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ABSTRACT. In this paper, by using the Euler-Maclaurin expansion for
the Riemann-( function, we establish an inequality of a weight coefficient.
Using this inequality, we derive a new reverse Hilbert’s type inequality.

As an applications, an equivalent form is obtained.
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1. INTRODUCTION
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where the constant ="+ and pq is best possible for each inequality respectively.

sin
Inequality (1.1) is Hardy—Hllbert s inequality. Inequality (1.2) is a Hilbert’s
type inequality [1].
In [5], [10] and [9], Krnic, Pecaric and Yang gave some generalization and
reinforcement of inequality (1.1). In [3], Kuang and Debnath gave a reinforce-
ment of inequality (1.2):
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where G(r,n g “” >0 (r=p,q).
() = 2L > 0 (r = pog)
In [6] and [7], Xi gave a generalization and reinforcement of inequalities (1.2)

and (1.3):
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For the reverse Hilbert’s type inequality, In [8] , Xi and Wang gave a reverse
Hilbert’s type inequality:

iil@ﬁw} g 2[,2(“) ] [Z b] (1.6)

In this paper, by introducing a parameter A and using the Euler-Maclaurin
expansion for the Riemann-( function, we establish an inequality of a weight
coefficient. Using this inequality, we derive a reverse of the Hilbert’s type
inequality (1.4).

2. A LEMMA

First, we need the following formula of the Riemann-¢ function (see [4], [12]
and [11]):
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where 0 > 0,0 #1,n, Il >1,n, 1€ N,0<e=¢(o,l,n) <1 The numbers
By =-1/2, B, =1/6, B3 =0, By = —1/30, --- are Bernoulli numbers. In

particular, ((o) =Y 77 7= (0 > 1).
Since ¢(0) = —1/2, then the formula of the Riemann-¢ function (2.1) is also
true for 0 =0 .

Lemma 2.1. If0<p<1, %+%:1,2—p<)\§2,n21 and n € N, then
= 1 n\ 27 qn 1=A
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where k(\) = Wm.

Proof. Equalities (2.2) and (2.3) define the weight coefficient. When 2 — p <
=1

A <2, taking o = % >0, ,in (2.1), we obtain

where 0 < g1 < 1.
Since%+%:2+izw>O(p+)\72>0). Taking o =
[l =1, we obtain
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Since %—&-% =2+%2 = 2‘1%‘_2 > 0(g+A—2<0,¢g <0). Taking 0 = %—&-%,
[ =1, we obtain
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where 0 < g3 < 1.
In addition,
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Using the last result and the inequality for w(n, A, ¢) above, we obtain (2.2).
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By (2.4) and (2.6)
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In (2.4), taking n =1, by 2 —p < A < 2, we obtain
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Using the last result and the inequality for w(n, A\, p) above, we obtain (2.3).
[l

3. MAIN RESULTS
Theorem 3.1. If0 < p < 1, %—l—%:l, 2—-p<A<2,a,>0,0b, >0, for
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where Ii()\) = W > 0.

Proof. By the reverse Holder ’s inequality [2], we have
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Since 0 < p < 1 and ¢ < 0. By (2.2), (2.3), we obtain (3.1). Theorem 3.1 is
proved. O

Theorem 3.2. If0<p<1,%Jr%:l,27p<)\§2,an20,bn20,f0r
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where H()\) W > 0.

Inequalities (3.2) and (3.1) are equivalent.

Proof. Let

q 1—q [ oo b q—1

1-X m
—(—2 —m | € N.
n (q—f—)\—?n ) le_:l max{m)‘,n*}] "

By (3.1), we have

n=1
0o ay a
b,
. mzzl max{m?*, n’\}> }
_ {i io: anan !
= X oA
=~ max{m* n*}
oo q-1 o)
q 1-X p} { [ (
Z n " "al K(A)
{n:l q+)\_2 n=1

Then we obtain



http://dx.doi.org/10.52547/ijmsi.17.2.87
https://ijmsi.ir/article-1-1421-en.html

[ Downloaded from ijmsi.ir on 2026-02-02 ]

[ DOI: 10.52547/ijmsi.17.2.87 ]

94 G. Xi

On the other-hand, by the reverse Holder ’s inequality [2], we have
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From (3.2), it follows that
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Then, (3.2) and (3.1) are equivalent. Theorem 3.2 is proved. d

In inequality (3.1), taking A = 2, we obtain:
Corollary 3.3. If0<p<1, %+ % =1l,a,>0,b, >0, forn>1néeN and
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