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Abstract. This paper is devoted to deformation theory of graded Lie

algebras over Z or Zl with finite dimensional graded pieces. Such defor-

mation problems naturally appear in number theory. In the first part of

the paper, we use Schlessinger criteria for functors on Artinian local rings

in order to obtain universal deformation rings for deformations of graded

Lie algebras and their graded representations. In the second part, we use

a version of Schlessinger criteria for functors on the Artinian category

of nilpotent Lie algebras which is formulated by Pridham, and explore

arithmetic deformations using this technique.

Keywords: Arithemtic Lie algebras, Deforfation of Lie algebras, Schlessinger
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1. Introduction

To a hyperbolic smooth curve defined over a number-field one naturally

associates an ”anabelian” representation of the absolute Galois group of the

base field landing in outer automorphism group of the algebraic fundamental

group [4]. It would be very fruitful to deform this object, rather than the

abelian version coming from the action of Galois group on the Tate module of

the Jacobian variety. On the other hand, there is no formalism available for
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20 A. Rastegar

deforming such a representation. This is why we translate it to the language of

graded Lie algebras which are still non-linear enough to carry more information

than the abelian version. For more details see [9] and [10].

In this paper, we introduce several deformation problems for Lie-algebra ver-

sions of the above representation. In particular, we deform the representation

of certain Galois-Lie algebras landing in the graded Lie algebra associated to

the weight filtration on outer automorphism group of the pro-l fundamental

group, and we construct a deformation ring parameterizing all deformations

fixing the mod-l Lie-algebra representation, which is the typical thing to do in

the world of Galois representations.

Organization of the paper is as follows: First, we review methods of associ-

ating Lie algebras to profinite groups. Then, we introduce some deformation

problems for representations landing in graded Lie algebras. Afterwards, we

use the classical Schlessinger criteria for representability of functors on Artin

local rings for deformation of the above representation. In some cases, uni-

versal deformations exist and in some others, we are only able to construct a

hull which parameterizes all possible deformations. finally, we use a graded

version of Pridham’s adaptation of Schlessinger criteria for functors on finite

dimensional nilpotent Lie algebras.

2. Lie algebras associated to profinite groups

Exponential map on the tangent space of an algebraic group defined over a

field k of characteristic zero, gives an equivalence of categories between nilpo-

tent Lie algebras of finite dimension over k and unipotent algebraic groups

over k. This way, one can associate a Lie algebra to the algebraic unipotent

completion Γalg(Q) of any profinite group Γ.

On the other hand, Malčev defines an equivalence of categories between

nilpotent Lie algebras over Q and uniquely divisible nilpotent groups. Inclusion

of such groups in nilpotent groups has a right adjoint Γ→ ΓQ. For a nipotent

group Γ, torsion elements form a subgroup T and ΓQ = ∪(Γ/T )1/n. In fact we

have ΓQ = Γalg(Q).

Any nilpotent finite group is a product of its sylow subgroups. Therefore,

the profinite completion Γ∧ factors to pro-l completions Γ∧l , each one a com-

pact open subgroup of the corresponding Γalg(Ql) and we have the following

isomorphisms of l-adic Lie groups

Lie(Γ∧l ) = Lie(Γalg(Ql)) = Lie(Γalg(Q))⊗Ql.

In fact, the adelic Lie group associated to Γ can be defined as Lie(Γalg(Q))⊗Af

which is the same as
∏

Lie(Γ∧l ).

Suppose we are given a nilpotent representation of Γ on a finite dimensional

vector space V over k, which means that for a filtration F on V respecting the
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Arithmetic Deformation Theory of Lie Algebras 21

action, the induced action of GrF (V ) is trivial. The subgroup

{σ ∈ GL(V )|σF = F,GrF (σ) = 1}

is a uniquely divisible group and one obtains a morphism

Lie(ΓQ)→ {σ ∈ GL(V )|σF = F,GrF (σ) = 0}

which is an equivalence of categories between nilpotent representations of Γ

and representations of Γalg(Q) and nilpotent representations of the Lie alge-

bra Lie(ΓQ) over the field k. The above equivalence of categories extends to

an equivalence between linear representations of Γ and representations of its

algebraic envelope

The notion of weighted completion of a group developed by Hain and Mat-

sumoto generalizes the concept of algebraic unipotent completion. Suppose

that R is an algebraic k-group and w : Gm → R is a central cocharacter. Let

G be an extension of R by a unipotent group U in the category of algebraic

k-groups

0 −→ U −→ G −→ R −→ 0.

The first homology of U is an R-module, and therefore an Gm-module via w,

which naturally decomposes to to direct sum of irreducible representations each

isomorphic to a power of the standard character. We say that our extension is

negatively weighted if only negative powers of the standard character appear

in H1(U). The weighted completion of Γ with respect to the representation

ρ with Zariski dense image ρ : Γ → R(Ql) is the universal Ql-proalgebraic

group G which is a negative weighted extension of R by a prounipotent group

U and a continuous lift of ρ to G(Ql) [6]. The Lie algebra of G(Ql) is a more

sophisticated version of Lie(ΓQ)⊗Ql.

3. Cohomology theories for graded Lie algebras

We shall first review cohomology of Lie algebras with the adjoint represen-

tation as coefficients. Let L be a graded Zl-algebra and let Cq(L,L) denote

the space of all skew-symmetric q-linear forms on a Lie algebra L with values

in L. Define the differential

δ : Cq(L,L) −→ Cq+1(L,L)

where the action of δ on a skew-symmetric q-linear form γ is a skew-symmetric

(q + 1)-linear form which takes (l1, ..., lq+1) ∈ Lq+1 to∑
(−1)s+t−1γ([ls, lt], l1, ..., l̂s, ..., l̂t, ..., lq+1) +

∑
[lu, γ(l1, ..., l̂u, ..., lq+1)]

where the first sum is over s and t with 1 ≤ s < t ≤ q + 1 and the second

sum is over u with 1 ≤ u ≤ q + 1. Then δ2 = 0 and we can define Hq(L,L) to

be the cohomology of the complex {Cq(L,L), δ}. If we put Cm = Cm+1(L,L)

and Hm = Hm+1(L,L), then there exists a natural bracket operation which

makes C = ⊕Cm a differential graded algebra and H = ⊕Hm a graded Lie
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22 A. Rastegar

algebra. Look in [3]. If L is Z-graded, L = ⊕L(m), we say φ ∈ Cq(L,L)(m) if

for li ∈ L(gi) we have φ(l1, ..., lq) ∈ L(g1 + ... + gq −m). Then, there exists a

grading induced on the Lie algebra cohomology Hq(L,L) = ⊕Hq(L,L)(m).

The computational tool used by geometers to study deformations of Lie

algebras is a cohomology theory of K-algebras where K is a field, which is

developed by Harrison [5]. This cohomology theory is generalized by Barr to

algebras over general rings [1]. Here we use a more modern version of the

latter introduced independently by Andre and Quillen which works for general

algebras [8].

Let A be a commutative algebra with identity over Zl or any ring R and let

M be an A-module. By an n-long singular extension of A by M we mean an

exact sequence of A-modules

0→M →Mn−1 → ...→M1 → T → R→ 0

where T is a commutative Zl-algebra and the final map a morphism of Zl-

algebras whose kernel has square zero. It is trivial how to define morphisms

and isomorphisms between n-long singular extensions. Barr defines a group

structure on these isomorphism classes [1], which defines Hn
Barr(A,M) for n > 1

and we put H1
Barr(A,M) = Der(A,M). Barr proves that for a multiplicative

subset S of R not containing zero

Hn
Barr(A,M) ∼= Hn

Barr(AS ,M)

for all n and any AS-module M . According to this isomorphism, the coho-

mology of the algebra A over Zl is the same after tensoring A with Ql if M

is A ⊗ Ql-module. Thus one could assume that we are working with an alge-

bra over a field, and then direct definitions given by Harrison would serve our

computations better. Consider the complex

0→ Hom(A,M)→ Hom(S2A,M)→ Hom(A⊗A⊗A,M)

where ψ ∈ Hom(A,M) goes to

d1ψ : (a, b) 7→ aψ(b)− ψ(ab) + bψ(a)

and φ ∈ Hom(S2A,M) goes to

d2φ(a, b, c) 7→ aφ(b, c)− φ(ab, c) + φ(a, bc)− cφ(a, b)

The cohomology of this complex defines Hi
Harr(R,M) for i = 1, 2. If A is a local

algebra with maximal ideal m and residue field k, the Harrison cohomology

H1
Harr(A, k) = (m/m2)′, which is the space of homomorphisms A → k[t]/t2

such that m is the kernel of the composition A→ k[t]/t2 → k.

Andre-Quillen cohomology is the same as Barr cohomology in low dimensions

and can be described directly in terms of derivations and extensions. For any

morphism of commutative rings A → B and B-module M we denote the B-

module of A-algebra derivations of B with values in M by DerA(B,M). Let
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Arithmetic Deformation Theory of Lie Algebras 23

Extinf
A (B,M) denote the B-module of infinitesimal A-algebra extensions of B

by M . The functors Der and Extinf have transitivity property. Namely, given

morphisms of commutative rings A→ B → C and a C-module M , there is an

exact sequence

0 −→ DerB(C,M) −→ DerA(C,M) −→ DerA(B,M)

−→ Extinf
B (C,M) −→ Extinf

A (C,M) −→ Extinf
A (B,M).

The two functors Der and Extinf also satisfy flat base-change property. Namely,

given morphisms A → B and A → A′ if TorA1 (A′, B) = 0, then there are

isomorphisms DerA′(A′ ⊗A B,M) ∼= DerA(B,M) and Extinf
A′ (A′ ⊗A B,M) ∼=

Extinf
A (B,M). Andre-Quillen cohomology associates DerA(B,M) and Extinf

A (B,M)

to any morphism of commutative rings A → B and B-module M as the first

two cohomologies and extends it to higher dimensional cohomologies such that

transitivity and flat base-change extend in the obvious way.

4. Several deformation problems

Let X denote a hyperbolic smooth algebraic curve defined over a number

field K. Let S denote the set of bad reduction places of X together with

places above l. We shall construct Lie algebra versions of the pro-l outer

representation of the Galois group

ρlX : Gal(KS/K) −→ Out(π1(X̄)(l)).

Let Il denote the decreasing filtration on Out(π1(X)(l)) induced by the central

series filtration of π1(X̄)(l). By abuse of notation, we also denote the filtration

on Gal(KS/K) by Il. We get an injection of the associated graded Zl-Lie

algebras on both sides

Gal(KS/K) −→ Out(π1(X̄)(l)).

One can also start with the l-adic unipotent completion of the fundamental

group and the outer representation of Galois group on this group.

ρun,lX : Gal(KS/K) −→ Out(π1(X̄)un/Ql
).

By [6] 8.2 the associated Galois Lie algebra would be the same as those as-

sociated to Il. Let US denote the prounipotent radical of the Zariski closure

of the image of ρun,lX . The image of Gal(KS/K) in Out(π1(X̄)un/Ql
) is a nega-

tively weighted extension of Gm by US with respect to the central cocharacter

w : x 7→ x−2. By [6] 8.4 the weight filtration induces a graded Lie algebra US
which is isomorphic to Gal(KS/K)⊗Ql.

There are several deformation problem in this setting which are interesting.

For example, the action of Galois group on unipotent completion of the fun-

damental group induces an action of the Galois group on the corresponding

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

8.
1.

19
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
25

-1
0-

26
 ]

 

                             5 / 14

http://dx.doi.org/10.52547/ijmsi.18.1.19
https://ijmsi.ir/article-1-1237-en.html


24 A. Rastegar

nilpotent Ql-Lie algebra

ρni,lX : Gal(KS/K) −→ Aut(US).

which could be deformed. Another possibility is deforming the following rep-

resentation

Gal(KS/K) −→ Aut(π1(X̄)un/Ql
) −→ Aut(H1(P))

where P denote the nilpotent Lie algebra associated to π1(X̄)un/Ql
. This time,

the Schlessinger criteria may not help us in finding a universal representation.

There exists also a derivation version, which is a Schlessinger friendly Zl-Lie

algebras representation

Gal(KS/K) −→ Der(P)/Inn(P).

One could also deform the following morphism, fixing its mod-l reduction

Gal(KS/K) −→ Out(π1(X̄)(l)).

5. Deformations of local graded Lie algebras

In this section, we are only concerned with deformations of Lie algebras

and leave deformation of their representations for the next section. We are

interested in deforming the coefficient ring of graded Lie algebras over Zl of

the form L = Gr•I Õut(πl
1(X)) and then deforming representations of Galois

graded Lie algebra

Gr•X,lGal(K̄/K)→ Gr•IÕut(πl
1(X)).

One can reduce the coefficient ring Zl modulo l and get a graded Lie algebra

L̄ over Fl and a representation

Gr•X,lGal(K̄/K)→ L̄.

We look for liftings of this representation which is landing in L̄ among rep-

resentations landing in graded Lie algebras over Artinian local rings A of the

form L = ⊕iL
i where Li is a finitely generated A-module for positive i.

Let k be a finite field of characteristic p and let Λ be any complete Noetherian

local ring. For example Λ can be W (k), the ring of Witt vectors of k, or O,

the ring of integers of any local field with quotient field K℘ and residue field k.

Let C denote the category of Artinian local Λ-algebras with residue field k. A

covariant functor from C to Sets is called pro-representable if it has the form

F (A) ∼= HomΛ(Runiv, A) A ∈ C

where Runiv is a complete local Λ-algebra with maximal ideal muniv such that

Runiv/m
n
univ is in C for all n.

There are a number of deformation functors related to our problem. For

a local ring A ∈ C with maximal ideal m, the set of deformations of L̄ to A

is denoted by Dc(L̄, A) and is defined to be the set of isomorphism classes of
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Arithmetic Deformation Theory of Lie Algebras 25

graded Lie algebras L/A of the above form which reduce to L̄ modulo m. In

this notation c stands for coefficients, since we are only deforming coefficients

not the Lie algebra structure. The functor D(L̄) as defined above is not a

pro-representable functor. As we will see, there exists a ”hull” for this functor

(Schlessinger’s terminology [11]) parameterizing all possible deformations. The

idea of deforming the Lie structure of Lie algebras has been extensively used by

geometers. For example, Fialowski studied this problem in double characteristic

zero case [2]. In this paper, we are interested in double characteristic (0, l)-

version.

Now we make an assumption for further constructions. Assume H2(L,L)(m)

is finite dimensional for allm and consider the algebra D1 = Zl⊕
⊕

mH2(L,L)(m)′

where ′ means the dual over Zl. Fix a graded homomorphism of degree zero

µ : H2(L,L) −→ C2(L,L)

which takes any cohomology class to a cocycle representing this class. Now

define a Lie algebra structure on

D1 ⊗ L = L⊕Hom0(H2(L,L), L)

where Hom0 means degree zero graded homomorphisms, by the following bracket

[(l1, φ1), (l2, φ2)] := ([l1, l2], ψ)

where ψ(α) = µ(α)(l1, l2) + [φ1(α), l2] + [φ2(α), l1]. The Jacobi identity is

implied by δµ(α) = 0. It is clear that this in an infinitesimal deformation

of L and it can be shown that, up to an isomorphism, this deformation does

not depend on the choice of µ. We shall denote this deformation by ηL after

Fialowski and Fuchs [3].

Proposition 5.1. Any infinitesimal deformation of L̄ to a finite dimensional

local ring A is induced by pushing forward ηL by a unique morphism

φ : Zl ⊕
⊕
m

H2(L,L)(m)′ −→ A.

Proof. This is the double characteristic version of proposition 1.8 in [3]. �

Note that, in our case H2(L,L) is not finite dimensional. This is why we re-

strict our deformations to the space of graded deformations. Since H2(L,L)(0)

is the tangent space of the space of graded deformations, and the grade zero

piece H2(L,L)(0) is finite dimensional, the following version is more appropri-

ate:

Proposition 5.2. Any infinitesimal graded deformation of L̄ to a finite di-

mensional local ring A is induced by pushing forward η0
L by a unique morphism

φ : Zl ⊕H2(L,L)(0)′ −→ A.

where η0
L denotes the restriction of ηL to Zl ⊕H2(L,L)(0)′.
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26 A. Rastegar

Let A be a small extension of Fl and L be a graded deformation of L̄ over

the base A. The deformation space D(L̄, A) can be identified with H2(L,L)(0)

which is finite dimensional. Therefore, by Schlessinger criteria, in the subcat-

egory C ′ of C consisting of local algebras with m2 = 0 for the maximal ideal

m, the functor D(L̄, A) is pro-representable. This means that there exists a

unique map

Zl ⊕H2(L,L)(0)′ → Runiv

inducing the universal infinitesimal graded deformation.

5.1. Obstructions to deformations. Let A be an object in the category

C and L ∈ Def(L̄, A). The pair (A,L) defines a morphism of functors θ :

Mor(A,B)→ Def(L̄, B). We say that (A,L) is universal if θ is an isomorphism

for any choice of B. We say that (A,L) is miniversal if θ is always surjective,

and gives an isomorphism for B = k[ε]/ε2. We intend to construct a miniversal

deformation of L̄.

Consider a graded deformation with base in a local algebra A with residue

field k = Fl. One can define a map

ΦA : Extinf
Zl

(A, k) −→ H3(L̄, L̄).

Indeed, choose an extension 0 → k → B → A → 0 corresponding to an

element in Extinf
Zl

(A, k). Consider the B-linear skew-symmetric operation {., .}
on L̄⊗k B commuting with [., .] on L̄⊗A defined by {l, l1} = [l, l̄1] for l in the

kernel of L̄⊗kB → L̄⊗kA which can be identified by L̄. Here l̄l is the image of

l1 under the projection map B → k tensored with L̄ whose kernel is the inverse

image of the maximal ideal of A. The Jacobi expression induces a multilinear

skew-symmetric form on L̄ which could be regarded as a closed element in

C3(L̄, L̄). The image in H3(L̄, L̄) is independent of the choices made.

Theorem 5.3. (Fialowski) One can deform the Lie algebra structure on L⊗kA

to L ⊗k B if and only if the image of the above extension vanishes under the

morphism Extinf
Zl

(A, k)→ H3(L̄, L̄).

Proof. The proof presented in [2] and [3] works for algebras over fields of finite

characteristic. �

Using the above criteria for extending deformations, one can follow the meth-

ods of Fialowski and Fuchs to introduce a miniversal deformation for L̄.

Proposition 5.4. Given a local commutative algebra A over Zl there exists a

universal extension

0 −→ Extinf
Zl

(A, k)′ −→ C −→ A −→ 0

among all extensions of A with modules M over A with mM = 0 where m is

the maximal ideal of A.
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Arithmetic Deformation Theory of Lie Algebras 27

This is proposition 2.6 in [3]. Consider the canonical split extension

0 −→ H2(L,L)(0)′ −→ D1 −→ k −→ 0.

We will initiate an inductive construction of Dk such that

0 −→ Extinf
Zl

(Dk, k)′ −→ D̄k+1 −→ Dk −→ 0.

together with a deformation ηk of L to the base Dk. For η1 take ηL, and assume

Di and ηk is constructed for i ≤ k. Given a local commutative algebra Dk with

maximal ideal m, there exists a unique universal extension for all extensions of

Dk by Dk-modules M with mM = 0 of the following form

0 −→ Extinf
Zl

(Dk, k)′ −→ C −→ Dk −→ 0.

associated to the cocycle fk : S2(Dk) → Extinf
Zl

(Dk, k)′ which is dual to the

homomorphism

µ : Extinf
Zl

(Dk, k) −→ S2(Dk)′

which takes a cohomology class to a cocycle from the same class. The obstruc-

tion to extend ηk lives in Extinf
Zl

(Dk, k)′ ⊗H3(L̄, L̄). Consider the composition

of the associated dual map

Φ′k : H3(L̄, L̄)′ −→ Extinf
Zl

(Dk, k)′.

with Extinf
Zl

(Dk, k)′ → C and define Dk+1 to be the cokernel of this map. We

get the following exact sequence

0 −→ (kerΦk)′ −→ Dk+1 −→ Dk −→ 0.

We can extend ηk to ηk+1. Now, taking a projective limit of Dk we get a base

and a formal deformation of L̄.

Theorem 5.5. Let D denote the projective limit limDk which is a Zl-module.

One can deform L̄ uniquely to a graded Lie algebra with base D which is

miniversal among all deformations of L̄ to local algebras over Zl.

Proof. This is the double characteristic version of theorem 4.5 in [3]. The same

proof works here because theorems 11 and 18 in [5] which are used in the

arguments of Fialowski and Fuchs work for algebras over any perfect field. �

Proposition 5.6. (Fialowski-Fuchs) The base of the minversal deformation of

L̄ is the zero locus of a formal map H2(L̄, L̄)(0)→ H3(L̄, L̄)(0).

Proof. This is the graded version of proposition 7.2 in [3]. �
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28 A. Rastegar

5.2. Deformations of graded Lie algebra representations. In the previ-

ous section we discussed deformation theory of the mod l reduction of the Lie

algebra Gr•IÕut(πl
1(X)). We shall mention the following

Theorem 5.7. The cohomology groups Hi(Gr•IÕut(πl
1(X)),Gr•IÕut(πl

1(X)))(0)

are finite dimensional for all non-negative integer i.

Proof. By a theorem of Labute Gr•Iπ
l
1(X) is quotient of a finitely generated free

Lie algebra with finitely generated module of relations [Lab]. Therefore, the

cohomology groups Hi(Gr•Iπ
l
1(X),Gr•Iπ

l
1(X))(0) are finite dimensional. Finite

dimensionality of the cohomology of Gr•IÕut(πl
1(X)) follows from proposition

1.3. �

We are interested in deforming the following graded representation of the

Galois graded Lie algebra

ρ : Gr•X,lGal(K̄/K)→ Gr•IÕut(πl
1(X))

among all graded representations which modulo l reduce to the graded repre-

sentation

ρ̄ : Gr•X,lGal(K̄/K)→ L̄

where the Lie algebra L̄ over Fl is the mod-l reduction of Gr•I Õut(πl
1(X)).

There are suggestions from the classical deformation theory of Galois represen-

tations on how to get a representable deformation functor. Let D(ρ̄, A) denote

the set of isomorphism classes of Galois graded Lie algebra representations to

graded Lie algebras L/A of the above form which reduce to ρ̄ modulo m. The

first ingredient we need in order to prove representability of D(ρ̄) is finite di-

mensionality of the tangent space of the functor. The tangent space of the

deformation functor D(ρ̄) for an object A ∈ C is canonically isomorphic to

H1(Gr•X,lGal(K̄/K), Ad ◦ ρ)

where the Lie algebra module is given by the composition of ρ̄ with the adjoint

representation of Gr•IÕut(πl
1(X/K)). To get finite dimensionality, we restrict

ourselves to the graded deformations of the graded representation ρ̄.

Theorem 5.8. H1(Gr•X,lGal(K̄/K), Ad ◦ ρ)(0) is finite dimensional.

Proof. The Galois-Lie representation Gr•IGal(K̄/K) → Gr•IÕut(πl
1(X)) is an

injection. Derivation inducing cohomology commutes with inclusion of Lie alge-

bras. ThereforeH1(Gr•X,lGal(K̄/K), Ad◦ρ)(0) injects inH1(Gr•IÕut(πl
1(X)), Ad◦

ρ)(0) which is finite dimensional by previous theorem. �

For a surjective mapping A1 → A0 of Artinian local rings in C such that the

kernel I ⊂ A1 satisfies I.m1 = 0 and given any deformation ρ0 of ρ̄ to L⊗ A0

one can associate a canonical obstruction class in

H2(Gr•X,lGal(K̄/K), I ⊗Ad ◦ ρ̄) ∼= H2(Gr•X,lGal(K̄/K), Ad ◦ ρ̄)⊗ I
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which vanishes if and only if ρ0 can be extended to a deformation with coeffi-

cients A1. Therefore, vanishing results on second cohomology are important.

Theorem 5.9. Suppose Gr•X,lGal(K̄/K) is a free Lie algebra over Zl, then the

Galois cohomology H2(Gr•X,lGal(K̄/K), Ad ◦ ρ̄) vanishes.

Proof. The free Lie algebra G = Gr•X,lGal(K̄/K) is rigid, and therefore has

trivial infinitesimal deformations. Thus, we get vanishing of its second coho-

mology:

H2(Gr•X,lGal(K̄/K),Gr•X,lGal(K̄/K)) = 0.

The injection of G inside L = Gr•IÕut(πl
1(X)) as Lie-algebras over Zl implies

that, the cohomology group H2(Gr•X,lGal(K̄/K), Ad ◦ ρ) vanishes again by

freeness of G. Let Ḡ denote the reduction modulo l of G which is a free Lie

algebra over Fl. The cohomology H2(G, Ḡ) is the mod-l reduction of H2(G,G),

hence it also vanishes. So does the cohomology H2(Gr•X,lGal(K̄/K), Ad◦ ρ̄) by

similar reasoning. �

We have obtained conceptual conditions implying H4 of [11]. What we have

proved can be summarized as follows.

Main Theorem 5.10. Suppose that Gr•X,lGal(K̄/K) is a free Lie algebra

over Zl. There exists a universal deformation ring Runiv = R(X,K, l) and a

universal deformation of the representation ρ̄

ρuniv : Gr•X,lGal(K̄/K) −→ Gr•IÕut(πl
1(X))⊗Runiv

which is unique in the usual sense. If Gr•X,lGal(K̄/K) is not free, then a

miniversal deformation exists which is universal among infinitesimal deforma-

tions of ρ̄.

Remark 5.1. Note that, freeness of Gr•X,lGal(K̄/K) in the special case of K =

Q where filtration comes from punctured projective curve X = P1 − {0, 1,∞}
or a punctured elliptic curve X = E − {0} is implied by Deligne’s conjecture.

As in the classical case, the Lie algebra structure on Ad◦ ρ̄ induces a graded

Lie algebra structure on the cohomology H∗(Gr•X,lGal(K̄/K), Ad ◦ ρ̄) via cup-

product, and in particular, a symmetric bilinear pairing

H1(Gr•X,lGal(K̄/K), Ad ◦ ρ̄)×H1(Gr•X,lGal(K̄/K), Ad ◦ ρ̄)

−→ H2(Gr•X,lGal(K̄/K), Ad◦ρ̄)

which gives the quadratic relations satisfied by the minimal set of formal pa-

rameters of Runiv/lRuniv for characteristic l different from 2.
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6. Functors on nilpotent graded Lie algebras

In this section, we review Pridham’s nilpotent Lie algebra version of Sch-

lessinger criteria [7]. The only change we impose is to consider finitely generated

graded nilpotent Lie algebras with finite dimensional graded pieces, instead of

finite dimensional nilpotent Lie algebras.

Fix a field k and let Nk denote the category of finitely generated NGLAs

(nilpotent graded Lie algebras) with finite dimensional graded pieces, and N̂k

denote the category of pro-NGLAs with finite dimensional graded pieces which

are finite dimensional in the sense that dimL/[L,L] <∞. Given L ∈ N̂k define

NL,k to be the category of pairs {N ∈ Nk, φ : L → N} and N̂L,k to be the

category of pairs {N ∈ N̂k, φ : L → N}.
All functors on NL,k should take the 0 object to a one point set. for a functor

F : NL,k → Set, define F̂ : N̂L,k → Set by

F̂ (L) = lim
←
F (L/Γn(L)),

where Γn(L) is the n-th term in the central series of L. Then for hL : NL,k →
Set defined by N → Hom(L,N) we have an isomorphism

F̂ (L) −→ Hom(hL, F )

which can be used to define the notion of a pro-representable functor.

A morphism p ∈ N → M in NL,k is called a small section if it is surjective

with a principal ideal kernel (t) such that [N, (t)] = (0).

Given F : NL,k → Set, and morphisms N ′ → N and N ′′ → N in NL,k,

consider the map

F (N ′ ×N N ′′) −→ F (N ′)×F (N) F (N ′′).

Then, by the Lie algebra analogue of the Schlessinger theorem F has a hull if

and only if it satisfies the following properties

(H1) The above map is surjective whenever N ′′ → N is a small section.

(H2) The above map is bijective when N = 0 and N ′′ = L(ε).

(H3) dimk(tF <∞.

F is pro-representable if and only if it satisfies the following additional property

(H4) The above map is an isomorphism for any small extension N ′′ → N .

Note that, in case we are considering graded deformations of graded Lie al-

gebras, only the zero grade piece of the cohomology representing the tangent

space shall be checked to be finite dimensional.

7. Deformation of nilpotent graded Lie algebras

Let us concentrate on deforming the graded Lie algebra representation

Gal(KS/K) −→ Out(π1(X̄)(l)).
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We could fix the mod-l representation, or fix restriction of this representation

to decomposition Lie algebra Dp at prime p, which is induced by the same

filtration as Gal(KS/K) on the decomposition group. For each prime p of K

we get a map

Dp −→ Gal(KS/K) −→ Out(π1(X̄)(l)).

Theorem 7.1. For a graded Zl-Lie algebra L, let D(L) be the set of represen-

tations of Gal(KS/K) to L which reduce to

ρ̄ : Gal(KS/K) −→ Out(π1(X̄)(l))/lOut(π1(X̄)(l))

after reduction modulo l. Assume that Gal(KS/K) is a free Zl-Lie algebra.

Then, there exists a universal deformation graded Zl-Lie algebra Luniv and a

universal representation

Gal(KS/K) −→ Luniv

representing the functor D. In case Gal(KS/K) is not free, then one can find

a hull for the functor D.

Proof. For free Gal(KS/K) by theorem 4.9, we have

H2(Gal(KS/K), Ad ◦ ρ̄) = 0

which implies that D is pro-representable. In case Gal(KS/K) is not free, we

have constructed a miniversal deformation Lie algebra for another functor ,

which implies that the first three Schlessinger criteria hold. By a similar argu-

ment one could prove that there exists a hull for D. Note that Out(π1(X̄)(l))

is pronilpotent, and for deformation of such an object one should deform the

truncated object and then take a limit to obtain a universal object in pro-

NGLAs. �

Note that, by a conjecture of Deligne, there exists a graded Lie algebra over

Z which gives rise to all Gal(KS/K) for different primes l, after tensoring with

Zl. For deformation of the representations of this Z-Lie algebra, one can not

use representability for functors on Artinian local rings, and the nilpotent Lie

algebra deformations become crucial.
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