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Abstract. The QIF (Quadrant Interlocking Factorization) method of

Evans and Hatzopoulos solves linear equation systems using WZ factor-

ization. The WZ factorization can be faster than the LU factorization

because, it performs the simultaneous evaluation of two columns or two

rows. Here, we present a method for computing the real and integer WZ

and ZW factorizations by using the null space generators of some special

nested submatrices of a matrix A.
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1. Introduction

Linear systems arise frequently in scientific and engineering computing.

Various serial and parallel algorithms have been introduced for their serial so-

lution [9, 4]. The QIF (Quadrant Interlocking Factorization) algorithm, intro-

duced by Evans and Hatzopoulos, is a numerical method for finding a solution

for systems of the type Ax = b, where A is a nonsingular matrix of dimensions
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n × n, x is an unknown column vector, and b is the independent term vector

provided. The QIF method is based on the WZ factorization of the coefficient

matrix A. The main advantage of this factorization is that it presents a com-

plexity order less than of the LU decomposition due to the fact that it performs

the simultaneous evaluation of two columns or two rows. A detailed description

of this algorithm for real and complex matrices can be found in [4, 5, 10, 11].

Golpar-Raboky and Mahdavi-Amiri presented new algorithms for computing

the real and integer WZ and ZW matrix factorizations using ABS algorithms

and the extended rank reduction process [6, 7, 8, 16]. Recently, some authors

have considered simultaneous matrix decompositions [12, 13, 14].

The WZ factorization is used for solving Markovian linear systems [2] and

network modeling [3], preconditioning of sparse matrices [18] and eigenvalue

problems [15].

Let R and Rm×n stand for the real number, and the set of all m× n matrices

over R and AT denotes the transpose of A. Let A = (a1, · · · , am)T ∈ Rm×n.

Assume that aTk1
, · · · , aTki

be the rows of A and H1 ∈ Rn×n be an arbitrary

nonsingular matrix. For j = 1, · · · , i update Hj by

Hj+1 = Hj −
Hjakj

wT
j Hj

wT
j Hjakj

, (1.1)

where wj ∈ Rn such that wT
j Hjakj

6= 0. Then, we have

aTki
HT

j+1 = 0, i = 1, · · · , j, (1.2)

and the linear combination of the columns of HT
i+1 generates the null space of

{ak1
, · · · aki

} (see [1]).

Matrices Hi are generalizations of (oblique) projection matrices. They proba-

bly first appeared in a book by Wedderburn [19]. They have been named Ab-

bafians since the First International Conference on ABS methods(Luoyang,

China, 1991) and this name will be used here.

Notation: Let A ∈ Rn×n. Here and subsequently Jn = {j1, · · · , jn} denotes

a permutation of In = {1, 2, · · · , n} and, for k = 1, · · · , n, Jk = {j1, · · · , jk}
denotes a subset of Jn. Let

AJk
= (ai,j), i, j ∈ Jk. (1.3)

denotes a submatrix of A, and

J1 ⊂ J2 ⊂ · · · ⊂ Jn, (1.4)
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and {AJk
}nk=1 be a sequence of nested submatrices of A. The following theo-

rem describes a necessary and sufficient condition for nonsingularity AJk
, k =

1, · · · , n.

Theorem 1.1. (Nested submatrices) Let A ∈ Rn×n and H1 = I. Then the

nested submatrices AJi , i = 1, · · · , n, are nonsingular if and only if eTjiHiaji 6=
0, i = 1, · · · , n.

Proof. Follow the lines of the proof for Theorem 6.5 in [1] by replacing i to

ji. �

From (1.1) and Theorem 1.1 we have the following result.

Theorem 1.2. Let A ∈ Rn×n, H1 = I, and for i = 1, · · · , n, eTjiAHieji 6= 0.

Then,

Hi+1 = Hi −
Hiajie

T
ji
Hi

eTjiHiaji
, (1.5)

is well defined.

The parameter choices in Theorem 1.2, induce a structure in the matrix Hi,

described by the following theorem.

Theorem 1.3. Let the conditions of Theorem 1.2 be satisfied and Hi+1 defined

by (1.5). Then, the following properties hold:

(a) The jth row of Hi+1 is zero, for j ∈ Ji.

(b) The jth column of Hi+1 is equal to the jth column of H1, for j 6∈ Ji.

Proof. See Theorem 6.3 in [1]. �

In this paper we present new algorithms for computing the WZ and ZW

factorizations using null space of special submatrices of the matrix A.

The structure of this paper is organized as follows. In Section 2, we discuss

our proposed algorithm for the WZ factorization of a matrix A by using null

space of special submatrices of A. In Section 3, we propose a new algorithm for

computing the WZ and ZW factorizations. In Section 4, we report a numerical

experiment. We conclude in Section 5.

2. The WZ factorization

The WZ factorization is a parallel method for solving dense linear systems

of the form

Ax = b, (2.1)

where A is a square n× n matrix, and b is an n-vector.
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Definition 2.1. Let s be a real number and denote by bsc (dse), the greatest

(least) integer less (greater) than or equal to s.

Definition 2.2. We say that a matrix A is factorized in the form WZ if

A = WZ, (2.2)

where the matrices W and Z have the following structures:

W =


∗ 0 · · · 0 ∗
∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ 0 ∗ ∗
∗ 0 · · · 0 ∗

 , Z =


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0
... 0 ∗ 0

...

0 ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗

 (2.3)

where stars stand for possible nonzero entries.

The matrices W and Z have two zero opposite quadrants. Then, we refer to

W and Z as the interlocking quadrant factors of A. The factorization is unique

if W has 1′s on the main diagonal and 0′s on the cross diagonal entries(see [17]).

Now, we give a characterization for the existence of the WZ factorization of A.

Theorem 2.1. Let A ∈ Rn×n be a nonsingular matrix. A has quadrant inter-

locking factorization QIF, A=WZ, if and only if for every k, 1 ≤ k ≤ s, where

s = bn/2c if n is even and s = dn/2e if n is odd, the 2k × 2k submatrix

∆k =



a1,1 · · · a1,k a1,n−k+1 · · · a1,n
... · · ·

...
... · · ·

...

ak,1 · · · ak,k ak,n−k+1 · · · ak,n
an−k+1,1 · · · an−k+1,k an−k+1,n−k+1 · · · an−k+1,n

... · · ·
...

... · · ·
...

an,1 · · · an,k an,n−k+1 · · · an,n


(2.4)

of A is invertible. Moreover, the factorization is unique.

Proof. See Theorem 2 in [17]. �

If A ∈ Rn×n is nonsingular, then the WZ factorization with pivoting can

always be carried out. Whenever ∆k is nonsingular, it is always possible to

interchange the rows k ≤ i ≤ (n−k+1). These row interchanges can be viewed

in a matrix form as premultiplication by a permutation matrix. Thus, we have

the following result.

Theorem 2.2. If A ∈ Rn×n is nonsingular, then the with pivoting WZ factor-

ization can always be carried out, that is, a row permutation matrix P and the

factors W and Z exist so that, PA = WZ.
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Proof. See [17]. �

Let A ∈ Rn×n and there exists a WZ factorization without pivoting of A.

Let, n be an even number. Here, we present a new algorithm for computing

the WZ factorization of A using null space of the sequence submatrices

∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆n/2. (2.5)

For k = 1, · · · , s, where s =
n

2
consider ∆k defined by (2.4). Let, the rows of

Hk generate the null space of ∆k expect the kth and the (k+1)th rows. Let

ej ∈ R2k be the jth unit vector, then we have,

eTi ∆kHk
T = 0, i 6= k, k + 1, (2.6)

and

(eTk , e
T
k+1)∆kHk

T 6= 0. (2.7)

Therefore, there exist 1 ≤ j1, j2 ≤ 2k such that,

α1 = eTj1Hk∆T
k ek 6= 0, α2 = eTj2Hk∆T

k ek+1 6= 0. (2.8)

Let Tk = (t1, · · · , t2k) = Hk
T ej1/α1 ∈ R2k and Yk = (y1, · · · , y2k) =

Hk
T ej2/α2 ∈ R2k. Then, we have

∆kTk = (0...0︸︷︷︸
k−1

, 1, 0, ..., 0︸ ︷︷ ︸
k

)T , ∆kYk = (0...0︸︷︷︸
k

, 1, 0, ..., 0︸ ︷︷ ︸
k−1

)T . (2.9)

Now, let

z̄k = (t1, · · · , tk, 0, · · · , 0︸ ︷︷ ︸
n−2k

, tk+1, · · · , t2k)T , (2.10)

and

z̄n−k+1 = (y1, · · · , yk, 0, · · · , 0︸ ︷︷ ︸
n−2k

, yk+1, · · · , y2k)T , (2.11)

then, we have

wk = Az̄k = (0, · · · , 0︸ ︷︷ ︸
k−1

, 1, wk+1,k, · · · , wn−k,k, 0, · · · , 0︸ ︷︷ ︸
k

)T (2.12)

and

wn−k+1 = Az̄n−k+1 = (0, · · · , 0︸ ︷︷ ︸
k

, wk+1,n−k+1, · · · , wn−k,n−k+1, 1, 0, · · · , 0︸ ︷︷ ︸
k−1

)T .

(2.13)

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

7.
1.

71
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
25

-0
6-

07
 ]

 

                             5 / 13

http://dx.doi.org/10.52547/ijmsi.17.1.71
https://ijmsi.ir/article-1-1358-en.html


76 E. Babolian, E. Golpar-Raboky

Z̃ = (z̄1, · · · , z̄n), W = (w1, · · · , wn), (2.14)

then, we have,

AZ̄ = W ⇒ A = WZ, Z = Z̄−1.

Here, we are ready to present the WZ algorithm. Without loss of general-

ity we assume that A is an even order matrix.

Algorithm 1. WZ algorithm

(1) Let A(0) = A, k = 1, s = n/2.

(2) Compute Pk, A(k) = PkA
(k−1) where, Pk is a permutation matrix and

∆k is nonsingular.

(3) Compute Hk
k , so that the rows of Hk

k present the null space of the rows of

∆k except the kth and (k + 1)th rows.

(4) Determine 1 ≤ j1, j2 ≤ 2k such that,

α1 = eTj1HkΛT
k ek 6= 0, α2 = eTj2HkΛT

k ek+1 6= 0. (2.15)

(5) Compute,

Tk = (t1, · · · , t2k) = Hk
T ej1/α1 and Yk = (y1, · · · , y2k) = Hk

T ej2/α2.

(6) Compute,

z̄k = (t1, · · · , tk, 0, · · · , 0︸ ︷︷ ︸
n−2k

, tk+1, · · · , t2k)T , (2.16)

and

z̄n−k+1 = (y1, · · · , yk, 0, · · · , 0︸ ︷︷ ︸
n−2k

, yk+1, · · · , y2k)T , (2.17)

(7) If k < s then k=k+1 and go to (2).

(8) Compute

PA = WZ,
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On the WZ Factorization of the Real and Integer Matrices 77

where, P = Ps · · ·P1, Z̄ = (z̄1, · · · , z̄n), W = PAZ̄ and Z = Z̄−1.

(9) Stop.

The integer WZ factorization of an integer matrix, can be calculated as the

real case if it exists. Here, we present the conditions for existence of the integer

WZ factorization of an integer matrix.

Definition 2.3. A ∈ Zn×n is a unimodular matrix if and only if |det(A)| = 1.

If A is unimodular, then A−1 is also unimodular.

Definition 2.4. We say that a matrix A is factorized in an integer WZ form

if

A = WZ, (2.18)

where the matrices W and Z are matrices with integer entries defined by (2.3).

According to Theorem 2.1, we have the following result.

Theorem 2.3. Let A ∈ Zn×n and the submatrices ∆k defined by (2.4) be

unimodular, then A has an integer WZ factorization.

For computing an integer WZ factorization (if there exits), in the kth step Hk

generates the integer null space of ∆k expect the kth and the (k + 1)th rows.

Furthermore, in (2.8) we choose two integer vectors j1 and j2 such that

α1 = eTj1Hk∆T
k ek = gcd(Hk∆T

k ek), α2 = eTj2Hk∆T
k ek+1 = gcd(Hk∆T

k ek+1),

(2.19)

where, gcd(x) is the greatest common divisor of entries of x.

Definition 2.5. A matrix A ∈ Zn×n is called totally unimodular if each square

submatrix of A has determinant equal to 0, +1, or −1. In particular, each entry

of a totally unimodular matrix is 0, +1, or −1.

Corollary 2.1. Every totally unimodular symmetric positive definite matrix

has an integer WZ factorization.

3. The ZW factorization

Definition 3.1. We say that a matrix A is factorized in the form ZW if

A = ZW, (3.1)

where the matrices W and Z are defined as (2.3)

where the empty bullets stand for zero and the other bullets stand for possible

nonzero entries.

The factorization is unique if Z has 1′s on the main diagonal and 0′s on the
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cross diagonal.

Without loss of generality, suppose that n be an even number and s = n
2 .

Here, we present a new algorithm for computing the ZW factorization of A

using null space of the sequence of submatrices

Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn/2 (3.2)

where

Λk =

as−k+1,s−k+1 · · · as−k+1,s+k

... · · ·
...

as+k,s−k+1 · · · as+k,s+k


2k,2k

. (3.3)

Theorem 3.1. Let A ∈ Rn×n be a nonsingular matrix. A has a ZW factor-

ization, if and only if for every k, 1 ≤ k ≤ n/2, the submatrix Λk defined by

(3.3) be invertible.

Proof. The proof follows the lines of the proof for Theorem 2 in [17] replacing

∆i by Λi. �

Let Λk be nonsingular, for k = 1, · · · , n/2. Let, the rows of Hk generates the

null space of Λk expect the first and the last rows. Let ei ∈ R2k be the ith unit

vector (i.e. the ith element is 1, otherwise 0). Then, we have,

eTi ΛkHk
T = 0, i 6= 1, 2k, (eT1 , e

T
2k)ΛkHk

T 6= 0, (3.4)

then there exists 1 ≤ j1, j2 ≤ 2k such that,

α1 = eTj1HkΛT
k e1 6= 0, α2 = eTj2HkΛT

k e2k 6= 0. (3.5)

Let Tk = (t1, · · · , t2k) = Hk
T ej1/α1 and Yk = (y1, · · · , y2k) = Hk

T ej2/α2.

Then, we have

Λkt = (1, 0...0︸︷︷︸
2k−1

)T , Λky = (0...0︸︷︷︸
2k−1

, 1)T . (3.6)

Now, let

w̄n
2−k+1 = (0, · · · , 0︸ ︷︷ ︸

(n−2k)/2

, t1, · · · , t2k, 0, · · · , 0︸ ︷︷ ︸
(n−2k)/2

)T , (3.7)

and

w̄n
2 +k = (0, · · · , 0︸ ︷︷ ︸

(n−2k)/2

, y1, · · · , y2k, 0, · · · , 0︸ ︷︷ ︸
(n−2k)/2

)T , (3.8)
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then, we have

zn
2−k+1 = Aw̄n

2−k+1 =

(z1,n2−k+1, · · · , z (n−2k)
2 ,n2−k+1

, 1, 0, · · · , 0︸ ︷︷ ︸
2k−1

, z (n+2k)
2 +1,n2−k+1

, · · · , zn,n2−k+1)T

(3.9)

and

zn
2 +k = Aw̄n

2 +k =

(z1,n2 +k, · · · , z (n−2k)
2 ,n2 +k

, 0, · · · , 0︸ ︷︷ ︸
2k−1

, 1, z (n+2k)
2 +1,n2 +k

, · · · , zn,n2 +k)T . (3.10)

W̄ = (w̄1, · · · , w̄n), Z = (z1, · · · , zn),

then, we have,

AW̄ = Z ⇒ A = ZW, W = W̄−1

Here, we are ready to present the ZW algorithm. Without loss of general-

ity we assume that A is an even order matrix.

Algorithm 2. ZW algorithm

(1) Let A(0) = A, k = 1, s = n/2.

(2) Compute Pk, A(k) = PkA
(k−1) where, Pk is a permutation matrix and

Λk is nonsingular.

(3) Let the rows of Hk generate the null space of Λk expect the first and

the last rows.

(4) Determine 1 ≤ j1, j2 ≤ 2k such that,

α1 = eTj1HkΛT
k e1 6= 0, α2 = eTj2HkΛT

k e2k 6= 0. (3.11)

(5) Compute,

Tk = (t1, · · · , t2k) = Hk
T ej1/α1 and Yk = (y1, · · · , y2k) = Hk

T ej2/α2.

(6) Compute,

w̄n
2−k+1 = (0, · · · , 0︸ ︷︷ ︸

(n−2k)/2

, t1, · · · , t2k, 0, · · · , 0︸ ︷︷ ︸
(n−2k)/2

)T , (3.12)
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and

w̄n
2 +k = (0, · · · , 0︸ ︷︷ ︸

(n−2k)/2

, y1, · · · , y2k, 0, · · · , 0︸ ︷︷ ︸
(n−2k)/2

)T , (3.13)

(7) If k < s then k=k+1 and go to (2).

(8) Compute

PA = ZW,

where, P = Ps · · ·P1, W̄ = (w̄1, · · · , w̄n), Z = PAW̄ and W = W̄−1.

(9) Stop.

We can also calculate the integer ZW factorization of an integer matrix A.

The existence conditions are the same as Theorem 2.3 by replacing ∆ by Λ.

Theorem 3.2. Let A ∈ Zn×n and the submatrices Λk be unimodular, then A

has an integer ZW factorization.

For computing an integer ZW factorization (if there exits), in the kth step

Hk generates the integer null space of Λk expect the first and the last rows.

Furthermore, in (3.5) we choose two integer vectors j1 and j2 such that

α1 = eTj1HkΛT
k e1 = gcd(HkΛT

k e1), α2 = eTj2HkΛT
k e2k = gcd(HkΛT

k e2k). (3.14)

Corollary 3.1. Every totally unimodular symmetric positive definite matrix

has an integer ZW factorization.

4. Examples

In this section, we present some numerical illustrations of our proposed

algorithms to compute the WZ and ZW factorizations of real and integer

matrices.

Example 4.1. Consider the following matrix,

A =


5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

 .
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Upon an application of Algorithm 1 for computing the WZ factorization, we

obtain the following results:

W =


1 0 0 0

0.7895 1 0 0.0526

0.1053 0 1 0.4737

0 0 0 1

 , Z =


5 4 1 1

0 1.7895 0.1053 0

0 0.1053 2.9474 0

1 1 2 4

 .

Example 4.2. Consider the following matrix

A =



1 3 1.5 2 2.5 2.5

3 3 3.5 2.5 3 2.5

1.5 3.5 1 2.5 2 2.5

2 2.5 2.5 4 1.5 3

2.5 3 2 1.5 2 2.5

2.5 2.5 2.5 3 2.5 1

.


By applying Algorithm 2 for computing the ZW factorization we have

Z =



1 0.3219 1.5 0.5 0.6452 −0.8439

0 1 3.5 0.6250 1.6613 0

0 0 1 0.6250 0 0

0 0 2.5 1 0 0

0 0.7055 2 0.3750 1 0

−1.5774 0.3425 2.5000 0.7500 0.7419 1.0000


,

and

W =



−0.4855 0 0 0 0 0

6.2826 8.1111 0 0 0 8.5331

−0.4444 −3.4444 1 0 −1.8889 −1.1111

3.1111 11.1111 0 4 6.2222 5.7778

−2.2100 0 0 0 3.4444 −3.4644

0 0 0 0 0 −0.9075


.

Example 4.3. Consider the following integer real matrix

A =



1 0 −1 1 −1 −1

0 2 0 3 1 1

−1 0 5 −1 7 2

1 3 −1 8 2 1

−1 1 7 2 15 4

−1 1 2 1 4 2


.

Upon an application of Algorithm 1 for computing the integer WZ factoriza-

tion, we obtain the following results:
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W =



1 0 0 0 0 0

0 1 0 0 0 1

−1 −1 1 0 1 1

1 1 0 1 −1 2

−1 −2 0 0 1 3

−1 0 0 0 0 1


, Z =



1 0 −1 1 −1 −1

0 1 −1 1 −2 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 −1 1 0

0 1 1 2 3 1


.

Example 4.4. Consider the following matrix

A =



5 4 −1 1 −3 −2

4 7 −1 1 −4 0

−1 −1 1 0 1 1

1 1 0 1 −1 0

−3 −4 1 −1 3 1

−2 0 1 0 1 3


.

By applying Algorithm 2 for computing the integer ZW factorization we have

Z =



1 0 −1 1 −1 −1

0 1 −1 1 −2 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 −1 1 0

0 1 1 0 0 1


, W =



1 0 0 0 0 0

0 1 0 0 0 1

−1 −1 1 0 1 1

1 1 0 1 −1 0

−1 −2 0 0 1 0

−1 0 0 0 0 1


.

5. Conclusion

Parallel implicit matrix elimination schemes for the solution of linear sys-

tems were introduced by Evans. In this paper we showed how to compute the

real (integer) WZ and ZW factorizations by using the null space generators of

particular submatrices of a given matrix A.

Acknowledgments

The authors would like to thank the reviewers for their thoughtful comments

and efforts towards improving our manuscript.

References

1. J. Abaffy, E. Spedicato, ABS Projection Algorithms, Mathematical Techniques for Linear

and Nonlinear Equations, Prentice-Hall, 1989.

2. B. Bylina, The Inverse Iteration with the WZ Factorization Used to the Markovian

Models, Annales UMCS Informatica AI, 2, (2004), 15-23

3. B. Bylina, J. Bylina, Solving Markov Chains with the WZ Factorization for Modelling

Networks., Proceedings of Aplimat 2004, Bratislava, 307-312.

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

7.
1.

71
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
25

-0
6-

07
 ]

 

                            12 / 13

http://dx.doi.org/10.52547/ijmsi.17.1.71
https://ijmsi.ir/article-1-1358-en.html


On the WZ Factorization of the Real and Integer Matrices 83

4. D. J. Evans, 17 Parallel Numerical Algorithms for Linear Systems , in: Parallel Processing

Systems: An Advanced Course, (1982), 357.

5. D. J. Evans, Implicit Matrix Elimination Schemes, International Journal of Computer

Mathematics, 48, (1993), 229-237.

6. E. Golpar-Raboky, ABS Algorithms for Integer WZ Factorization, Malaysian journal of

mathematical sciences, 8(1), (2014), 69-85.

7. E. Golpar-Raboky, N. Mahdavi-Amiri, A New Interpretation of the Integer and Real

WZ Factorization Using Block Scaled ABS Algorithms, STATISTICS,OPTIMIZATION

AND INFORMATION COMPUTING, 2(3), (2014), 243-256.

8. E. Golpar-Raboky, N. Mahdavi-Amiri, WZ Factorization via Abaffy-Broyden-Spedicato

Algorithms, Bulletin of the Iranian Mathematical Society, 40(2), (2014), 399-411.

9. G. H. Golub, C. F. Van Loan, Matrix Computations, John Hopkins University Press,

2013.

10. D. J. Evans, M. Hatzopoulos, The Solution of Certain Banded Systems of Linear Equa-

tions Using the Folding Algorithm, The Computer Journal, 19(2), (1976), 184-186.

11. D. J. Evans, M. Hatzopoulos, A Parallel Linear System Solver, International Journal

of Computer Mathematics, 7(3), (1979), 227-238.

12. Z. H. He, O. M. Agudelo, Q. W. Wang, B. De Moor, Two-sided Coupled Generalized

Sylvester Matrix Equations Solving Using a Simultaneous Decomposition for Fifteen

Matrices, Linear Algebra and its Applications, 496, (2016), 549-593.

13. Z. H. He, Q. W. Wang, Y. Zhang, Simultaneous Decomposition of Quaternion Matrices

Involving η-Hermicity with Applications, Applied Mathematics and Computation,, 298,

(2017), 13-35.

14. Z. H. He, Q. W. Wang, Y. Zhang, The Complete Equivalence Canonical Form of Four

Matrices Over an Arbitrary Division Ring, Linear and Multilinear Algebra, 66(1), (2018),

74-95.

15. S. Li, G. Zhou, D.Chen, The WZ Algorithm for the Eigenvalue Problem of Complex

Matrix, Applied Mathematics and Computation, 165(2), (2005), 347-353

16. N. Mahdavi-Amiri, E. Golpar-Raboky, Real and Integer Wedderburn Rank Reduction

Formulas for Matrix Decompositions, Optimization methods and software, 30(4), (2015),

864-879.

17. S. C. S. Rao, Existence and Uniqueness of WZ Factorization, Parallel Computing, 23(8),

(1997), 1129-1139.

18. S. C. S. Rao, R.kamara, A Hybrid Parallel Algorithm for Large Sparse Linear Systems,

Numerical Linear Algebra with Applications, 25(6), (2018) pe2210.

19. J. H. M. Wedderburn, Lectures on Matrices, Colloquium Publications, American Math-

ematical Society, New York, 1934.

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

7.
1.

71
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
25

-0
6-

07
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            13 / 13

http://dx.doi.org/10.52547/ijmsi.17.1.71
https://ijmsi.ir/article-1-1358-en.html
http://www.tcpdf.org

