دوره 16، شماره 1 - ( 1-1400 )                   جلد 16 شماره 1 صفحات 97-104 | برگشت به فهرست نسخه ها

XML Print


چکیده:  
Let $R$ be a commutative ring with identity, and $ mathrm{A}(R) $ be the set of ideals with non-zero annihilator. The annihilating-ideal graph of $ R $ is defined as the graph $AG(R)$ with the vertex set $ mathrm{A}(R)^{*}=mathrm{A}(R)setminuslbrace 0rbrace $ and two distinct vertices $ I $ and $ J $ are adjacent if and only if $ IJ=0 $. In this paper, conditions under which $AG(R)$ is either Eulerian or Hamiltonian are given.
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى