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Abstract. In a visual cryptography scheme, a secret image is encoded

into n shares, in the form of transparencies. The shares are then dis-

tributed to n participants. Qualified subsets of participants can recover

the secret image by superimposing their transparencies, but non-qualified

subsets of participants have no information about the secret image. Pixel

expansion, which represents the number of subpixels in the encoding of

the secret image, should be as small as possible. Optimal schemes are

those that have the minimum pixel expansion. In this paper we study the

pixel expansion of hypergraph access structures and introduce a number

of upper bounds on the pixel expansion of special kinds of access struc-

tures. Also we demonstrate the minimum pixel expansion of induced

matching hypergraph is sharp when every qualified subset is exactly one

edge with odd size. Furthermore we explain that the minimum pixel ex-

pansion of every graph access structure Pn is exactly �n+1
2

�. It indicates

the lower bound mentioned in [4] is sharp.
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1. Introduction

A visual cryptography scheme (VCS for short) for a set P of n participants
is a method to encode a secret image into n shadow images in the form of
transparencies, called shares, where each participant in P receives one share.
Certain subsets of participants, called qualified sets, can visually recover the
secret image, but other subsets of participants, called forbidden sets, have no
information on the secret image. This system can be used by anyone without
any knowledge of cryptography. A visual recovery for a set X ⊆ P consists of
superimposing the shares (transparencies) given to the participants in X . The
participants in a qualified set X will be able to see the secret image “visually”
and without performing any cryptographic computation. Forbidden sets of
participants will have no information on the secret image. This cryptographic
paradigm was introduced by Naor and Shamir [6]. They analyzed the case of
(k, n)-threshold VCS, in which a black and white secret image is visible if and
only if any k transparencies are stacked together. It should be noted that the
color white is actually the transparent color. In order to implement a visual
cryptography scheme, each pixel of the secret image is subdivided into a certain
number m of subpixels. Hence, there is a loss of resolution proportional to m.
The pixel expansion m is the most important measure of the goodness of a
scheme. Obviously, pixel expansion, which represents the number of subpixels
in the encoding of the original image, should be as small as possible. Optimal
schemes are those that have the minimum pixel expansion. Another important
measure for the goodness of a scheme is the contrast, which is a measure of the
quality of the reconstructed image; roughly speaking, the contrast tells us how
much the reconstructed image differs from the original one. Most of the work
done is focused on black and white VCS, where the secret image to be shared
is composed of black and white pixels. Several results on the contrast and the
pixel expansion of visual cryptography schemes can be found in [1, 2, 3, 5, 6, 7].

A lower bound has been introduced in [4], based on an induced matching
hypergraph of qualified sets, for the best pixel expansion of the aforementioned
model and the traditional model of visual cryptography scheme realized by
basis matrices. In this paper we apply the scheme mentioned in [6] in order to
construct our basis matrices for hypergraph access structure with the minimum
pixel expansion presented in [4]. It indicates the lower bound mentioned in [4]
is sharp.

Naor and Shamir in their seminal paper [6] provide a construction of black
and white (k, k)-threshold schemes with perfect reconstruction of black pixels
whose pixel expansion is 2k−1. We will apply such schemes in order to construct
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our basis matrices with the minimum pixel expansion for hypergraph access
structure.

First, we mention some of the definitions and notations which are referred
throughout the paper. Let P = {1, 2, . . . , n} be a set of elements called par-
ticipants and let 2P denote the set of all subsets of P . A family Q of subsets
of P is said to be monotone if for any A ∈ Q and any B ⊆ P such that
A ⊆ B, it holds that B ∈ Q. Let Q, F ⊂ 2P , where Q ∩ F = ∅, Q ∪ F = 2P .
The members of Q and F are referred to as qualified sets and forbidden sets,
respectively. Indicate the minimal qualified sets in Q by the basis access struc-
ture Q0. We call Γ = (P, Q, F ) the access structure of the scheme. Define a
graph access structure is an access structure in which the vertex set V (G) of
a graph G = (V (G), E(G)) is the set of participants, and the sets of qualified
participants are exactly those including an edge of G. We can define an access
structure G = (V (G), Q, F ) by specifying that the basis access structure is
Q0 = E(G).

Suppose that P = {1, 2, . . . , n} and Ei ⊆ P for every 1 ≤ i ≤ r. A hy-
pergraph access structure on P is a family H = (E1, E2, . . . , Er) of minimal
qualified subsets of P satisfying the first two properties:

(1) Ei �= ∅ 1 ≤ i ≤ r,

(2)
r⋃

i=1

Ei = P ,

(3) Ei ∩ Ej = ∅ for every i �= j.

Hypergraphs satisfying the third property as well will be called here induced
matchings of hypergraphs access structure. Let M be an n×m Boolean matrix
and denote the i-th row vector of M by Mi. Let Mi ◦ Mj be the bit-wise OR
of vectors Mi and Mj . Suppose X = {i1, i2, . . . , iq} is a subset of a partici-
pant set P = {1, 2, . . . , n}, and define M

X
= Mi1 ◦ Mi2 ◦ · · · ◦ Miq ; whereas

M [X ] = M [X ][{1, . . . , m}] denotes the |X | × m matrix obtained from M by
considering only the rows corresponding to participants in X . Indicate the
Hamming weight of row vector v by w(v).
A visual cryptography scheme (VCS) is a method to share an image secretly
among a given group of participants. If X is qualified then the participants in X

can visually recover the secret image SI by stacking their transparencies with-
out any cryptography knowledge and without performing any cryptographic
computation. If X is forbidden then its participants have no information on
SI. The simplest version of the visual cryptography assumes that the secret
image consists of a collection of black and white pixels. Each pixel appears in
n versions called shares, one for each transparency. Each share is a collection
of m black and white subpixels. The resulting structure can be described by
an n × m Boolean matrix M = [mij ] where mij = 1 if and only if j-th sub-
pixel in the i-th transparency is black. The resultant shares need to satisfy the
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properties of visual cryptography which will be explain in the next definition.
The conventional definition for VCS is as follows.

Definition 1.1. Let Γ = (P, Q, F ) be an access structure. Two basis matrices
S0 and S1 of n×m Boolean matrices constitute a (Γ, m)-VCS, if there exist a
value α(m) > 0, an integer number tX and a set {(X, tX)}X∈Q satisfying

(1) Any qualified set X = {i1, i2, . . . , iq} ∈ Q can recover the shared image
by stacking their transparencies. Formally, ω(S0

X) ≤ tX − α(m) · m;
whereas, ω(S1

X) ≥ tX .
(2) Any forbidden set X = {i1, i2, ..., iq} ∈ F has no information on the

shared image. Formally, the two q×m matrices obtained by restricting
S0 and S1 to rows i1, i2, . . . , iq are equal up to a column permutation.

The value m is called pixel expansion, the value α(m) is called contrast. The
first and second conditions are called contrast and security, respectively.

The best way to understand visual cryptography is by resorting to an ex-
ample.

Example 1.1. Suppose P = {1, 2, 3} and consider the access structure with
the basis access structure Q0 = {P}. This access structure is equivalent to a
3-out-of-3 threshold structure. The following basis matrices represent a VCS
for the access structure on the set of participants P with basis Q0.

S0 =


 1 1 0 0

1 0 1 0
0 1 1 0


 , S1 =


 1 1 0 0

1 0 1 0
1 0 0 1




In this scheme any pixel of the original image is encoded into four subpixels.
Any single share in either S0 or S1 is a random choice of two black and two
white subpixels, so the analysis of one or two shares (equal to a forbidden set
with one or two participants) makes it impossible to distinguish between S0

and S1. Three shares of a white pixel have a combined Hamming weight of 3,
whereas three shares of a black pixel have a combined Hamming weight of 4,
which looks darker. Then it is straightforward to verify that S0 and S1 are basis
matrices of a VCS for the basis access structure Q0. In this scheme, m = 4
and α(m) = 1/4.

For preventing from distort the aspect ratio of the original image, it is con-
venient to arrange the subpixels in a 2 × 2 array where each share has the
form depicted in Figure 1. These shares correspond to the rows of the basis
matrices S0 and S1, respectively. The subpixels are disposed in a clockwise
fashion starting from the upper-left corner of the 2 × 2 array. Clearly, to any
permutation of the columns of S0 and S1 will correspond a new rearrangement
of the subpixels into the 2 × 2 array.
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Encoding of a white pixel Encoding of a black pixel

Figure 1. Shares of the 2 out of 3 Threshold VCS

2. Hypergraph access structure

The pixel expansion m is the most important measure of the goodness of a
scheme. Obviously, pixel expansion which represents the number of subpixels
in the encoding of the secret image, should be as small as possible. Optimal
schemes are those that have the minimum pixel expansion. As is always the
case, we are interested in the minimum value m, for which a VCS with basis
matrices exists and we will use the notation m∗(Γ) to denote the minimum
expansion of basis matrices of Γ-VCS, this parameter called the best pixel ex-
pansion. In this paper we study the best pixel expansion of induced matching
hypergraph when the qualified subsets are edges with odd size. In addition, we
demonstrate the best pixel expansion of graph access structure P

n
is exactly

�n+1
2 �. This indicates the lower bound mentioned in [4] is sharp. For a given

access structure Γ = (P, Q, F ), a lower bound for the best pixel expansion has
been introduced in [4] as follows.

Theorem 2.1. ([4]) Let Γ = (P, Q, F ) be an access structure. If there exist

forbidden sets F1, F2, . . . , Ft and F ′
1, F

′
2, . . . , F

′
t such that

t⋃
i=1

Fi /∈ Q and for

every 1 ≤ i ≤ t, Fi ∪ F ′
i ∈ Q also for every j > i, Fj ∪ F ′

i �∈ Q. Then
m∗(Γ) ≥ t + 1.

A lower bound for the best pixel expansion of induced matching hypergraph
has been introduced in [4] as follows. The next Theorem follows directly from
the Theorem 2.1.

Theorem 2.2. ([4]) Let Γ = (P, Q, F ) be an access structure in which Q =

(E1, E2, . . . , Er) is an induced matching hypergraph. Then m∗(Γ) ≥
r∑

i=1

2|Ei|−1−
(r − 1).

Let rK2 be a hypergraph matching access structure on the set of 2r par-
ticipants with |Ei| = 2 for every 1 ≤ i ≤ r. The resulting graph is called the
matching graph access structure.
The following corollary is a special case of Theorem 2.2.
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Corollary 2.1. ([4]) Let rK2 be a matching graph access structure.
Then m∗(rK2) ≥ r + 1.

In 1995, Naor and Shamir [6] proposed the k-out-of-k visual cryptography
scheme with pixel expansion 2k−1 such that only k participants can visually
recover the secret through superimposing their transparencies. We apply their
scheme in order to construct our basis matrices for hypergraph access structure
with the best pixel expansion presented in [4]. Naor and Shamir [6] construction
mentions as follows.

Consider the set P = {p1 , p2 , . . . , p
k
} of k elements and let π1 , π2 , . . . , π2k−1

be a list of all the subsets of even size and let σ1 , σ2 , . . . , σ2k−1 be a list of all
the subsets of P with odd size (the order is not important). Each list defines
the following k × 2k−1 matrices S0 and S1. For 1 ≤ i ≤ k and 1 ≤ j ≤ 2k−1

let S0[i, j] = 1 if and only if pi ∈ πj and S1[i, j] = 1 if and only if pi ∈ σj .

Lemma 2.1. ([6]) The above scheme is a k-out-of-k scheme with parameters
m = 2k−1 and α(m) = 1/2k−1.

Now we present an experimental result for a special kind of matching graph
access structure which implies that the lower bound mentioned in Corollary 2.1
is sharp for this structure.

Corollary 2.2. The lower bound r+1 is sharp for the non-monotone matching
graph access structure in which any qualified subset is exactly one edge of rK2.

Proof. Suppose that P = {1, 2, . . . , 2r}, we construct 2r × (r + 1) basis ma-
trices for the access structure by induction on r. When r = 1 the matrices

S0 =
(

1 0
1 0

)
and S1 =

(
1 0
0 1

)
are basis matrices of access structure K2.

Assume that S′0 and S′1 are basis matrices of (r − 1)K2 scheme with pixel
expansion equal to r. Let

S0 =




0

S′0 ...
1 · · · 1 1 0
0 · · · 0 1 0


 , S1 =




0

S′1 ...
1 · · · 1 1 0
0 · · · 0 0 1




.

By considering that the last column of matrix S0 is entirely zero, it is easy
to check that matrices S0 and S1 are basis matrices with qualified set of par-
ticipants exactly equal to one edge of rK2. �

Now under the above construction, the next corollary follows directly from
the Corollary 2.1.
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Corollary 2.3. Let rK2 be a matching graph access structure in which any
qualified subset is exactly one edge of rK2. Then m∗(rK2) = r + 1.

Let Γ = (P, Q, F ) be an access structure in which Q = (E1, E2, . . . , Er) is an
induced matching hypergraph, where every Ei has odd size for every 1 ≤ i ≤ r.
Assume F = 2P \ {E1, E2, . . . , Er}, it means that this access structure is non-
monotone. Now we provide an upper bound for m∗(Γ), for this purpose, it is
enough to present one scheme by basis matrices with the pixel expansion equal

to
r∑

i=1

2|Ei|−1 − (r − 1), which specifies the exact value of m∗(Γ).

Corollary 2.4. Let Γ = (P, Q, F ) be a non-monotone access structure and Q =
(E1, E2, . . . , Er) is an induced matching hypergraph, in which every qualified

subset Ei has odd size for every 1 ≤ i ≤ r. Then m∗(Γ) =
r∑

i=1

2|Ei|−1 − (r−1).

Proof. Theorem 2.2 presents a lower bound for the best pixel expansion of Γ.
On the other hand the pixel expansion of every scheme for access structure Γ,
actually induces an upper bound for m∗(Γ). So it is enough to present one

scheme with the pixel expansion equal to
r∑

i=1

2|Ei|−1 − (r − 1), as an upper

bound for m∗(Γ). Let P = {p1 , p2 , . . . , pn
} be a finite set of participants and

Q = (E1, E2, . . . , Er) be an induced matching hypergraph in which every Ei

has odd size for every 1 ≤ i ≤ r. With applying the Naor and Shamir con-
struction [6], for every subset of participants Ei, there is a |Ei|-out-of-|Ei| visual
cryptography scheme with pixel expansion 2|Ei|−1 and basis matrices S0

Ei
and

S1
Ei

for every 1 ≤ i ≤ r. Now we put these S0
Ei

and S1
Ei

matrices as the main
diagonal arrays of matrices D′0 and D′1 respectively, and let the other arrays
be equal to 1. That is,

(1) D′j =




Sj
E1

1 · · · 1

1 Sj
E2

. . .
...

...
. . .

. . . 1
1 · · · 1 Sj

Er




for j ∈ {0, 1}.

So we have two n×
r∑

i=1

2|Ei|−1 matrices. According to the Naor and Shamir

construction every column of these matrices labeled by a subset of E1, . . . , Er,
since we can remove all of the columns corresponding to empty subsets from
matrix D′0 and remove all of the columns corresponding to sets Ei from matrix
D′1 for every 1 ≤ i ≤ r. Finally add a column with all the entries equal to 0 to
D′0 matrix for constructing D0 matrix, and add a column with all the entries
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equal to 1 to D′1 matrix for constructing D1 matrix. It is straightforward
to check that matrices D0 and D1 are basis matrices of induced matching
hypergraph access structure Q = (E1, E2, . . . , Er) with the pixel expansion

equal to
r∑

i=1

2|Ei|−1 − (r − 1) . Theorem 2.2 shows that this pixel expansion

of non-monotone induced matching hypergraph access structure is sharp when
the qualified subsets are E1, E2, . . . , Er with odd size.

�

Let P
n

is a path graph with the vertex set and the edge set equal to
{v1 , v2 , · · · , v

n
} and {{v

i
, v

i+1} | 1 ≤ i ≤ n − 1}, respectively. As a moti-
vation, consider the vertex set V (Pn) is the set of participants, such that all of
them stay in a queue and everybody is able to make a qualified set only with
before or after participant who stays beside him in the queue.

The following Theorem introduces an upper bound on the best pixel expan-
sion of path graph access structure. It shows the lower bound presented in
Theorem 2.1 is sharp.

Theorem 2.3. Let Pn be the graph access structure. Then m∗(Pn) = �n+1
2 �.

Proof. Assertion is clear for n = 1. Consider the graph access structure Pn , n ≥
2, with the vertex set {v1 , v2 , · · · , v

n
} and the edge set {{v

i
, v

i+1} | 1 ≤ i ≤
n−1}. Define F

i
= {v2i

} and F ′
i

= {v2i−1} for each 1 ≤ i ≤ 
n
2 �. It is easy to see

that F
i
’s and F ′

i
’s satisfy theorem 2.1, consequently m∗(P

n
) ≥ �n+1

2 �. Hence,
it is sufficient to present n× (�n+1

2 �) basis matrices of the access structure P
n
.

The n × (�n+1
2 �) basis matrices of the access structure Pn are constructed by

induction. Note that two matrices
(

0 1
0 1

)
and

(
0 1
1 0

)
are basis matrices

of access structure P2 . Assume S′0 and S′1 are basis matrices of Pn−1 scheme.
Basis matrices S0 and S1 of access structure P

n
are constructed according to

the parity n.

• If n is odd then construct S0 and S1 by concatenating row (0, 0, . . . , 0, 1),
as n-th row, to both of (n−1)×�n

2 � matrices S′0 and S′1, respectively.
• If n is even, set

U =




S′1
1,1

...
S′1

n−2,1

1


 , where S′1

i,1
is (i, 1) − entry of basic matrix S′1.

First, construct matrices S′′0 and S′′1 by concatenating the matrix
U to both of matrices S′0 and S′1, respectively, as �n+1

2 �-th column.
Finally, concatenate the matrices (0, . . . , 0, 1) and (1, 0, . . . , 0), as n-th
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row, to matrices S′′0 and S′′1, respectively. In fact, we have,

S0 =




S′1
1,1

S′0 ...
S′1

n−2,1

1
0 · · · 0 1




and S1 =




S′1
1,1

S′1 ...
S′1

n−2,1

1
1 · · · 0 0




.

It is straightforward to check that matrices S0 and S1 are basis matrices of
access structure of P

n
. �

Finally we present a construction for the basis matrices of induced matching
hypergraph Q = (E1, E2, . . . , E2r) in which E1, E2, . . . and Er are the qualified
subsets with odd size and Er+1, Er+2, . . . and E2r are the qualified subsets with
even size. Let the access structure is non- monotone.

Lemma 2.2. Let Γ = (P, Q, F ) be the above access structure with n partici-

pants. Then m∗(Γ) ≤
2r∑

i=1

2|Ei|−1 − r.

Proof. Construct two n×
2r∑

i=1

2|Ei|−1 matrices D′0 and D′1 with the same way

presented in the Equation 1 in corollary 2.4. Now remove the columns corre-
sponding to the sets Er+1, Er+2, . . . , E2r and E1, E2, . . . , Er from D′0 and D′1,
respectively. In fact we remove r number of same columns with entries equal
to 1 from these matrices. It is easy to check that the new matrices are basis

matrices of Γ with the pixel expansion equal to
2r∑

i=1

2|Ei|−1 − r. �

We close by presenting the following open problem for all of the induced
matching hypergraphs.

Conjecture: Let Γ = (P, Q, F ) be an access structure in which Q =

(E1, E2, . . . , Er) is an induced matching hypergraph. Then m∗(Γ) =
r∑

i=1

2|Ei|−1−
(r − 1).

Conclusion

Visual cryptography scheme is widely applied in cryptographic field. In this
article, we have given the upper bound for the best pixel expansion of special
kind of hypergraph access structure. This result presents a sharp bound for the
best pixel expansion of induced matching hypergraph, in which every qualified
subset is an edge with odd size, where the access structure is non-monotone.
Finally we have introduced the best pixel expansion of basis matrices of graph
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access structure P
n

and proved m∗(P
n
) = �n+1

2 �. This indicates the lower
bound mentioned in Theorem 2.1 is sharp. As a further remark, the conjecture
indicates that the lower bound referred in [4] is sharp for all induced matching
hypergraph access structures.
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