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Abstract. Our main interest in the present article is to consider a frac-

tional program with both linear and quadratic equation in numerator and

denominator with second order cone (SOC) constraints. With a suitable

change of variable, we transform the problem into a second order cone

programming (SOCP) problem. For the quadratic fractional case, using

a relaxation, then the problem is reduced to a semi-definite optimiza-

tion (SDO) ) program. The problem is solved with SDO relaxation and

the obtained results are compared with the interior point method (IPM),

sequential quadratic programming approach (SQP), active set, genetic

algorithm. It is observe that the SDO relaxation method is much more

accurate and faster than the other methods. Finally, two numerical ex-

amples are given to demonstrate the procedure for the proposed method

to guarantee the approach.
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1. Introduction

In the past few decades, fractional programming problems have attracted

the interests of many investigators due to their applications in real physical

world such as finance, production planning, electronics, etc. Fractional pro-

gramming is being used for modelling a real life problem involving one or more

objective(s) such as actual cost/standard cost, inventory/sales and profit/cost.

There are different algorithms for determining the solutions of particular kinds

of fractional programming problems. For example, Charnes and Cooper [2]

converted a linear fractional program (LFP) to a linear program (LP) by a

variable transformation technique. Tantawy [3] proposed an iterative method

based on a conjugate gradient projection approach. Dinkelbach [6] considered

the same objective over a convex feasible set and solved the problem by means

of a sequence of nonlinear convex programming problems.

On the other hand second order cone programming (SOCP) problems are con-

vex optimization problems in which a linear function is minimized over the

intersection of an affine linear manifold with the Cartesian product of sec-

ond order (Lorentz) cones. Linear programs, convex quadratic programs and

quadratically constrained convex quadratic programs can all be formulated as

SOCP problems. Other problems not falling into these three categories can be

seen in [7, 9].

Lobo et al. [7] disscused several applications of SOCP in engineering. Nes-

terov and Nemirovski [4] and Lobo et al. [7, 8] showed that many kinds of

problems can be formulated as SOCPs, such as filter design, truss design, an-

tenna array weight design, grasping force optimization in robotics and more.

In a pioneering paper, Nesterov and Nemirovski [4] applied the concept of self-

concordant barrier to SOCP problems and for the problems with m second

order cone inequalities the interior point algorithm for SOCP has an iteration

complexity of
√
m.

Alizadeh and Goldfarb [9] discussed and over-viewed a large class of SOCP

problems, in which they considered the logarithmic barrier function and equa-

tions defining the central path for an SOCP problem with a and primal-dual

path following interior point method (IPM) for its solution.

Salahi et al. [10] investigated a fractional optimization programming prob-

lem minimizing the ratio of two quadratic functions. The author showed that

under certain assumptions, the problem can be solved to yield a global optimal

solution using semi-definite optimization (SDO) relaxation in polynomial time.

Kim and Kojima [1] showed that SDP and SOCP relaxations provide exact

optimal solutions for a class of non-convex quadratic optimization problems.

Few example were considered in [5, 10, 11, 12]. For instance, total least

squares (TLS), is used in a variety of disciplines such as signal processing,
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statistics, physics, economic, biology and medicine requiring the following frac-

tional problem to be solved [6, 10]:

Min
‖ Ax− b ‖2
1+ ‖ x ‖2

Some Farkas-type results for a fractional programming problem by using the

properties of dualizing parameterization function, Lagrangian function, and the

epigraph of the conjugate functions is due to Xiang-Kai Sun and et. al [13], in

which they have introduced some new notion of regularity conditions to obtain

dual form of the Farkas-type results.

The problem of Some characterization of robust optimal solutions for uncertain

fractional optimization and applications is due to Xian-Kai -Sun and et. al [14].

A good result on using closeness condition to obtain some Farka’s type results

for a constrained fractional programming problem with Dc functions is studied

by Xiang-Kai Sun and et. al [15].

The rest of our work is organized as follows. In Section 2, we introduce

fractional programming problem involving second order cone constraints and

then transform the problem to a second order cone programming problem by a

variable transformation technique in such a way that the problem size remains

the same.

In Section 3, we use the extended Charnes-Cooper transformation to represent

a homogenized quadratic optimization problem with two quadratic constraints.

In Section 4, a semi-definite optimization (SDO) is used relaxation for solving

the semi-definite optimization problem. There, we show that under certain

assumptions on the SDO relaxation, the global optimal solution can be found

in polynomial time. In Section 5, some numerical examples are worked through.

A conclusion is provided in Section 6.

2. Linear Fractional Programming Problem with Second Order

Cone Constraint

A linear fractional programming problem is defined as follows:

(P1) : Max F (x) =
cTx+ α

dTx+ β

Ax ≤ b,

x ≥ 0,

where x = (x1, x2, ..., xn)
T ∈ Rn, c = (c1, c2, ..., cn) ∈ Rn, and α and β are

given real numbers, A is an m× n matrix, c, d ∈ Rn, and b ∈ Rm. The above

fractional programming problem can easily be solved by a suitable transforma-

tion as by Charnes and Cooper [2].
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Now, consider the above fractional program with an additional second order

cone (SOC) constraint

(P1) : Max F (x) =
cTx+ α

dTx+ β

Ax ≤ b,

x ∈ Qn.

where

Qn = {x = (x0;x) ∈ Rn : x0 ≥‖ x ‖},

It is assumed that the feasible set is a bounded and closed set and thus

compact. Moreover, dTx+ β > 0.

If we assume β 6= 0, then (P1) can be written as

(P2) : Max G(y) = (cT − α

β
dT )

x

dTx+ β
+

α

β

(A+
b

β
dT )

x

dTx+ β
≤ b

β
,

x

dTx+ β
∈ Qn.

If y = x
dT x+β

≥ 0, then (P2) can be reformulated as

(P3) : Max G(y) = (cT − α

β
dT )y +

α

β

(A+
b

β
dT )y ≤ b

β
,

y ∈ Qn.

Now, the above programming can be written as

(P4) : Max G(y) = pT y +
α

β

Gy ≤ g,

y ∈ Qn,
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where

pT = cT − α

β
dT

G = A+
b

β
dT

g =
b

β

x = β
y

1− dT y
(1)

The following result is immediately at hand.

Theorem 2.1. If x ∈ Qn, then y = x
dT x+β

∈ Qn.

Proof. Since x ∈ Qn, we have x0 ≥‖ x ‖, which yields

x0

dTx+ β
≥ ‖ x ‖

dTx+ β
,

giving y0 ≥‖ y ‖ and y ∈ Qn. �

3. Quadratic Fractional Programming Problem with Second

Order Cone Constraint

In this section, we consider a quadratic fractional programming problem

with second order cone constraint

(P5) : Min F (x) =
f(x)

g(x)

‖ Ax+ b ‖≤ cTx+ d,

where

f(x) = xTA1x+ bT1 x+ c1, g(x) = xTA2x+ bT2 x+ c2.

The above constraint can be rewritten as

xTA3x+ bT3 x+ c3 ≤ 0,

where

A3 = ATA− ccT , b3 = 2bTA− 2dT cT , c3 = bT b− dT d,

with Ai = AT
i , , bi ∈ Rn×n, ci ∈ R, i = 1, 2, 3. Also, the Ai’s are positive

semi-definite matrices and xTA2x+ bT2 x+ c2 > 0.

Using the well-known Charnes-Cooper transformation, we show that (P5)

has an inherent hidden homogeneity and thus semi-definite relaxation technique
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can be applied

Using the generalized Charnes-Cooper transformation, we have

z =
1

√

xTA2x+ bT2 x+ c2
,

and

y =
x

√

xTA2x+ bT2 x+ c2
,

Then problem (P5) is reduced to the following equivalent minimization prob-

lem:

(P6) : Min F (x) = yTA1y + bT1 yz + c1z
2

yTA2y + bT2 yz + c2z
2 = 1,

yTA3y + bT3 yz + c3z
2 ≤ 0

z 6= 0.

4. Semi-definite Optimization (SDO) Relaxation

Here, we provide, an SDO relaxation approach to solve (P6) globally. Prob-

lem (P6) in the matrix form is given by

(P7) : Min M0 • X̂
M1 • X̂ = 1,

M2 • X̂ ≤ 0,

where

M0 =

(

c1
bT
1

2
b1
2 A1

)

,

M1 =

(

bT b− dT d
(2bTA−2dT cT )T

2
2bTA−2dT cT

2 A2

)

,

and

M2 =

(

c3
bT
3

2
b3
2 A3

)

,

A •B = Tr(ATB), X̂ =

(

z2 yT z

yz yyT

)

.
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The semi-defnite optimization relaxation of (P6) is given by

(P8) : Min M0 • X̂
M1 • X̂ = 1,

M2 • X̂ ≤ 0,

X � 0(n+1)×(n+1),

in which the dimensions of y, z are the same as (P6) and also

X =

(

X00 xT
0

x0 X̂

)

.

Proposition 4.1. Both (P8) and (P9) satisfy the Slater’s regularity condi-

tions. Hence both problems attain their optimal values and the duality gap is

zero.

Proposition 4.2. SDO relaxation (P8) gives a global optimal solution of (P6)

in a polynomial time.

5. Numerical Results

Here, two examples are worked through using different methods. We use

fmincon command and optimization toolbox of MATLAB. All computations

are performed on MATLAB R2015a (8.5) using a laptop with Intel(R) Core i3

CPU 2.53 GHz and 5.00 GB of RAM.

Consider the following two simple fractional programs as (P2) and (P5).

Example 5.1. Consider the following linear fractional program:

Max z =
x1 + x2 + 2

x1 + 1
x1 + x2 ≤ 4,

−x1 + 2x2 ≤ 2.

x ∈ Q2,

where cT = (1, 1), dT = (1, 0), α = 2 and β = 1. The optimal solution is

x∗ = (−.667, .667), with z∗ = 6. The above problem can be rewritten as a

linear programming model using the Charnes-Cooper technique as follows:
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Max w = −y1 + y2 + 2

5y1 + y2 ≤ 4,

y1 + 2y2 ≤ 2,

y ∈ Q2.

The optimal solution for this problem is obtained to be y∗ = (−2, 2), with

w∗ = 6 which can be considered as an equivalent SOCP with exactly the same

dimension as the original fractional programming problem with a second order

cone constraint.

Furthermore, the dual problem of this SOCP is obtained to be

Min H(u) = 4u1 + 2u2

5u1 + u2 + z1 = −1,

u1 + 2u2 + z2 = 1,

z ∈ Q2.

Example 5.2. Consider the following quadratic fractional programming prob-

lem

Min
−x2

1 − 1

x2
2 + 1

−x1 + x2 ≤ 1

x2 ≤ 2

x1 + 2x2 ≤ 5

x ∈ Q2

The solutions obtained by different approaches are summarised in Table 1,

Table 1. The Comparision of Methods

Method Objective function value Number of iterations

Interior point method -.99999999999998026 32

SQP .99999990463122402 10

Active set -.9999990463120583 10

Genetic algorithm -1.0002471385939868 3

SDO relaxation -1 -
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the above optimization techniques are provided in MATLAB toolbox soft-

ware.

Where

M0 =





−1 0 0

0 −1 0

0 0 0



 ,

M1 =





1 0 0

0 −1 0

0 0 1



 ,

M2 =





−1 −1 1

−1 −1 1

1 1 −1



 ,

M3 =





−1 0 0

0 −1 0

0 0 0



 ,

M4 =





−1 0 0

0 −1 0

0 0 0



 ,

M5 =





−1 0 0

0 −1 0

0 0 0



 ,

Where Mi’s, i = 1, 2, ..., 5 are the values which can be obtained through the

Sections 3 and 4.

6. Conclusion

We considered a new fractional programming problem involving a second

order cone constraint. We showed how to transform the problem into a sec-

ond order cone programming (SOCP) problem and obtained the solution of

the original problem by solving the SOCP problem. We solved the problem

on using a semi-definite optimization relaxation and the result was compared

with the other methods such as interior point method, SQP, Active set, Ge-

netic algorithm. The results were summarized in a table, and we pointed out

that the SDO relaxation is much more accurate and faster in time than the

other methods. Finally We worked through numerical examples to illustrate
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the methodology and the efficiency of our approach with solving linear and

nonlinear fractional programming problems.

Acknowledgement

We are very grateful to the anonymous referees for the valuable suggestions

and comments.

References

1. S. Kim, M. Kojima, Exact solutions of some nonconvex quadratic optimization prob-

lems via SDP and SOCP relaxations, Computational optimization and applications, 26,

(2003), 143-154.

2. A. Charnes, WW. Cooper, Programs with linear fractional functions, Naval Research

Logistics Quarterly, 9, (1962), 181-196.

3. SF. Tantawy, A new procedure for solving linear fractional programming problems, Jour-

nal of Mathematical and Computer Modeling, 48, (2008), 969-973.

4. Y. Nesterov, A. Nemirovski, Interior Point Polynomial Methods in Convex Program-

ming: Theory and Applications, SIAM publications, 1994.

5. A. Beck, M. Teboulle, A convex optimization approach for minimizing the ratio of indef-

inite quadratic functions over an ellipsoid, Mathematical Programming, 118(1), (2009),

13-35.

6. W. Dinkelbach, On nonlinear fractional programming, Management Science, 13, (1967),

492-498.

7. MS. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second order cone

programming, Linear Algebra Appl., 284, (1998), 193-228.

8. MS. Lobo, L. Vandenberghe, S. Boyd ,Socp: Software for Second-Order Cone Program-

ming, Information Systems Laboratory, Stanford University, 1997.

9. F. Alizadeh, D. Goldfarb, Second-order cone programming, Math. Program. Ser. B, 95,

(2003), 35-51.

10. M. Salahi, A short note on Minx∈Rn
‖Ax−b‖2

1+‖x‖2
, Applied Mathematics and Computation,

212, (2009), 270-272.

11. M. Salahi, S. Fallahi, A semidefinite optimization approach to quadratic fractional op-

timization with a strictly convex quadratic constraint, Iranian Journal of Mathematical

Sciences and Informatics, 9(2), (2014), 65-71.

12. JF. Sturm, S. Zhang, On cones of nonnegative quadratic functions,Mathematics of Op-

erations Research, 28, (2003), 246-267.

13. S. Xian-Kai, T. Liping , L. Xian-Jun, L. Minghua, Some dual characterization of Farkas-

type results for fractional programming problems, Optimization Letters, 12(6), (2018),

1403-1420.

14. S. Xian-Kai, L. Xian-Jun, F. Hong-Yong, L. Xiao-Bing, Some characterization of ro-

bust optimal solutions for uncertain fractional optimization and applications, Journal of

industrial and management optimization, 13(2), (2017), 803-824.

15. S. Xiang-Kai, Ch. Yi, Z. Jing, Farkas-type results for constrained fractional programming

with DC functions, Optimization Letters, 8(8), (2014), 2299-2313.

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

25
-1

1-
15

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            10 / 10

https://ijmsi.ir/article-1-1314-en.html
http://www.tcpdf.org

