries equal to the diagonal entries
of matrix K.
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An arbitrary real function f € L2?([0,T)) can be expanded by these basic
functions as

f(t) =) fihi(t) = FTH(t) = H ())F, (2.2)
=0
where F = [fo, f1,- .., fn]? and H(t) is defined in relation (2.1) and the coeffi-
cients in (2.2) are given by f; = f(ih),1 =0,1,...,n.
Similarly, an arbitrary real function of two variables g(s,t) defined on L?([0, T") x
[0,T)) can also be expanded by these functions as

g(s,t) ~ HY (s) GH(t) = H” (t) GT H(s), (2.3)
where G= [Gy;] is an (n + 1) x (n + 1) GHFs coefficients matrix with entries
Gj = g(ih, jh), that i,j =0,1,2,...,n and h = L.

We present P and P as the operational matrix and stochastic operational
matrix of integration for GHFs respectively, where [21]

o1 1 ... 11
o1 2 ... 2 2
nlo o1 ... 22
2 :
0 00 1 2
L0 0 0 0 1 |
and
0 Bo(h) Bo(h) e Bo(h) Bo(h)
0 B(h)+ Bi(h) 71(h) 71(h) Y1(h)
o 0 0 B(2h) 4 B2(h) ... Y2 (h) ~v2(h)
6 0 0 ... B((n- 1)hj + Bn-1(h) 'yn._1
0 0 0 0 B(T) + Bn(h)
(2.5)
with
1 [k
fol) = 3 [ Blr)ar,
0
_1 [ik
Bi(h):—/ B(r)dr,i=1,2....n,
h Ji-1yn

~1 ih (i+1)h
~i(h) = — / B(T)d’l’*/ B(r)dr],i=1,2,...,n—1,
b \Ji-1n ih

Theorem 2.1. Let H(t) be the vector defined in relation (2.1), then

T
/ H(r)H? (1) dr = P,,
0
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where P, is the following (n+1) x (n+1) matriz,

1 L 000 ... 00 0]

32 4 00 ... 000

1 1

Al O 5 2 5 0 0 0 O

3 Do Do

0 0 0 0 O % 2 %
L0 0 0 0 0 0 4+ 1|

Proof. The proof comes after integrating the elements of H(¢)H” () from 0 to
T. O

3. IMPROVED HAT FUNCTIONS (IHFSs)

IHFs and their properties, function expansions and operational matrices are
studied in this section [23, 30].
Let n > 3 be a multiple of 3 and » = L. Also assume that the interval [0, T) is

divided into % equal subintervals [ih, (irz|—3)h],i =0,3,...,(n—3). Moreover, let
X, be the set of all continuous functions that are the third degree polynomials
when restricted to the above subintervals. Each element of X,, being completely
determined by its values at (n + 1) nodes ih,i = 0,1,...,n eventuates (n + 1)
is the dimension of X,, and f € C([0,T)) can be approximated by a linear

combination of the following set of functions,
=L(t—h)(t—2h)(t—3h), 0<t<3h
mo(t): 6h3( )( )( )7 =t =
0, otherwise.

Ifi=3k—2and1<k<?2,

mi(t) = #(t—(i—l)h)(t—(i+1)h)(t—(i+2)h), (—1Dh<t<(i+2)h
' 0, otherwise.

Ifi=3k—-—4and2<k <2 +1,

mi(t) = %(t—(i—2)h)(t—(i—l)h)(t—(i—i—l)h), (i—2h<t<(i+1)h
' 0, otherwise,

and if 1 =3k and 1 <k < ¢ — 1,

t—0G—-2h)(t—(GE—-1h), (i—3)h<t<ih

mi(t) = G5t — (i + 1)t — (i +2)h)(t — (i +3)h), ih<t<(i+3)h

0, otherwise,
and
o (£) = szt — (T —h)(t — (T =2h))(t — (T =3h)), T—-3h<t<T
" 0, otherwise.
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The following properties come as a result of above definition.
1) They are linearly independent.

1, i=j

2) m;(jh) :{0 it

=0
Suppose
M(t) = [mo(t), mi(t),...,mn(t)]7, (3.1)
then, we have
0 mq (t) 0
4) MM (t) ~ : ' .
0 0 0 m)

5 M(t)M(t)TF ~ diag(F)M(t), where F is an (n + 1)-column vector.

6) Let K be an (n 4+ 1) x (n 4+ 1) matrix, then M(t)TKM(t) ~ M(t)TK,
where K is a column vector with (n + 1) entries equal to the diagonal entries
of matrix K.

An arbitrary real function f on [0,7T) can be expanded by these basic functions
as

F(£) =Y fimi(t) = FTM(t) = MT (H)F, (32)
1=0

where F = [fo, f1,..., fa]? and M(#) is defined in relation (3.1) and the coef-
ficients in (3.2) are given by f; = f(ih),i=0,1,...,n.

Similarly, an arbitrary real function of two variables g on [0,7) x [0,T) can
also be expanded by these basis functions as

g(s,t) ~M7T(s) GM(t) = M7 (t) GT M(s), (3.3)

where G = [G;;] is an (n + 1) x (n + 1) matrix and G;; = g(ih, jh) for i,j =
0,1,2,...,n.
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We introduce P’ and P’, the operational matrix of integration of the vector
M(t) defined in relation (3.3) and stochastic operational matrix of Ité integra-
tion of the vector M(t) as

where

ai

/

b2

(9 8 9], a2=[9 9 9],p

P =_—

27 27 27
27 27 27 |, ph
18 17 18

0 a1 as
0 py ph
0 0 p
0O 0 o0
0O 0 o0
(0 0 0O

2T 27
= | 27 27
18 18

az
P3
P2
P1

27
27
18

as as
s J2
3 D3
Ph P3|,
Pl 2
0 2
19 32 27
-5 8 27 |,
1 0 9

)

and 0, based on its location in this matrix is a 3 X 3 zero matrix or a 3-vector.
It is noteworthy that the operational matrix is not presented appropriately in

23

-

As well

where as, = [ 61 002 003 |, as,

/
Py,

/
p52

with

00,5 (h)

[0 as, Qs, G,
0 pi, P, DL
0 0 p, 71,
p—|0 0 0 p
0 O 0 0
0 0 0 O

=603 603 6os |,and

B(ih) 4 0; ; 0;i+1 0;it2
0ii—1 B(ih) + 6;,; 0iiv1 )
&iim2 &iim1 B(ih) + &.i
Oiive Oiiv2 0iiv2 Oiive Oiit2 0iivo
Oiit1 Oiit1 Oiip1 | Dsy = | Oiig1 Oiir1 Oiit1 |
Siir1 Siire  Giivs it Ciir3  Giies
1[I

6h3 J,

ifi:?)k—Qandlng%

(372 —127h + 110*)B(7) dr, j = 1,2, 3.
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jh
0;(h) = — 355 / (372 — (60 + 4)h7 + (3% 4 4i — 1)R?)B(7) dr,
(i—1)h
j=idi+1,i+2,

ifi=3k—4and2<k<2+1

jh

5is(h) = ﬁ/ (372 — (61 — A)hr + (312 — i — 1)h2)B(r) dr,
(i—2)h

j=i—1,i,i41,

ifi=3kand 1<k< 3 —1
jh

& i(h) = %/ (372 — (60 — 12)h7 + (3i* — 12i + 11)h?) B(7) d,
(i—3)h

j=i—2,i—1,i,

and

. ih
&i(h) = —1(/ (372 — (60 — 12)h7 + (3i* — 12i + 11)h?)B(7) dr
’ 6h3 " Ji—3)n

jh
- / (372 — (60 + 12)h7 + (3i® + 12i + 11)h?)B(7) dr),
ih

=i+ 1,i+2i+ 3,

and 0, based on its location in this matrix is a 3 X 3 zero matrix or a 3-vector.
It is noteworthy that the stochastic operational matrix is not presented well in
[23].

Theorem 3.1. Let M(t) be the vector defined in relation (3.2), then
T
| MMy ar = P
0

where P, is the following (n+ 1) x (n+ 1) matriz

*

8 2 %’ }—% 0 0 0 0o 0 0 0 0 0

‘%% 87,; =t 2 o0 0 0 o 0o 0 0 0 0

= %%1 s 9 0 0 0 o 0 0 0 0 0

L 2 28 16 9 *789 }—% o 0o 0 0 0 0

0 0 0 ?—% 8—% = 2 o 0o 0 0 0 0

— —81 81 99

o 0 0 o 5 Gy 2 1 0o 0 0 o0 0 0
Po=g| 0 0 0 2 2 2 16 0 0 0 0 0 0
: 19 -9 99 5 99 -9

0 0 0 0 0 0 0 R R R o
0 0 0 0 0 0 0 0 0 0 i’—% % 5

0 0 0 0 0 0 0 o o o = *1—%1 sl

19 = 99

0 0 0 0 0 0 0 o o o L =2 9

Proof. The proof is easy and it comes after integrating the elements of M (t)M7 (t)

O

from 0 to T.

o 0o oo oo

o Biglal -
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4. METHOD OF SOLUTION

As stated in the introduction, our aim is to solve the next stochastic Volterra-
Fredholm integral equation

t

B t
X(t) :f(t)+/ Ki(s,t)X(s)ds + ; Ko(s,t) X (s)ds + ; K3(s,t) X (s)dB(s),
(4.1)

where t € [0,T). Without loss of generality we can set [0, 7] instead of [a, §].
By approximating X, f, K1, K, K5 through GHFs expansions as mentioned in
relations (2.2) and (2.3), we have

X(t)~XTH(t) =H(#)TX,

f(t) ~FTH(t) = H(1)"F,
Ki(s,t) ~ H(t) 'K H(s) = H(s) "K1H(2),
Ko(s,t) ~ H(t)TK,TH(s) = H(s) K H(1),

Ks(s,t) ~ H(t)TKs " H(s) = H(s)TK3H(t).

Substituting above approximations in equation (4.1), we obtain
T
Ht)'X ~H(t)'F + / H(t)"K{H(s)H(s)' X ds
0

4 / H() TKTH(s) H(s) X ds / () TKTH(s H(s)TX dB(s),
0 0

by applying the 6-th property of GHFs and Theorem 2.1, we have

HO)'X ~H#)'F+H" ()KTP. X+ H” () K2 diag(X) (/Ot H(s) ds)

t

+HT ()KL diag(X) ( H(s) dB(s)> , (4.2)

0

where P, is defined in relation (2.6). Using operational matrices defined in
relations (2.4) and (2.5) , we get

HH)™X ~H#)TF + H' ) KTP. X + HT ()KL diag(X)PH(t)
+HT ()KL diag(X)PH(t).

The following relation is obtained by using property 7 of GHF's in the previous
relation,

HT )X ~HT(t)F + HTKTP,. X + HT (tH)A + HT (1)B,
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where A = Kl'diag(X)P and B = Kldiag(X)Ps. Eliminating H? (t) and
replacing ~ by =, we obtain

X=F+K'P, X+ A +B, (4.3)

which is a linear system of equations that its solution is easily found by math-
ematical softwares.
The solution method of ITHFs is just like GHFs with the difference that the
basic functions and their operational matrices are changed to M, P’, P’ and
P

5. ERROR ANALYSIS

In this section, we prove that the rate of convergence for GHFs and IHFs meth-
ods are O(h?) and O(h*) respectively, in solving stochastic Volterra-Fredholm
integral equation.

Theorem 5.1. [21] Let f € C%([0,T)) and e,(t) = f(t) — fu(t), t € [0,T),
where fn(t) =Y i f(ih)h;(t) is the GHFs expansion of f, then we have
h2
< £
leall < = 1AM,
where ||.|| denotes the sup-norm.
Theorem 5.2. [21] Let g(s,t) € C%([0,T) x [0,T)) and e,(s,t) = g(s,t) —
gn(s,t) for (s,t) € [0, T)x[0,T), where gn(s,t) = 377 37— g(ih, jh)hi(s)h; (1),
is the GHFs expansion of g(s,t), then we have
h2
leall < 5 (21 + 20851+ 1521
and so |le,|| = O(h?).

Theorem 5.3. Let X be the exact solution of equation (4.1) and Z, be the
solution by GHFs method then

. h2 3
1X = Zall < 5 (IL7H(1+ (8 = )Ny + TNa + N[ BI)IX @ + 1 22)])).

where X (t) ~ X, (t) and Z(t) ~ Zn(t), so || X — Zy|| = O(h?), where N; =
sup |K;(s,t)] for i = 1,2,3 and L is the matriz that satisfies in relation
(565728 LX =F.
Proof. We know
IX = Zll S 11X = Z| + 12 = Zal, (5.1)
by the fact that X (t) = L~ f(t) and Z(t) = L~ f(t), we obtain
IX = ZI < 1L = 11l (5.2)
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Applying inequality (5.2) and Theorem 5.1 in relation (5.1), we get

) ~ o h?
1X = Zall < ILTHIS = Al + 5122, (5.3)

From the original equation (4.1) and for ¢ € [0,7"), we have

—/jKl(s,t)X(s)ds—/OtKg(s,t ds—/ Ks(s,t)X(s)dB(s),
and

f(t):f(n(t)f/ 1(s,t ds—/Kgst ds—/Kgst t)dB(s).
Thus, we obtain
F(8) = f(t) = X () — Xn(t) — K5, )(X(5) — Ku(s))ds

— [ Ko(s,t)(X(s)—X,(s))ds— / Ks(s,t)( —X,(s)) dB(s),

therefore

) . p N
sup |f(O)=f()] < sup |[X(H)=Xn(t)[+ sup | [ Ki(s,8)(X(s)=Xn(s))ds|

te[0,T) t€[0,T) tel0,T) Ja
t t

+ sup | Ko(s,t)(X(s)—Xn(s))ds|+ sup | K3(s,t)(X(s)—X,(s)) dB(s)|.
tel0,7) JO tel0,T) Jo

Hence, the following inequality is obtained

R N A N
sup |(0)-F(0) < sup [X(O-Ta(O1+ sup [ 1Ks(s,0)][X(5)- X, ()]ds

te[0,T) te(0,T) te[0,7) Ja
t t
+ sup / | K>(s,1)]| X (s)—Xn(s)| ds+ sup | IKs(s )1 X (s)—Xn(s)| dB(s),
t€[0,T) JO t€[0,T)
thus
sup |f(t)— f(t)] < sup |X(t) = Xn(t)|+(B—a)N1 sup |X(t) — X, ()]
tel0,T) tel0,T) tel0,T)
+TNy sup |X(t)—X,(t)|+Ns sup |B(t)] sup |X(#)—X,(t)|
t€0,T) t€[0,7) tel0,T)
h2
< FIXPN+ (8 — )Ny + TN + Ns|1B). (5:4)

Using relation (5.4) in inequality (5.3), we have

. 2 h?
1X = Zall < S IZ7 XD+ (8 = a)N2 + TN + Nol|BI)) + -1 22

therefore
h2
IX = Zy| < - (L™ HI(1+ (B — a)Ny + TNz + Ns|| B@) DI X + 12@]),
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and this completes the proof. (|

IHF's error analysis is reviewed in next theorems.

Theorem 5.4. [23] Let t; = jh,j = 0,1,...,n,f € C*([0,T)) and fn(t) be
the IHF's expansion of f(t), that is defined as f,(t) = Z?:o f(t;)m;(t). Also
assume that e, (t) = f(t) — fu(t), fort € [0 T), then we have

(4)

Theorem 5.5. [23] Let s; = t; = ih,i = 0,1,...,n,K € C*([0,T) x [0,T))
and K, (s, t) = > 1, Z?:o K(si,tj)m;(s)m;(t), be the IHF's expansion of K (s,t).
Also assume that e, (s,t) = K(s,t) — K, (s,t) for s,t € 0,T), then we have
3ht
all < T (SN + 15 ) KO
el < 32 (LEEN + 1K) + ).

Theorem 5.6. Let X (t) be the exact solution of equation (4.1) and Y, (t) be the
solution obtained by the proposed method. So X (t) ~ X, (t) and Y (t) ~ Y, (t):

3ht
IX = Yal < Tog LM+ (8 = @) My + T My + My | BOIN XD + [y @)
fort €[0,T) and hence, | X — Yy || = O(h*), where M; = sup |K;(s,t)| for

s,t€[0,T)
1 =1,2,3 and L is the matriz that satisfies in relation (4.3) as LX = F.

Proof. From equation (4.1), we have

_/jKl(s,t)X(s)ds—/OtKQ(s,t ds—/ Ks(s,t)X(s)dB(s),
and

= /Klst ds—/Kgst ds—/Kgst t)dB(s),

for all ¢ € [0,T), where X,,(t) is the expansion of X (t) by IHFs. So

. . B .
F() = F{) = X(t) — Xnlt) / Ky (5, )(X(s) — X (5))ds

/ Ks(s,t)( )) ds— / Ks(s,t)( —X,(s)) dB(s),
therefore
R N B N
sup [f(t)—f(1)] < sup |X(¢)=X,()[+ sup | [ Ki(s,t)(X(s)—Xp(s))ds|
tel0,T) te[0,T) te0,7) Ja

+ sup | [ Ko(s, t)(X(5)=Xn(s)) ds|+ sup | | Ks(s,6)(X(s)=Xn(s)) dB(s)],
t€l0,T) Jo te[0,7) JO
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thus

R N B N
sup [f(t)=f(t)] < sup [X(t)=Xn(t)|+ sup / [ K1 (s, 8)[[ X (s) = Xn(s)|ds

te[0,T) te[0,T) te[0,T) J o

t
+ sup / K (5,)[| X (5) =X (s)| ds+ sup | [ [Ks(s,0)|| X (s)=Xn(s)| dB(s).
t€[0,T) te[0,7) JO

Applying the assumptions, we have

sup |f(t) = ()| < sup |X(t) = Xp(t)|+ (B— )My sup [X(t)— X (t)]

te[0,T) t€[0,T) t€[0,T)
+T M sup |X()=Xn(t)|+Ms sup |B(t)| sup |X(t)—Xn(t)]
t€l0,T) te[0,T) tel0,T)
3
< g1 X PN+ (B = )My + TM, + Ms|| B)). (5:5)
By the fact that X (¢) = L~ f(t) and Y (t) = L1 f(t), we obtain
sup X (1) = Y(0)| < LY sup |£(8) — f(2)]. (5.6)
t€[0,T) te(0,T)

We also have

sup | X (t) = Yo(t)| < sup [X(t) =Y ()| + sup [Y(t) = Ya()]. (5.7)
t€[0,T) t€(0,T) t€[0,7T)

Applying inequalities (5.5) and (5.6) in (5.7), we get

- 3nt
sup |X () — Yo ()| < [IL™ 1|| IIX(4 (14 (B — a)My + TM, + Ms|B|)
t€[0,T)
3y,
hence
A% () (4)

IX =Y, < Tog LTI+ (8 = )My + TM; + M| BI)[[X @ + [Y 1),
and the proof is complete. O

6. NUMERICAL EXAMPLES

To show the accuracy of these two methods, we consider some examples. The
computations associated with the examples are performed using Matlab 7 and
[31].

EXAMPLE 6.1. Let [17]
X(t)=f(t)+ /0 cos(s +t) X (s)ds + /0 (s +t)X(s)ds

+/0 exp(—3(s+t)) X (s)dB(s)
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be a linear stochastic Volterra-Fredholm integral equation and s,t € [0,1),
f(t) = ¢ +sin(1 +t) — 2cos(1 + t) — 2sin(t) — % + &5B(t). X(t) is an
unknown stochastic process defined on the probability space(§2, F, P) and B(t)
is a Brownian motion process. The numerical results for the above mentioned
basic functions for m = 15, m = 30 and k = 20 are inserted in TABLEs 1 and
2, where k is the number of iterations. According to the error analysis studied
in Section 5 and the numerical results shown in TABLEs 1 and 2, it can be
concluded that IHFs method is more accurate than BPFs and GHFs. Also,
the number of basic functions has an important role in accuracy. Curves in
FIGURES 1 and 2 show the solutions computed by GHFs and IHF's for m = 15
and m = 30.

k=20

GHFs method
i 1IHFs method

15

P
N
T

0.2

Approximate solutions for example 1 and m

[t
et
"'llll\\\\\ll\ll\‘\

o 0.2 0.4 0.6 0.8 a

FIGURE 1. Numerical results for Example 7.1 by GHFs and
ITHFs methods with m=15.

GHFs method
i IHFs method

30

R
T
P

A
o2 e A
o
(e
x\““\”\‘\
b b
rnky bkl b b

Approximate solutions for example 1 and m

o 0.2 o.4 0.6 0.8 i

FIGURE 2. Numerical results for Example 7.1 by GHFs and
ITHF's methods with m=30.
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m =15
nodest; | BPFsin[17] GHF's IHFs

0 0.0189981383 0.0153842767 0.0210118224

0.1 0.0443427347 0.0285856363 0.0286495434

0.2 0.1036134219 0.0633603756 0.0660030915

0.3 0.1036134219 0.1079519530 0.1148579113

0.4 0.2223270323 0.1775973036 0.1869844526

0.5 0.1666985014 0.2549383742 0.2801345118

0.6 0.4314041184 0.3819749524 0.3918766851

0.7 0.2854952711 0.4666445831 0.5182189623

0.8 0.7172045224 0.6534792502 0.6633343506

0.9 0.4314041184 0.7582855445 0.8301212786

1 0.6106764696 1.1040791318 1.0214181806

TABLE 1. Numerical results for Example 7.1 and k& = 20 and
m = 15.
m=30
nodest; | BPFsin[17] GHF's IHFs

0 —0.0232084950 0.0052161010 0.0202046201
0.1 —0.0016913095 0.0194995661 0.0311602020
0.2 0.0352166406  0.0531067848 0.0652089729
0.3 0.0866090271  0.1011729439 0.1160211920
0.4 0.1575206061  0.1675756213 0.1862674199
0.5 0.2523749931  0.2608108343 0.2803509939
0.6 0.3620734327  0.3708175101 0.3909921800
0.7 0.4852043944  0.4953250063 0.5163329361
0.8 0.6290333441  0.6393069770 0.6621374997
0.9 0.7913292795  0.8025816039 0.8283788832
1 0.9160050969  0.9834906651 1.0199870218

TABLE 2. Numerical results for Example 7.1 and k& = 20 and

m = 30.
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EXAMPLE 6.2. Let [17]

X(t)

be a linear stochastic Volterra-Fredholm integral equation and s,t € [0, 1),
f(t) =2 —cos(1) — (1+t)sin(1) + 55 sin(B(t)). X(t) is an unknown stochas-
tic process defined on the probability space(Q, F, P), and B(t) is a Brownian
motion process. The numerical results are inserted in TABLEs 3 and 4 for
m = 15, m = 30 and k = 20, where k is the number of iterations. Also curves
in FIGURESs 3 and 4 show the solutions computed by GHFs and THFs method

f(t)+ /0 (s +t)X(s)ds+ /0 (s —t)X(s)ds

for m = 15 and m = 30.

_|_/0 % sin(s +t)) X (s)dB(s),

nodest;

m =15

BPFsin[17]

GHF's

IHF's

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.8887010585
0.8739398501
0.8330559947
0.8330559947
0.7446350666
0.7770668749
0.6264915336
0.7086942516
0.4814490330
0.6264915336
0.5314586850

1.0043538668
0.9994807132
0.9860670105
0.9641075472
0.9293127652
0.8953335497
0.8357127003
0.7924107845
0.7059055898
0.6572112277
0.4984763159

1.0067965374
1.0028942472
0.9893671679
0.9658206983
0.9332182224
0.8915672703
0.8401305971
0.7791483715
0.7108899589
0.6359036879
0.5552917396

TABLE 3. Numerical results for Example 7.2 and k = 20 and

m = 15.
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m=30
nodest; | BPFsin|[17] GHFs IHFs

0 0.9333907554  1.0064981428  1.0070405950

0.1 0.9170933336  1.0024669678  1.0031060950

0.2 0.8921163336  0.9889465339  0.9896906808

0.3 0.8581147160  0.9655639138  0.9663324513

0.4 0.8159938269  0.9328257670  0.9336072689

0.5 0.7657945036  0.8911282982  0.8919054816

0.6 0.7074524310 0.8397311733  0.8405694614

0.7 0.6404782622  0.7787328004 0.7797028588

0.8 0.5683453181  0.7102683321  0.7113601989

0.9 0.4903056104 0.6350338002  0.6363025241

1 0.4362719187 0.5570677486  0.5557721735

TABLE 4. Numerical results for Example 7.2 and k = 20 and
m = 30.
k=20
1.05
GHFs method

v 1IHIIII"H,,”I‘“HH// it IHEFs method |
-é o.95 | l”"’/:,,,”, g
g olest e 7
£ ol « 4
0'550 0.2 0.4 0.6 o.8 //1

FIGURE 3. Numerical results for Example 7.2 by GHFs and

IHF's methods with m=15.

7. CONCLUSION

In this paper, computational methods based on GHFs and ITHF's were proposed
to solve stochastic Volterra-Fredholm integral equation. Substituting the ap-
proximations of all known and unknown functions in the original equation and
applying operational matrices resulted in a linear system of algebraic equations

which were simply solved by mathematical softwares. Convergence and error
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1.05

GHFs method
i IHFs method |+

30
[n

0.95

o9

0.85

o8

0.75 | "o B
,

o7 o B

0.65 “ —

Approximate solutions for example 2 and m

0.6 %y —

0.55
o 0.2 0.4 0.6 0.8 a

FIGURE 4. Numerical results for Example 7.2 by GHFs and
THFs methods with m=30.

analysis of these two methods were investigated. According to the error anal-
ysis studied in Section 5, IHFs and GHFs rate of convergence are O(h*) and
O(h?) respectively. So, it can be concluded that IHFs is more accurate than
GHFs and BPFs.
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