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Abstract. It is well known that the sum of two z-ideals in C(X) is either

C(X) or a z-ideal. The main aim of this paper is to study the sum of

strongly z-ideals in RL, the ring of real-valued continuous functions on

a frame L. For every ideal I in RL, we introduce the biggest strongly z-

ideal included in I and the smallest strongly z-ideal containing I, denoted

by Isz and Isz , respectively. We study some properties of Isz and Isz .

Also, it is observed that the sum of any family of minimal prime ideals in

the ring RL is either RL or a prime strongly z-ideal in RL. In particular,

we show that the sum of two prime ideals in RL which are not chains is

a prime strongly z-ideal.
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1. Introduction

An ideal I of a ring A (the term “ring” means a commutative ring with

identity) is a z-ideal if whenever two elements of A are in the same of maximal

ideals and I contains one of the elements, then it also contains the other. This

algebraic definition of z-ideal was coined in the context of rings of continuous

functions by Kohls in [16] and is also recorded as Problem 4A.5 in the text

Rings of continuous functions by Gillman and Jerison [10]. Also, Estaji in [6]

introduced and studied z-weak ideals and prime weak ideals in the rings of

continuous functions on a topological space. A study of z-ideals in rings gen-

erally has been carried out by Mason in the article [17]. In pointfree topology,

z-ideals were introduced by Dube in [4] where he showed that the algebraic

definition agree with the “topological” definition in terms of the cozero map.

It was shown in [10, 20] that if B is an absolutely convex subring of the ring of

all continuous functions on a topological space, then a sum of two z-ideals of B

is a z-ideal. If B is a ring (or a module) and K is an ideal (or a submodule) of

B, let B(K) = {(a, b) ∈ B × B : a− b ∈ K}. In [11], this construction is used

to find a lattice-ordered subring of the ring C(R) of all continuous real-valued

functions on the real line R with two z-ideals whose sum is not even semiprime.

Therefore sum of two z-ideals in RL may not be a z-ideal, and thus in this

paper, we discuss on sum of strongly z-ideals in the ring RL. The concept of

zero-sets and strongly z-ideals in RL is introduced in [7]. An ideal I in RL is

called strongly z-ideal if Z(α) ∈ Z[I] implies α ∈ I, where Z(α) is the zero-set

of α in RL.

This paper is organized as follows. In Section 2, we review some basic notions

and properties of a frame and the pointfree version of the ring of continuous

real-valued functions. Also, we recall some properties of z-ideals and strongly

z-ideals in RL.

In Section 3, we study the sum of strongly z-ideals in RL and we show

that, under some conditions, the sum of strongly z-ideals is a strongly z-ideal

(Theorem 3.2).

In Section 4, for every ideal I in RL, we introduce the biggest strongly z-

ideal included in I, denoted by Isz and the smallest strongly z-ideal containing

I, denoted by Isz, and we study Isz and Isz. Similar to C(X), we show that the

sum of a family of minimal prime ideals in the ring RL is either RL or a prime

ideal in RL (Corollary 4.4). Finally, we show that the sum of two prime ideals

in RL which are not chains, is a prime strongly z-ideal (Proposition 4.19).

2. Preliminaries

In this section, we collect some notations from the literature on frames and

the ring of continuous real-valued functions on a frame. Our references for

frames are [14, 18] and for the ring RL are [1, 2].
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A frame is a complete lattice L in which the distributive law

x ∧
∨
S =

∨
{x ∧ s : s ∈ S}

holds for all x ∈ L and S ⊆ L. We denote the top element and the bottom

element of L by > and ⊥, respectively.

A frame homomorphism (or a frame map) is a map between frames which

preserves finite meets, containing the top element, and arbitrary joins, contain-

ing the bottom element. An element p ∈ L is said to be prime if p < > and

a ∧ b ≤ p implies a ≤ p or b ≤ p. A lattice ordered ring A is called an f -ring,

if (f ∧ g)h = fh ∧ gh for every f, g, h ∈ A and every 0 ≤ h ∈ A.

Recall the contravariant functor Σ from Frm to the category Top of topo-

logical spaces which assigns to each frame L its spectrum ΣL of prime elements

with Σa = {p ∈ ΣL|a 6≤ p} (a ∈ L) as its open sets.

An element a of a frame L is said to be completely below b, written a ≺≺ b,
if there exists a sequence {cq}, q ∈ Q∩ [0, 1], where c0 = a, c1 = b, and cp ≺ cq
if p < q where u ≺ v means u∗ ∨ v = > where u∗ =

∨
{x ∈ L : x ∧ u = ⊥}. A

frame L is called completely regular if each a ∈ L is a join of elements completely

below it.

Regarding the frame L(R) of reals and the f -ring RL of continuous real

functions on L, we use the notation of [2]. See also [1]

The cozero map is the map coz : RL→ L, defined by

coz(α) =
∨
{α(p, 0) ∨ α(0, q) : p, q ∈ Q}.

A cozero element of L is an element of the form coz(α) for some α ∈ RL
(see [2]). The cozero part of L is denoted by CozL. It is known that L is

completely regular if and only if CozL generates L. A frame L is called coz-

dense if whenever Σcoz(α) = ∅, then α = 0 (see [15]).

Here we recall some notations from [5]. Let a ∈ L and α ∈ RL. The sets

{r ∈ Q : α(−, r) ≤ a} and {s ∈ Q : α(s,−) ≤ a} are denoted by L(a, α)

and U(a, α), respectively. For a 6= > it is obvious that for each r ∈ L(a, α)

and s ∈ U(a, α), r ≤ s. In fact, we have that if p ∈ ΣL and α ∈ RL, then

(L(p, α), U(p, α)) is a Dedekind cut for a real number which is denoted by p̃(α)

(see [5]). Throughout this paper, for every α ∈ RL we define α[p] = p̃(α) where

p is a prime element of L.

Recall from [7] that for α ∈ RL, Z(α) = {p ∈ ΣL : α[p] = 0} is called the

zero-set of α. For every A ⊆ RL, we write Z[A] = {Z(α) : α ∈ A}. Also we

let Z[RL] = Z[L] for simplicity. An ideal I in RL is called a strongly z-ideal

if Z(α) ∈ Z[I] implies that α ∈ I, that is I = Z←[Z[I]], where Z←[Z[I]] =

{α ∈ RL : Z(α) ∈ Z[I]} (see [7, 8]). Note that the intersection of an arbitrary

family of strongly z-ideals is a strongly z-ideal. Also, in the ring RL, every

strongly z-ideal is a z-ideal (see [7, Proposition 5.6]).
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For every f ∈ C(ΣL), let us recall that there exists a unique frame map

f̂ : L(R)→ L such that

f̂(p, q) =
∨
{a ∈ L : f(Σa) ⊆ Kp, qJ },

for every p, q ∈ Q, where Kp, qJ= {x ∈ R : p < x < q}. In addition, we have

Z(f̂) = Z(f) (see [15]). For every α ∈ RL, we define α : ΣL → R given by

α(p) = α[p], for p ∈ ΣL. It is clear that Z(α) = Z(α). Also, we have:

Proposition 2.1. [9] Let L be a frame. Let ϕ : C(ΣL) → RL with ϕ(f) = f̂

and ψ : RL → C(ΣL) with ψ(α) = α. Then ψ is an f -ring homomorphism

and a monomorphism. If L is a coz-dense frame, then ψ is an isomorphism,

and ψ−1 = ϕ.

For every α ∈ RL, we put Mα := {β ∈ RL : Z(α) ⊆ Z(β)}. In addition we

have

Proposition 2.2. For every α ∈ RL, Mα is a strongly z-ideal of RL.

3. On Sum of Strongly z-Ideals in RL

As is well-known, the sum of two z-ideals in C(X) is either C(X) or a z-

ideal, see [10, Lemma 14.8]. Fortunately, the proof of this result in [20] can be

modified for RL and is presented below.

Lemma 3.1. Let α, β, γ ∈ RL and Z(α) ⊇ Z(β) ∩ Z(γ). Define

h(p) =

 0 p ∈ Z(β) ∩ Z(γ),

α(p)β
2
(p)

γ2(p)+β
2
(p)

p 6∈ Z(β) ∩ Z(γ)

and

k(p) =

 0 p ∈ Z(β) ∩ Z(γ),

α(p)γ2(p)

γ2(p)+β
2
(p)

p 6∈ Z(β) ∩ Z(γ).

Then we have the following facts.

(1) |h| ∨ |k| ≤ |α|
(2) α = h+ k.

(3) αβ
2

= h(β
2

+ γ2) and αγ2 = k(β
2

+ γ2).

(4) h, k ∈ C(ΣL).

Proof. Since α, β, γ : ΣL→ R are continuous functions and γ2(p) + β
2
(p) 6= 0

for every p 6∈ Z(β) ∩ Z(γ), we infer that h and k are continuous. Also,

(h+ k)(p) = (
αβ

2

γ2 + β
2 +

αγ2

γ2 + β
2 )(p) = α(p).

for every p ∈ ΣL. Therefore h+k = α. It is evident that |h| ≤ |α| and |k| ≤ |α|,
hence |h| ∨ |k| ≤ |α|. Clearly αγ2 = k(β

2
+ γ2) and αβ

2
= h(β

2
+ γ2). �
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In what follows, all frames are assumed to be coz-dense.

Theorem 3.2. Let I and J be two strongly z-ideals of RL. Then I + J = RL
or I + J is a strongly z-ideal.

Proof. Let I + J 6= RL and α ∈ RL be an element with Z(α) = Z(β), where

β ∈ I+J . We show that α ∈ I+J . But β = β1 +β2, where β1 ∈ I and β2 ∈ J.
Clearly,

Z(α) = Z(β) ⊇ Z(β1) ∩ Z(β2).

Let h and k be as in the previous lemma, then h + k = α. But Z(β1) =

Z(β1) ⊆ Z(h) and Z(β2) = Z(β2) ⊆ Z(k). Now, let I = {δ|δ ∈ I} ⊆ C(ΣL)

and J = {σ|σ ∈ J} ⊆ C(ΣL). Since I and J are strongly z-ideals of RL then

I and J are strongly z-ideals of C(ΣL). Also, I + J is a z-ideal of C(ΣL).

Therefore h ∈ I and k ∈ J. So α = h+ k ∈ I + J . Thus, by Proposition 2.1,

α = α̂ ∈ Î + J = Î + Ĵ = I + J.

Hence α ∈ I + J and we are through. �

Corollary 3.3. Let F = {Iλ}λ∈Λ be a family of strongly z-ideals in RL. Then

either Σλ∈ΛIλ = RL or Σλ∈ΛIλ is a strongly z-ideal.

Corollary 3.4. If α, β ∈ RL, then Mα +Mβ = Mα2+β2 .

Proof. Let γ ∈ Mα2+β2 , then Z(α2 + β2) ⊆ Z(γ). Since, by [7, Proposition

3.3], α2 ∈ Mα and β2 ∈ Mβ , we conclude that α2 + β2 ∈ Mα + Mβ . Also,

by Proposition 2.2 and Theorem 3.2, Mα + Mβ is a strongly z-ideal, then

γ ∈ Mα + Mβ . Hence Mα2+β2 ⊆ Mα + Mβ . Conversely, let δ ∈ Mα, η ∈ Mβ

and γ = δ + η ∈Mα +Mβ . Then

Z(α2 + β2) = Z(α) ∩ Z(β) ⊆ Z(δ) ∩ Z(η) ⊆ Z(γ),

hence γ ∈Mα2+β2 , that is Mα +Mβ ⊆Mα2+β2 �

Remark 3.5. Let α, β ∈ RL. Then MαMβ = Mα ∩ Mβ = Mαβ . For, by

Proposition 2.2, [7, Proposition 5.6] and [12, Lemma 7.2.2], MαMβ = Mα∩Mβ .

Also, by [7, Proposition 3.3], we have

γ ∈Mα ∩Mβ ⇔ Z(α) ∪ Z(β) ⊆ Z(γ)⇔ Z(αβ) ⊆ Z(γ)⇔ γ ∈Mαβ .

4. Strongly z-Ideals Isz and Isz

Let I be an ideal of RL. It is clear that Z←[Z[I]] is a strongly z-ideal

containing I. It is observed that this ideal is the intersection of all the strongly

z-ideals containing I. So it is the smallest strongly z-ideal containing I. We

denote it by Isz. Also, by Theorem 3.2, the sum of strongly z-ideals included

in I is a strongly z-ideal and it is the biggest strongly z-ideal included in I.

We denote it by Isz. Therefore Isz ⊆ I ⊆ Isz show that every ideal I in RL
stand between two strongly z-ideals. In this section, we study some properties
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of strongly z-ideals Isz and Isz as the biggest strongly z-ideal and the smallest

strongly z-ideal included in and containing I, respectively.

Lemma 4.1. Let I and J be ideals of RL such that I ⊆ J , then

(1) Isz ⊆ Jsz.

(2) Isz ⊆ Jsz.

Proof. It is evident. �

Proposition 4.2. If I is a strongly z-ideal of RL and P is a minimal prime

ideal over I, then P is a strongly z-ideal of RL.

Proof. Suppose that P is not a strongly z-ideal. Then there exist α, β ∈ RL
such that Z(α) = Z(β), α ∈ P and β 6∈ P. Put S = (RL\P ) ∪ {γαn : γ 6∈
P, n ∈ N}. The S is a multiplicatively closed subset and S ∩ I = ∅. Therefore

there exists a prime ideal, say P ′, such that I ⊆ P ′ and P ′ ∩ S = ∅ (see [13,

Theorem 3.44]). Now, if δ ∈ P ′, then δ 6∈ S and so δ ∈ P , that is, P ′ ⊆ P.

Also, α ∈ P but α 6∈ P ′. Hence P ′ ⊂ P , which is a contradiction. �

Corollary 4.3. Every minimal prime ideal of RL is a strongly z-ideal.

Proof. Let P be a minimal prime ideal ofRL. Clearly, the ideal (0) is a strongly

z-ideal and it is included in every ideal. Thus, by Proposition 4.2, P is a

strongly z-ideal. �

Corollary 4.4. Let F = {Pλ}λ∈Λ be a family of minimal prime ideals in RL.
Then Σλ∈ΛPλ = RL or P = Σλ∈ΛPλ is a prime ideal in RL.

Proof. It is a consequence of Corollary 4.3, Theorem 3.2, and [7, Theorem

5.11]. �

Proposition 4.5. Let P be a prime ideal in RL. Then P sz and Psz are prime

ideals.

Proof. Let P be a prime idea. Then Psz is a strongly z-ideal containing P.

Hence, by [7, Theorem 5.11], Psz is prime. On the other hand, P contains

a minimal prime ideal, say Q. But, by Corollary 4.3, Q is a strongly z-ideal.

Since P sz is the biggest strongly z-ideal included in P , we infer that Q ⊆ P sz.
Thus, by [7, Theorem 5.11], P sz is prime. Hence P sz ⊆ P ⊆ Psz says that

every prime ideal of RL stands between two prime strongly z-ideals. �

Lemma 4.6. Let α, β ∈ RL, then the following statements hold:

(1) Mα ⊆Mβ if and only if Z(β) ⊆ Z(α).

(2) Mα = Mβ if and only if Z(β) = Z(α).

Proof. It is evident. �

Proposition 4.7. Let I be an ideal in RL. Then
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(1) Isz = {α ∈ RL : Mα ⊆ I}.
(2) Isz = {β ∈ RL : β ∈Mα for some α ∈ I}.

Proof. (1) First, we show that J = {α ∈ RL : Mα ⊆ I} is an ideal. To do this,

suppose that α, β ∈ J. So Mα ⊆ I and Mβ ⊆ I. Then, by Corollary 3.4,

Mα2+β2 = Mα +Mβ ⊆ I.

Again, by Lemma 4.6, Z(α2 + β2) ⊆ Z(α + β) implies that Mα+β ⊆ Mα2+β2 .

Thus Mα+β ⊆ I and hence α + β ∈ J. Now, suppose that α ∈ J and β ∈ RL.
So Mα ⊆ I. Also we have α ∈Mα ⊆ I. Since I is an ideal we infer that αβ ∈ I.
Now, by Remark 3.5,

Mαβ = Mα ∩Mβ ⊆Mα ⊆ I.

Therefore αβ ∈ J and thus J is an ideal. Now, we show that J is a strongly z-

ideal. Suppose that Z(β) ⊆ Z(γ) where β ∈ J and γ ∈ RL. So, by Lemma 4.6,

Mγ ⊆ Mβ . Since β ∈ J , it implies that Mβ ⊆ I and hence Mγ ⊆ I. Therefore

γ ∈ J. Thus J is a strongly z-ideal.

Finally, we show that J is the biggest strongly z-ideal included in I. It is

clear that J ⊆ I, because if α ∈ J then Mα ⊆ I. But α ∈ Mα implies that

α ∈ I. Now suppose that K is a strongly z-ideal such that K ⊆ I. Let β ∈ K.

Since K is a strongly z-ideal, Mβ ⊆ K. But K ⊆ I, therefore Mβ ⊆ I and so

β ∈ J. Hence K ⊆ J . Thus J = Isz.

(2) First, we show that J = {β ∈ RL : β ∈Mα for some α ∈ I} is an ideal.

For doing this, suppose that β, γ ∈ J. Then there exist α1, α2 ∈ I such that

β ∈Mα1
and γ ∈Mα2

. Now, by Corollary 3.4,

β + γ ∈Mα1 +Mα2 = Mα2
1+α2

2
.

Therefore β + γ ∈ J. Now, let β ∈ J and γ ∈ RL. Since β ∈ J , there is an

element α in I such that β ∈ Mα. Then Z(α) ⊆ Z(β) and Z(γ) ⊆ Z(γ) and

so Z(α) ⊆ Z(αγ) ⊆ Z(βγ). Also, since α ∈ Mα and Mα is a strongly z-ideal

we conclude that βγ ∈ Mα. Therefore βγ ∈ J and thus J is an ideal. Now,

we show that J is a strongly z-ideal. To do this, suppose that Z(β) ⊆ Z(γ)

where β ∈ J and γ ∈ RL. Then, β ∈ J implies that there exists an element α

in I such that β ∈ Mα. Hence Z(α) ⊆ Z(β), and so Z(α) ⊆ Z(γ). Also, since

α ∈ Mα and Mα is a strongly z-ideal, we infer that γ ∈ Mα. Hence γ ∈ J .

Therefore J is a strongly z-ideal.

Finally, we show that J is the smallest strongly z-ideal containing I. It is

clear that I ⊆ J. Now, suppose that K is a strongly z-ideal such that I ⊆ K.

Let β ∈ J. Then there exists an element α in I such that β ∈ Mα, and hence

Z(α) ⊆ Z(β). Since α ∈ K and K is a strongly z-ideal, it follows that β ∈ K.
Therefore J ⊆ K. Thus J = Isz and the proof is complete. �

Proposition 4.8. Let I be an ideal in RL and α ∈ RL. Then

(1) Isz = ΣMα⊆IMα.
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(2) Isz = Σα∈IMα.

Proof. (1) Since, by Proposition 2.2, every Mα is a strongly z-ideal, we infer

from Theorem 3.2 that ΣMα⊆IMα is a strongly z-ideal. Also, it is clear that

ΣMα⊆IMα ⊆ I. Now, we show that ΣMα⊆IMα is the biggest strongly z-ideal

included in I. Let K be a strongly z-ideal such that K ⊆ I. Let β ∈ K.

Then Mβ ⊆ K ⊆ I and so β ∈ ΣMα⊆IMα. Thus K ⊆ ΣMα⊆IMα. Therefore

Isz = ΣMα⊆IMα.

(2) Since, by Proposition 2.2, every Mα is a strongly z-ideal, we can con-

clude from Theorem 3.2 that Σα∈IMα is a strongly z-ideal. Clearly, I ⊆
Σα∈IMα. Now, we show that Σα∈IMα is the smallest strongly z-ideal con-

taining I. Suppose that β ∈ Σα∈IMα. Then there exist α1, . . . , αn ∈ I such

that β = Mα1 + · · · + Mαn . Now, by Corollary 3.4, β ∈ Mα2
1+···+α2

n
. Let

α2
1 + · · · + α2

n = γ, so γ ∈ I. Hence, by Proposition 4.7, β ∈ Isz. Therefore

Isz = Σα∈IMα. �

Proposition 4.9. Let I be an ideal in RL and α ∈ RL. Then

(1) Isz =
⋃
Mα⊆IMα.

(2) Isz =
⋃
α∈IMα.

Proof. (1) By Proposition 4.8, it is enough to show that
⋃
Mα⊆IMα = ΣMα⊆IMα.

Since for every Mα ⊆ I, Mα ⊆ ΣMα⊆IMα, we have
⋃
Mα⊆IMα ⊆ ΣMα⊆IMα.

Now, let β ∈ ΣMα⊆IMα. So β ∈ Mα1 + · · · + Mαn , where Mαi ⊆ I for

i = 1, 2, ..., n. Now, by Corollary 3.4, we have Mα1
+ · · ·+Mαn = Mα2

1+···+α2
n
.

Let γ = α2
1 + · · ·+ α2

n. Therefore β ∈Mγ and Mγ ⊆ I. Thus β ∈
⋃
Mα⊆IMα.

(2) By Proposition 4.8, it is enough to show that
⋃
α∈IMα = Σα∈IMα. For

every α ∈ I since Mα ⊆ Σα∈IMα, then
⋃
α∈IMα ⊆ Σα∈IMα. Now, suppose

that β ∈ Σα∈IMα. So β ∈ Mα1
+ · · · + Mαn where αi ∈ I for i = 1, 2, ..., n.

Now, by Corollary 3.4, we have β ∈ Mα2
1+···+α2

n
. Let γ = α2

1 + · · · + α2
n ∈ I.

Therefore β ∈Mγ and thus β ∈
⋃
α∈IMα. Hence Σα∈IMα ⊆

⋃
α∈IMα. �

Corollary 4.10. Let I be an ideal in RL. Then the following statements are

equivalent:

(1) I is a strongly z-ideal.

(2) I = Σα∈IMα = {β ∈ RL : Mβ ⊆ I}.

Proof. (1)⇒ (2) Suppose that I is a strongly z-ideal. Then Isz = I = Isz and,

by Propositions 4.7 and 4.8, we have I = Σα∈IMα = {β ∈ RL : Mβ ⊆ I}.
(2) ⇒ (1) Let I = Σα∈IMα. Since every Mα is a strongly z-ideal and, by

Theorem 3.2, we infer that I is a strongly z-ideal. �

Proposition 4.11. Let I be an ideal of RL and α ∈ RL. If Mα ⊆
√
I then

Mα ⊆ I.

Proof. Let β ∈ Mα ⊆
√
I. Without loss of generality, we may assume that

|β| ≤ 1. Define γ = Σ∞n=12−nβ
1
n . Clearly γ ∈ RL and, since Z(β) = Z(γ)
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and Mα is a strongly z-ideal, then γ ∈ Mα. Hence γ ∈
√
I and so there exists

an element m in N such that γm ∈ I. Furthermore, since for every n ∈ N,

2−nβ
1
n ≤ γ, we have 2−2mβ

1
2m ≤ γ which implies that

(2−2mβ
1

2m )m ≤ γm

and hence 2−2m2

β
1
2 ≤ γm. Now, by [12, Lemma 7.2.1], there exists an element

δ in RL such that β = δγm. This shows β ∈ I and hence Mα ⊆ I. �

Corollary 4.12. Let I and J be two ideals in RL and J be a strongly z-ideal.

If J ⊆
√
I, then J ⊆ I.

By Corollary 4.10, J = Σα∈JMα ⊆
√
I. Hence Mα ⊆

√
I, for every α ∈ J

and, by Proposition 4.11, Mα ⊆ I for every α ∈ J , that is, J ⊆ I.

Corollary 4.13. Let I be an ideal in RL. Then the following statements hold:

(1) (
√
I)sz = Isz.

(2) (
√
I)sz = Isz.

Proof. By Proposition 4.8 and Proposition 4.11, we have

(
√
I)sz = ΣMα⊆

√
IMα = ΣMα⊆IMα = Isz.

Similarly, by Proposition 4.8 and Proposition 4.12, we have

(
√
I)sz = Σα∈

√
IMα = Σα∈IMα = Isz

and the proof is complete. �

Corollary 4.14. Let I be an ideal in RL. Then
√
I is a strongly z-ideal if and

only if I is a strongly z-ideal.

Proof. Let I be a strongly z-ideal. Then, by Remark 3.5 and [7, Proposition

3.3],
√
I = I and hence

√
I is a strongly z-ideal.

Conversely, let
√
I be a strongly z-ideal. Then by Corollary 4.13,

Isz ⊆ I ⊆
√
I = (

√
I)sz = Isz,

so I = Isz and hence I is a strongly z-ideal. �

Corollary 4.15. If I is a proper ideal in RL, then I is a strongly z-ideal if

and only if every minimal prime ideal over I is a strongly z-ideal.

Proof. If every prime ideal minimal over I is a strongly z-ideal, then, by Lemma

4.2,
√
I is a strongly z-ideal and hence, by Corollary 4.14, I is a strongly z-

ideal. Conversely, let P be a minimal prime ideal over a strongly z-ideal I.

Then I = Isz ⊆ P sz ⊆ P and minimality of P implies that P = P sz. Thus P

is a strongly z-ideal. �

Remark 4.16. The next example shows that the converse of Lemma 4.1 is not

true in general.



32 A.A. Estaji, A. Karimi Feizabadi, M. Robat Sarpoushi

Example 4.17. Let I be an ideal of RL which is not semiprime. Put J =
√
I,

then I 6= J. But, by Corollary 4.13, Jsz = Isz and Jsz = Isz.

Proposition 4.18. Let I, J be two ideals and {Iλ}λ∈Λ be a family of ideals of

RL. Then

(1) (IJ)sz = IszJsz.

(2) (IJ)sz = IszJsz.

(3) (
⋂
λ∈Λ Iλ)sz =

⋂
λ∈Λ Iλsz .

(4) (
⋂
λ∈Λ Iλ)sz =

⋂
λ∈Λ I

sz
λ .

(5) (I + J)sz = Isz + Jsz.

(6) (I + J)sz = (Isz + Jsz)sz.

(7) Isz + Jsz ⊆ (I + J)sz.

Proof. For ideals I and J we have Isz ⊆ I ⊆ Isz and Jsz ⊆ J ⊆ Jsz.
(1) We have IJ ⊆ (IJ)sz and IJ ⊆ IszJsz. Since (IJ)sz is the smallest

strongly z-ideal containing IJ , we conclude that (IJ)sz ⊆ IszJsz. Now, suppose

that α ∈ IszJsz. Then α = α1α2 where α1 ∈ Isz and α2 ∈ Jsz. So, by

Proposition 4.7, there exist β1 ∈ I and β2 ∈ J such that α1 ∈ Mβ1
and

α2 ∈Mβ2
. Therefore Z(β1) ⊆ Z(α1) and Z(β2) ⊆ Z(α2) and hence

Z(β1β2) ⊆ Z(α1α2) = Z(α).

Thus, α ∈Mβ1β2 and β1β2 ∈ IJ. So, by Proposition 4.7, α ∈ (IJ)sz. Therefore

IszJsz ⊆ (IJ)sz.

(2) We have (IJ)sz ⊆ IJ and IszJsz ⊆ IJ. Since (IJ)sz is the biggest

strongly z-ideal included in IJ , we infer that IszJsz ⊆ (IJ)sz. Also, we have

(IJ)sz ⊆ Isz and (IJ)sz ⊆ Jsz. Hence (IJ)sz ⊆ Isz ∩ Jsz. Therefore, by [7,

Proposition 5.6] and [12, Lemma 7.2.2],

(IJ)sz ⊆ Isz ∩ Jsz = IszJsz.

Thus (IJ)sz = IszJsz.

(3) We have
⋂
Iλ ⊆ Iλ, for every λ ∈ Λ. Then (

⋂
Iλ)sz ⊆ Iλsz for every

λ ∈ Λ. So (
⋂
Iλ)sz ⊆

⋂
Iλsz . Now let β ∈

⋂
Iλsz . Then β ∈ Iλsz for every

λ ∈ Λ. So, by Proposition 4.7, for every λ ∈ Λ there exists an element α in Iλ
such that β ∈Mα. Therefore α ∈

⋂
Iλ and β ∈Mα. Now, by Proposition 4.7,

β ∈ (
⋂
Iλ)sz. Hence

⋂
Iλsz ⊆ (

⋂
Iλ)sz.

(4) We have
⋂
Iλ ⊆ Iλ, for every λ ∈ Λ. Then (

⋂
Iλ)sz ⊆ Iszλ for every

λ ∈ Λ. So (
⋂
Iλ)sz ⊆

⋂
Iszλ . Now let β ∈

⋂
Iszλ , then β ∈ Iszλ for every λ ∈ Λ.

So, by Proposition 4.7, Mβ ⊆ Iλ for every λ ∈ Λ. Therefore Mβ ⊆
⋂
Iλ. Again,

by Proposition 4.7, β ∈ (
⋂
Iλ)sz.

(5) We have (I+J) ⊆ (I+J)sz and I+J ⊆ Isz +Jsz. Since (I+J)sz is the

smallest strongly z-ideal containing I + J , we infer that (I + J)sz ⊆ Isz + Jsz.

Now, suppose that α ∈ Isz + Jsz. Then α = α1 + α2 where α1 ∈ Isz and

α2 ∈ Jsz. Thus, by Proposition 4.7, there exist β1 ∈ I and β2 ∈ J such that
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α1 ∈Mβ1
and α2 ∈Mβ2

. Therefore Z(β1) ⊆ Z(α1) and Z(β2) ⊆ Z(α2). So

Z(β2
1 + β2

2) = Z(β1) ∩ Z(β2) ⊆ Z(α1) ∩ Z(α2) ⊆ Z(α).

Hence α ∈Mβ2
1+β2

2
. Since β2

1 + β2
2 ∈ I + J , by Proposition 4.7, α ∈ (I + J)sz.

Therefore Isz + Jsz ⊆ (I + J)sz.

(6) From (5) we have (I + J)sz ⊆ (Isz + Jsz)sz. Now, let β ∈ (Isz + Jsz)sz.

Then, by Proposition 4.7, there exists an element α in Isz + Jsz such that

β ∈ Mα. So there exist α1 ∈ Isz and α2 ∈ Jsz such that α = α1 + α2. Again,

by Proposition 4.7, there exist β1 ∈ I and β2 ∈ J such that α1 ∈ Mβ1
and

α2 ∈Mβ2
. Therefore, by Corollary 3.4,

α = α1 + α2 ∈Mβ1
+Mβ2

= Mβ2
1+β2

2
.

Since

Z(β2
1 + β2

2) ⊆ Z(α1 + α2) = Z(α) ⊆ Z(β),

we conclude that β ∈ Mβ2
1+β2

2
. Also, β2

1 + β2
2 ∈ I + J and, by Proposition 4.7

we infer that β ∈ (I + J)sz. Thus (Isz + Jsz)sz ⊆ (I + J)sz.

(7) We have Isz + Jsz ⊆ I + J . Then, since (I + J)sz is the biggest strongly

z-ideal included in I + J , we infer that Isz + Jsz ⊆ (I + J)sz. �

Proposition 4.19. Let P and Q be two prime ideals in RL which are not

chains. If Pm and Qm are minimal prime ideals such that Pm ⊆ P and Qm ⊆
Q, then P +Q = Pm +Qm. In particular, P +Q is a prime strongly z-ideal.

Proof. Clearly Pm +Qm ⊆ P +Q. Now, since Pm and Qm are minimal prime

ideals, we conclude from Corollary 4.3 that Pm and Qm are strongly z-ideals.

By Theorem 3.2, Pm+Qm is a strongly z-ideal and, since Pm+Qm contains the

prime ideal Pm, we infer from [7, Theorem 5.11] that Pm +Qm is prime. Since

the prime ideals Pm+Qm and P contain the prime ideal Pm, we conclude from

[3, Proposition 3.7] that Pm +Qm and P form a chain; that is, P ⊆ Pm +Qm
or Pm + Qm ⊆ P. If Pm + Qm ⊆ P , then the prime ideals P and Q contain

the prime ideal Qm and, by [3, Proposition 3.7], P and Q form a chain, which

is a contradiction. Hence P ⊆ Pm + Qm. Similarly, Q ⊆ Pm + Qm. Therefore

P + Q ⊆ Pm + Qm. Thus P + Q = Pm + Qm. Hence P + Q is a strongly

z-ideal and, by [7, Theorem 5.11], we conclude that P +Q is a prime strongly

z-ideal. �

Corollary 4.20. Let P and Q be two prime ideals in RL. Then (P +Q)sz =

P sz +Qsz.

Proof. If P and Q are chains, we are through. So, suppose that P and Q are

not chains. Let Pm and Qm are minimal prime ideals such that Pm ⊆ P and

Qm ⊆ Q. Therefore, by Proposition 4.19, P + Q = Pm + Qm is a strongly

z-ideals. By Corollary 4.3, Pm and Qm are strongly z-ideals, which follows

that Pm ⊆ P sz and Qm ⊆ Qsz. So

Pm +Qm ⊆ P sz +Qsz ⊆ P +Q = Pm +Qm.
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Therefore, by Theorem 3.2, we have

(P +Q)sz = (Pm +Qm)sz = Pm +Qm = P sz +Qsz

and the proof is complete. �
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