Sums of Strongly z-Ideals and Prime Ideals in $\mathcal{R}L$

A.A. Estaji^{a,*}, A. Karimi Feizabadi^b, and M. Robat Sarpoushi^a

^aFaculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

^bDepartment of Mathematics, Gorgan Branch, Islamic Azad University, Gorgan, Iran.

> E-mail: aaestaji@hsu.ac.ir E-mail: akarimi@gorganiau.ac.ir E-mail: M.sarpooshi@yahoo.com

ABSTRACT. It is well known that the sum of two z-ideals in C(X) is either C(X) or a z-ideal. The main aim of this paper is to study the sum of strongly z-ideals in $\mathcal{R}L$, the ring of real-valued continuous functions on a frame L. For every ideal I in $\mathcal{R}L$, we introduce the biggest strongly zideal included in I and the smallest strongly z-ideal containing I, denoted by I^{sz} and I_{sz} , respectively. We study some properties of I^{sz} and I_{sz} . Also, it is observed that the sum of any family of minimal prime ideals in the ring $\mathcal{R}L$ is either $\mathcal{R}L$ or a prime strongly z-ideal in $\mathcal{R}L$. In particular, we show that the sum of two prime ideals in $\mathcal{R}L$ which are not chains is a prime strongly z-ideal.

Keywords: Frame, Ring of real-valued continuous functions, z-Ideal, Strongly z-ideal

2010 Mathematics Subject Classification: 06D22, 13A15, 54C05, 54C30.

^{*}Corresponding Author

1. Introduction

An ideal I of a ring A (the term "ring" means a commutative ring with identity) is a z-ideal if whenever two elements of A are in the same of maximal ideals and I contains one of the elements, then it also contains the other. This algebraic definition of z-ideal was coined in the context of rings of continuous functions by Kohls in [16] and is also recorded as Problem 4A.5 in the text Rings of continuous functions by Gillman and Jerison [10]. Also, Estaji in [6] introduced and studied z-weak ideals and prime weak ideals in the rings of continuous functions on a topological space. A study of z-ideals in rings generally has been carried out by Mason in the article [17]. In pointfree topology, z-ideals were introduced by Dube in [4] where he showed that the algebraic definition agree with the "topological" definition in terms of the cozero map. It was shown in [10, 20] that if B is an absolutely convex subring of the ring of all continuous functions on a topological space, then a sum of two z-ideals of B is a z-ideal. If B is a ring (or a module) and K is an ideal (or a submodule) of B, let $B(K) = \{(a,b) \in B \times B : a-b \in K\}$. In [11], this construction is used to find a lattice-ordered subring of the ring $C(\mathbb{R})$ of all continuous real-valued functions on the real line \mathbb{R} with two z-ideals whose sum is not even semiprime. Therefore sum of two z-ideals in $\mathcal{R}L$ may not be a z-ideal, and thus in this paper, we discuss on sum of strongly z-ideals in the ring $\mathcal{R}L$. The concept of zero-sets and strongly z-ideals in $\mathcal{R}L$ is introduced in [7]. An ideal I in $\mathcal{R}L$ is called strongly z-ideal if $Z(\alpha) \in Z[I]$ implies $\alpha \in I$, where $Z(\alpha)$ is the zero-set of α in $\mathcal{R}L$.

This paper is organized as follows. In Section 2, we review some basic notions and properties of a frame and the pointfree version of the ring of continuous real-valued functions. Also, we recall some properties of z-ideals and strongly z-ideals in $\mathcal{R}L$.

In Section 3, we study the sum of strongly z-ideals in $\mathcal{R}L$ and we show that, under some conditions, the sum of strongly z-ideals is a strongly z-ideal (Theorem 3.2).

In Section 4, for every ideal I in $\mathcal{R}L$, we introduce the biggest strongly z-ideal included in I, denoted by I^{sz} and the smallest strongly z-ideal containing I, denoted by I_{sz} , and we study I^{sz} and I_{sz} . Similar to C(X), we show that the sum of a family of minimal prime ideals in the ring $\mathcal{R}L$ is either $\mathcal{R}L$ or a prime ideal in $\mathcal{R}L$ (Corollary 4.4). Finally, we show that the sum of two prime ideals in $\mathcal{R}L$ which are not chains, is a prime strongly z-ideal (Proposition 4.19).

2. Preliminaries

In this section, we collect some notations from the literature on frames and the ring of continuous real-valued functions on a frame. Our references for frames are [14, 18] and for the ring $\mathcal{R}L$ are [1, 2].

A frame is a complete lattice L in which the distributive law

$$x \land \bigvee S = \bigvee \{x \land s : s \in S\}$$

holds for all $x \in L$ and $S \subseteq L$. We denote the top element and the bottom element of L by \top and \bot , respectively.

A frame homomorphism (or a frame map) is a map between frames which preserves finite meets, containing the top element, and arbitrary joins, containing the bottom element. An element $p \in L$ is said to be prime if p < T and $a \wedge b \leq p$ implies $a \leq p$ or $b \leq p$. A lattice ordered ring A is called an f-ring, if $(f \wedge g)h = fh \wedge gh$ for every $f, g, h \in A$ and every $0 \leq h \in A$.

Recall the contravariant functor Σ from **Frm** to the category **Top** of topological spaces which assigns to each frame L its spectrum ΣL of prime elements with $\Sigma_a = \{p \in \Sigma L | a \leq p\}$ $(a \in L)$ as its open sets.

An element a of a frame L is said to be completely below b, written $a \prec \prec b$, if there exists a sequence $\{c_q\}$, $q \in \mathbb{Q} \cap [0,1]$, where $c_0 = a$, $c_1 = b$, and $c_p \prec c_q$ if p < q where $u \prec v$ means $u^* \lor v = \top$ where $u^* = \bigvee \{x \in L : x \land u = \bot\}$. A frame L is called completely regular if each $a \in L$ is a join of elements completely below it.

Regarding the frame $\mathcal{L}(\mathbb{R})$ of reals and the f-ring $\mathcal{R}L$ of continuous real functions on L, we use the notation of [2]. See also [1]

The cozero map is the map $coz : \mathcal{R}L \to L$, defined by

$$coz(\alpha) = \bigvee {\{\alpha(p,0) \lor \alpha(0,q) : p,q \in \mathbb{Q}\}}.$$

A cozero element of L is an element of the form $\cos(\alpha)$ for some $\alpha \in \mathcal{R}L$ (see [2]). The cozero part of L is denoted by $\operatorname{Coz} L$. It is known that L is completely regular if and only if $\operatorname{Coz} L$ generates L. A frame L is called cozdense if whenever $\Sigma_{\cos(\alpha)} = \emptyset$, then $\alpha = \mathbf{0}$ (see [15]).

Here we recall some notations from [5]. Let $a \in L$ and $\alpha \in \mathcal{R}L$. The sets $\{r \in \mathbb{Q} : \alpha(-,r) \leq a\}$ and $\{s \in \mathbb{Q} : \alpha(s,-) \leq a\}$ are denoted by $L(a,\alpha)$ and $U(a,\alpha)$, respectively. For $a \neq T$ it is obvious that for each $r \in L(a,\alpha)$ and $s \in U(a,\alpha)$, $r \leq s$. In fact, we have that if $p \in \Sigma L$ and $\alpha \in \mathcal{R}L$, then $(L(p,\alpha),U(p,\alpha))$ is a Dedekind cut for a real number which is denoted by $\widetilde{p}(\alpha)$ (see [5]). Throughout this paper, for every $\alpha \in \mathcal{R}L$ we define $\alpha[p] = \widetilde{p}(\alpha)$ where p is a prime element of L.

Recall from [7] that for $\alpha \in \mathcal{R}L$, $Z(\alpha) = \{p \in \Sigma L : \alpha[p] = 0\}$ is called the zero-set of α . For every $A \subseteq \mathcal{R}L$, we write $Z[A] = \{Z(\alpha) : \alpha \in A\}$. Also we let $Z[\mathcal{R}L] = Z[L]$ for simplicity. An ideal I in $\mathcal{R}L$ is called a strongly z-ideal if $Z(\alpha) \in Z[I]$ implies that $\alpha \in I$, that is $I = Z^{\leftarrow}[Z[I]]$, where $Z^{\leftarrow}[Z[I]] = \{\alpha \in \mathcal{R}L : Z(\alpha) \in Z[I]\}$ (see [7, 8]). Note that the intersection of an arbitrary family of strongly z-ideals is a strongly z-ideal. Also, in the ring $\mathcal{R}L$, every strongly z-ideal is a z-ideal (see [7, Proposition 5.6]).

For every $f \in C(\Sigma L)$, let us recall that there exists a unique frame map $\widehat{f}: \mathcal{L}(\mathbb{R}) \to L \text{ such that}$

$$\widehat{f}(p,q) = \bigvee \{a \in L : f(\Sigma_a) \subseteq \llbracket p, q \llbracket \},\$$

for every $p, q \in \mathbb{Q}$, where $[p, q] = \{x \in \mathbb{R} : p < x < q\}$. In addition, we have $Z(\widehat{f}) = Z(f)$ (see [15]). For every $\alpha \in \mathcal{R}L$, we define $\overline{\alpha} : \Sigma L \to \mathbb{R}$ given by $\overline{\alpha}(p) = \alpha[p]$, for $p \in \Sigma L$. It is clear that $Z(\alpha) = Z(\overline{\alpha})$. Also, we have:

Proposition 2.1. [9] Let L be a frame. Let $\varphi: C(\Sigma L) \to \mathcal{R}L$ with $\varphi(f) = \widehat{f}$ and $\psi: \mathcal{R}L \to C(\Sigma L)$ with $\psi(\alpha) = \overline{\alpha}$. Then ψ is an f-ring homomorphism and a monomorphism. If L is a coz-dense frame, then ψ is an isomorphism, and $\psi^{-1} = \varphi$.

For every $\alpha \in \mathcal{R}L$, we put $M_{\alpha} := \{\beta \in \mathcal{R}L : Z(\alpha) \subseteq Z(\beta)\}$. In addition we have

Proposition 2.2. For every $\alpha \in \mathcal{R}L$, M_{α} is a strongly z-ideal of $\mathcal{R}L$.

3. On Sum of Strongly z-Ideals in $\mathcal{R}L$

As is well-known, the sum of two z-ideals in C(X) is either C(X) or a zideal, see [10, Lemma 14.8]. Fortunately, the proof of this result in [20] can be modified for $\mathcal{R}L$ and is presented below.

Lemma 3.1. Let $\alpha, \beta, \gamma \in \mathcal{R}L$ and $Z(\alpha) \supseteq Z(\beta) \cap Z(\gamma)$. Define

$$h(p) = \begin{cases} 0 & p \in Z(\beta) \cap Z(\gamma), \\ \frac{\overline{\alpha}(p)\overline{\beta}^2(p)}{\overline{\gamma}^2(p) + \overline{\beta}^2(p)} & p \notin Z(\beta) \cap Z(\gamma) \end{cases}$$

and

$$k(p) = \begin{cases} 0 & p \in Z(\beta) \cap Z(\gamma), \\ \frac{\overline{\alpha}(p)\overline{\gamma}^2(p)}{\overline{\gamma}^2(p) + \overline{\beta}^2(p)} & p \notin Z(\beta) \cap Z(\gamma). \end{cases}$$

Then we have the following facts.

- (1) $|h| \lor |k| \le |\overline{\alpha}|$
- (2) $\overline{\alpha} = h + k$. (3) $\overline{\alpha}\overline{\beta}^2 = h(\overline{\beta}^2 + \overline{\gamma}^2)$ and $\overline{\alpha}\overline{\gamma}^2 = k(\overline{\beta}^2 + \overline{\gamma}^2)$.
- (4) $h, k \in C(\Sigma L)$.

Proof. Since $\overline{\alpha}, \overline{\beta}, \overline{\gamma}: \Sigma L \to \mathbb{R}$ are continuous functions and $\overline{\gamma}^2(p) + \overline{\beta}^2(p) \neq 0$ for every $p \notin Z(\beta) \cap Z(\gamma)$, we infer that h and k are continuous. Also,

$$(h+k)(p) = (\frac{\overline{\alpha}\overline{\beta}^2}{\overline{\gamma}^2 + \overline{\beta}^2} + \frac{\overline{\alpha}\overline{\gamma}^2}{\overline{\gamma}^2 + \overline{\beta}^2})(p) = \overline{\alpha}(p).$$

for every $p \in \Sigma L$. Therefore $h + k = \overline{\alpha}$. It is evident that $|h| \leq |\overline{\alpha}|$ and $|k| \leq |\overline{\alpha}|$, hence $|h| \vee |k| \leq |\overline{\alpha}|$. Clearly $\overline{\alpha} \, \overline{\gamma}^2 = k(\overline{\beta}^2 + \overline{\gamma}^2)$ and $\overline{\alpha} \overline{\beta}^2 = h(\overline{\beta}^2 + \overline{\gamma}^2)$.

In what follows, all frames are assumed to be coz-dense.

Theorem 3.2. Let I and J be two strongly z-ideals of $\mathcal{R}L$. Then $I + J = \mathcal{R}L$ or I + J is a strongly z-ideal.

Proof. Let $I + J \neq \mathcal{R}L$ and $\alpha \in \mathcal{R}L$ be an element with $Z(\alpha) = Z(\beta)$, where $\beta \in I + J$. We show that $\alpha \in I + J$. But $\beta = \beta_1 + \beta_2$, where $\beta_1 \in I$ and $\beta_2 \in J$. Clearly,

$$Z(\alpha) = Z(\beta) \supseteq Z(\beta_1) \cap Z(\beta_2).$$

Let h and k be as in the previous lemma, then $h+k=\overline{\alpha}$. But $Z(\beta_1)=Z(\overline{\beta_1})\subseteq Z(h)$ and $Z(\beta_2)=Z(\overline{\beta_2})\subseteq Z(k)$. Now, let $\overline{I}=\{\overline{\delta}|\delta\in I\}\subseteq C(\Sigma L)$ and $\overline{J}=\{\overline{\sigma}|\sigma\in J\}\subseteq C(\Sigma L)$. Since I and J are strongly z-ideals of $\mathcal{R}L$ then \overline{I} and \overline{J} are strongly z-ideals of $C(\Sigma L)$. Also, $\overline{I}+\overline{J}$ is a z-ideal of $C(\Sigma L)$. Therefore $h\in \overline{I}$ and $k\in \overline{J}$. So $\overline{\alpha}=h+k\in \overline{I}+\overline{J}$. Thus, by Proposition 2.1,

$$\alpha = \widehat{\overline{\alpha}} \in \widehat{\overline{I} + \overline{J}} = \widehat{\overline{I}} + \widehat{\overline{J}} = I + J.$$

Hence $\alpha \in I + J$ and we are through.

Corollary 3.3. Let $F = \{I_{\lambda}\}_{{\lambda} \in \Lambda}$ be a family of strongly z-ideals in $\mathcal{R}L$. Then either $\Sigma_{{\lambda} \in \Lambda} I_{\lambda} = \mathcal{R}L$ or $\Sigma_{{\lambda} \in \Lambda} I_{\lambda}$ is a strongly z-ideal.

Corollary 3.4. If $\alpha, \beta \in \mathcal{R}L$, then $M_{\alpha} + M_{\beta} = M_{\alpha^2 + \beta^2}$.

Proof. Let $\gamma \in M_{\alpha^2+\beta^2}$, then $Z(\alpha^2+\beta^2) \subseteq Z(\gamma)$. Since, by [7, Proposition 3.3], $\alpha^2 \in M_{\alpha}$ and $\beta^2 \in M_{\beta}$, we conclude that $\alpha^2+\beta^2 \in M_{\alpha}+M_{\beta}$. Also, by Proposition 2.2 and Theorem 3.2, $M_{\alpha}+M_{\beta}$ is a strongly z-ideal, then $\gamma \in M_{\alpha}+M_{\beta}$. Hence $M_{\alpha^2+\beta^2} \subseteq M_{\alpha}+M_{\beta}$. Conversely, let $\delta \in M_{\alpha}, \eta \in M_{\beta}$ and $\gamma = \delta + \eta \in M_{\alpha} + M_{\beta}$. Then

$$Z(\alpha^2 + \beta^2) = Z(\alpha) \cap Z(\beta) \subseteq Z(\delta) \cap Z(\eta) \subseteq Z(\gamma),$$

hence $\gamma \in M_{\alpha^2+\beta^2}$, that is $M_{\alpha} + M_{\beta} \subseteq M_{\alpha^2+\beta^2}$

Remark 3.5. Let $\alpha, \beta \in \mathcal{R}L$. Then $M_{\alpha}M_{\beta} = M_{\alpha} \cap M_{\beta} = M_{\alpha\beta}$. For, by Proposition 2.2, [7, Proposition 5.6] and [12, Lemma 7.2.2], $M_{\alpha}M_{\beta} = M_{\alpha} \cap M_{\beta}$. Also, by [7, Proposition 3.3], we have

$$\gamma \in M_{\alpha} \cap M_{\beta} \Leftrightarrow Z(\alpha) \cup Z(\beta) \subseteq Z(\gamma) \Leftrightarrow Z(\alpha\beta) \subseteq Z(\gamma) \Leftrightarrow \gamma \in M_{\alpha\beta}$$

4. Strongly z-Ideals
$$I_{sz}$$
 and I^{sz}

Let I be an ideal of $\mathcal{R}L$. It is clear that $Z^{\leftarrow}[Z[I]]$ is a strongly z-ideal containing I. It is observed that this ideal is the intersection of all the strongly z-ideals containing I. So it is the smallest strongly z-ideal containing I. We denote it by I_{sz} . Also, by Theorem 3.2, the sum of strongly z-ideals included in I is a strongly z-ideal and it is the biggest strongly z-ideal included in I. We denote it by I^{sz} . Therefore $I^{sz} \subseteq I \subseteq I_{sz}$ show that every ideal I in $\mathcal{R}L$ stand between two strongly z-ideals. In this section, we study some properties

of strongly z-ideals I_{sz} and I^{sz} as the biggest strongly z-ideal and the smallest strongly z-ideal included in and containing I, respectively.

Lemma 4.1. Let I and J be ideals of $\mathcal{R}L$ such that $I \subseteq J$, then

- (1) $I^{sz} \subset J^{sz}$.
- (2) $I_{sz} \subseteq J_{sz}$.

Proof. It is evident.

Proposition 4.2. If I is a strongly z-ideal of RL and P is a minimal prime ideal over I, then P is a strongly z-ideal of RL.

Proof. Suppose that P is not a strongly z-ideal. Then there exist $\alpha, \beta \in \mathcal{R}L$ such that $Z(\alpha) = Z(\beta)$, $\alpha \in P$ and $\beta \notin P$. Put $S = (\mathcal{R}L \setminus P) \cup \{\gamma \alpha^n : \gamma \notin P, n \in \mathbb{N}\}$. The S is a multiplicatively closed subset and $S \cap I = \emptyset$. Therefore there exists a prime ideal, say P', such that $I \subseteq P'$ and $P' \cap S = \emptyset$ (see [13, Theorem 3.44]). Now, if $\delta \in P'$, then $\delta \notin S$ and so $\delta \in P$, that is, $P' \subseteq P$. Also, $\alpha \in P$ but $\alpha \notin P'$. Hence $P' \subset P$, which is a contradiction.

Corollary 4.3. Every minimal prime ideal of RL is a strongly z-ideal.

Proof. Let P be a minimal prime ideal of $\mathcal{R}L$. Clearly, the ideal $(\mathbf{0})$ is a strongly z-ideal and it is included in every ideal. Thus, by Proposition 4.2, P is a strongly z-ideal.

Corollary 4.4. Let $F = \{P_{\lambda}\}_{{\lambda} \in {\Lambda}}$ be a family of minimal prime ideals in $\mathcal{R}L$. Then $\Sigma_{{\lambda} \in {\Lambda}} P_{{\lambda}} = \mathcal{R}L$ or $P = \Sigma_{{\lambda} \in {\Lambda}} P_{{\lambda}}$ is a prime ideal in $\mathcal{R}L$.

Proof. It is a consequence of Corollary 4.3, Theorem 3.2, and [7, Theorem 5.11].

Proposition 4.5. Let P be a prime ideal in $\mathcal{R}L$. Then P^{sz} and P_{sz} are prime ideals.

Proof. Let P be a prime idea. Then P_{sz} is a strongly z-ideal containing P. Hence, by [7, Theorem 5.11], P_{sz} is prime. On the other hand, P contains a minimal prime ideal, say Q. But, by Corollary 4.3, Q is a strongly z-ideal. Since P^{sz} is the biggest strongly z-ideal included in P, we infer that $Q \subseteq P^{sz}$. Thus, by [7, Theorem 5.11], P^{sz} is prime. Hence $P^{sz} \subseteq P \subseteq P_{sz}$ says that every prime ideal of $\mathcal{R}L$ stands between two prime strongly z-ideals.

Lemma 4.6. Let $\alpha, \beta \in \mathcal{R}L$, then the following statements hold:

- (1) $M_{\alpha} \subseteq M_{\beta}$ if and only if $Z(\beta) \subseteq Z(\alpha)$.
- (2) $M_{\alpha} = M_{\beta}$ if and only if $Z(\beta) = Z(\alpha)$.

Proof. It is evident.

Proposition 4.7. Let I be an ideal in RL. Then

- (1) $I^{sz} = \{ \alpha \in \mathcal{R}L : M_{\alpha} \subseteq I \}.$
- (2) $I_{sz} = \{ \beta \in \mathcal{R}L : \beta \in M_{\alpha} \text{ for some } \alpha \in I \}.$

Proof. (1) First, we show that $J = \{\alpha \in \mathcal{R}L : M_{\alpha} \subseteq I\}$ is an ideal. To do this, suppose that $\alpha, \beta \in J$. So $M_{\alpha} \subseteq I$ and $M_{\beta} \subseteq I$. Then, by Corollary 3.4,

$$M_{\alpha^2+\beta^2} = M_{\alpha} + M_{\beta} \subseteq I.$$

Again, by Lemma 4.6, $Z(\alpha^2 + \beta^2) \subseteq Z(\alpha + \beta)$ implies that $M_{\alpha+\beta} \subseteq M_{\alpha^2+\beta^2}$. Thus $M_{\alpha+\beta} \subseteq I$ and hence $\alpha + \beta \in J$. Now, suppose that $\alpha \in J$ and $\beta \in \mathcal{R}L$. So $M_{\alpha} \subseteq I$. Also we have $\alpha \in M_{\alpha} \subseteq I$. Since I is an ideal we infer that $\alpha\beta \in I$. Now, by Remark 3.5,

$$M_{\alpha\beta} = M_{\alpha} \cap M_{\beta} \subseteq M_{\alpha} \subseteq I.$$

Therefore $\alpha\beta \in J$ and thus J is an ideal. Now, we show that J is a strongly z-ideal. Suppose that $Z(\beta) \subseteq Z(\gamma)$ where $\beta \in J$ and $\gamma \in \mathcal{R}L$. So, by Lemma 4.6, $M_{\gamma} \subseteq M_{\beta}$. Since $\beta \in J$, it implies that $M_{\beta} \subseteq I$ and hence $M_{\gamma} \subseteq I$. Therefore $\gamma \in J$. Thus J is a strongly z-ideal.

Finally, we show that J is the biggest strongly z-ideal included in I. It is clear that $J \subseteq I$, because if $\alpha \in J$ then $M_{\alpha} \subseteq I$. But $\alpha \in M_{\alpha}$ implies that $\alpha \in I$. Now suppose that K is a strongly z-ideal such that $K \subseteq I$. Let $\beta \in K$. Since K is a strongly z-ideal, $M_{\beta} \subseteq K$. But $K \subseteq I$, therefore $M_{\beta} \subseteq I$ and so $\beta \in J$. Hence $K \subseteq J$. Thus $J = I^{sz}$.

(2) First, we show that $J = \{\beta \in \mathcal{R}L : \beta \in M_{\alpha} \text{ for some } \alpha \in I\}$ is an ideal. For doing this, suppose that $\beta, \gamma \in J$. Then there exist $\alpha_1, \alpha_2 \in I$ such that $\beta \in M_{\alpha_1}$ and $\gamma \in M_{\alpha_2}$. Now, by Corollary 3.4,

$$\beta + \gamma \in M_{\alpha_1} + M_{\alpha_2} = M_{\alpha_1^2 + \alpha_2^2}.$$

Therefore $\beta + \gamma \in J$. Now, let $\beta \in J$ and $\gamma \in \mathcal{R}L$. Since $\beta \in J$, there is an element α in I such that $\beta \in M_{\alpha}$. Then $Z(\alpha) \subseteq Z(\beta)$ and $Z(\gamma) \subseteq Z(\gamma)$ and so $Z(\alpha) \subseteq Z(\alpha\gamma) \subseteq Z(\beta\gamma)$. Also, since $\alpha \in M_{\alpha}$ and M_{α} is a strongly z-ideal we conclude that $\beta\gamma \in M_{\alpha}$. Therefore $\beta\gamma \in J$ and thus J is an ideal. Now, we show that J is a strongly z-ideal. To do this, suppose that $Z(\beta) \subseteq Z(\gamma)$ where $\beta \in J$ and $\gamma \in \mathcal{R}L$. Then, $\beta \in J$ implies that there exists an element α in I such that $\beta \in M_{\alpha}$. Hence $Z(\alpha) \subseteq Z(\beta)$, and so $Z(\alpha) \subseteq Z(\gamma)$. Also, since $\alpha \in M_{\alpha}$ and M_{α} is a strongly z-ideal, we infer that $\gamma \in M_{\alpha}$. Hence $\gamma \in J$. Therefore J is a strongly z-ideal.

Finally, we show that J is the smallest strongly z-ideal containing I. It is clear that $I \subseteq J$. Now, suppose that K is a strongly z-ideal such that $I \subseteq K$. Let $\beta \in J$. Then there exists an element α in I such that $\beta \in M_{\alpha}$, and hence $Z(\alpha) \subseteq Z(\beta)$. Since $\alpha \in K$ and K is a strongly z-ideal, it follows that $\beta \in K$. Therefore $J \subseteq K$. Thus $J = I_{sz}$ and the proof is complete.

Proposition 4.8. Let I be an ideal in $\mathcal{R}L$ and $\alpha \in \mathcal{R}L$. Then

(1)
$$I^{sz} = \sum_{M_{\alpha} \subset I} M_{\alpha}$$
.

- (2) $I_{sz} = \sum_{\alpha \in I} M_{\alpha}$.
- Proof. (1) Since, by Proposition 2.2, every M_{α} is a strongly z-ideal, we infer from Theorem 3.2 that $\Sigma_{M_{\alpha}\subseteq I}M_{\alpha}$ is a strongly z-ideal. Also, it is clear that $\Sigma_{M_{\alpha}\subseteq I}M_{\alpha}\subseteq I$. Now, we show that $\Sigma_{M_{\alpha}\subseteq I}M_{\alpha}$ is the biggest strongly z-ideal included in I. Let K be a strongly z-ideal such that $K\subseteq I$. Let $\beta\in K$. Then $M_{\beta}\subseteq K\subseteq I$ and so $\beta\in\Sigma_{M_{\alpha}\subseteq I}M_{\alpha}$. Thus $K\subseteq\Sigma_{M_{\alpha}\subseteq I}M_{\alpha}$. Therefore $I^{sz}=\Sigma_{M_{\alpha}\subseteq I}M_{\alpha}$.
- (2) Since, by Proposition 2.2, every M_{α} is a strongly z-ideal, we can conclude from Theorem 3.2 that $\Sigma_{\alpha\in I}M_{\alpha}$ is a strongly z-ideal. Clearly, $I\subseteq \Sigma_{\alpha\in I}M_{\alpha}$. Now, we show that $\Sigma_{\alpha\in I}M_{\alpha}$ is the smallest strongly z-ideal containing I. Suppose that $\beta\in\Sigma_{\alpha\in I}M_{\alpha}$. Then there exist $\alpha_1,\ldots,\alpha_n\in I$ such that $\beta=M_{\alpha_1}+\cdots+M_{\alpha_n}$. Now, by Corollary 3.4, $\beta\in M_{\alpha_1^2+\cdots+\alpha_n^2}$. Let $\alpha_1^2+\cdots+\alpha_n^2=\gamma$, so $\gamma\in I$. Hence, by Proposition 4.7, $\beta\in I_{sz}$. Therefore $I_{sz}=\Sigma_{\alpha\in I}M_{\alpha}$.

Proposition 4.9. Let I be an ideal in $\mathcal{R}L$ and $\alpha \in \mathcal{R}L$. Then

- (1) $I^{sz} = \bigcup_{M_{\alpha} \subset I} M_{\alpha}$.
- (2) $I_{sz} = \bigcup_{\alpha \in I} M_{\alpha}$.
- Proof. (1) By Proposition 4.8, it is enough to show that $\bigcup_{M_{\alpha}\subseteq I} M_{\alpha} = \sum_{M_{\alpha}\subseteq I} M_{\alpha}$. Since for every $M_{\alpha}\subseteq I$, $M_{\alpha}\subseteq \sum_{M_{\alpha}\subseteq I} M_{\alpha}$, we have $\bigcup_{M_{\alpha}\subseteq I} M_{\alpha}\subseteq \sum_{M_{\alpha}\subseteq I} M_{\alpha}$. Now, let $\beta\in \sum_{M_{\alpha}\subseteq I} M_{\alpha}$. So $\beta\in M_{\alpha_1}+\cdots+M_{\alpha_n}$, where $M_{\alpha_i}\subseteq I$ for i=1,2,...,n. Now, by Corollary 3.4, we have $M_{\alpha_1}+\cdots+M_{\alpha_n}=M_{\alpha_1^2+\cdots+\alpha_n^2}$. Let $\gamma=\alpha_1^2+\cdots+\alpha_n^2$. Therefore $\beta\in M_{\gamma}$ and $M_{\gamma}\subseteq I$. Thus $\beta\in \bigcup_{M_{\alpha}\subseteq I} M_{\alpha}$.
- (2) By Proposition 4.8, it is enough to show that $\bigcup_{\alpha\in I} M_{\alpha} = \Sigma_{\alpha\in I} M_{\alpha}$. For every $\alpha\in I$ since $M_{\alpha}\subseteq \Sigma_{\alpha\in I}M_{\alpha}$, then $\bigcup_{\alpha\in I} M_{\alpha}\subseteq \Sigma_{\alpha\in I}M_{\alpha}$. Now, suppose that $\beta\in \Sigma_{\alpha\in I}M_{\alpha}$. So $\beta\in M_{\alpha_1}+\cdots+M_{\alpha_n}$ where $\alpha_i\in I$ for i=1,2,...,n. Now, by Corollary 3.4, we have $\beta\in M_{\alpha_1^2+\cdots+\alpha_n^2}$. Let $\gamma=\alpha_1^2+\cdots+\alpha_n^2\in I$. Therefore $\beta\in M_{\gamma}$ and thus $\beta\in \bigcup_{\alpha\in I} M_{\alpha}$. Hence $\Sigma_{\alpha\in I}M_{\alpha}\subseteq \bigcup_{\alpha\in I} M_{\alpha}$.

Corollary 4.10. Let I be an ideal in RL. Then the following statements are equivalent:

- (1) I is a strongly z-ideal.
- (2) $I = \sum_{\alpha \in I} M_{\alpha} = \{ \beta \in \mathcal{R}L : M_{\beta} \subseteq I \}.$

Proof. (1) \Rightarrow (2) Suppose that I is a strongly z-ideal. Then $I^{sz} = I = I_{sz}$ and, by Propositions 4.7 and 4.8, we have $I = \sum_{\alpha \in I} M_{\alpha} = \{\beta \in \mathcal{R}L : M_{\beta} \subseteq I\}$.

(2) \Rightarrow (1) Let $I = \Sigma_{\alpha \in I} M_{\alpha}$. Since every M_{α} is a strongly z-ideal and, by Theorem 3.2, we infer that I is a strongly z-ideal.

Proposition 4.11. Let I be an ideal of $\mathcal{R}L$ and $\alpha \in \mathcal{R}L$. If $M_{\alpha} \subseteq \sqrt{I}$ then $M_{\alpha} \subseteq I$.

Proof. Let $\beta \in M_{\alpha} \subseteq \sqrt{I}$. Without loss of generality, we may assume that $|\beta| \leq 1$. Define $\gamma = \sum_{n=1}^{\infty} 2^{-n} \beta^{\frac{1}{n}}$. Clearly $\gamma \in \mathcal{R}L$ and, since $Z(\beta) = Z(\gamma)$

and M_{α} is a strongly z-ideal, then $\gamma \in M_{\alpha}$. Hence $\gamma \in \sqrt{I}$ and so there exists an element m in \mathbb{N} such that $\gamma^m \in I$. Furthermore, since for every $n \in \mathbb{N}$, $2^{-n}\beta^{\frac{1}{n}} \leq \gamma$, we have $2^{-2m}\beta^{\frac{1}{2m}} \leq \gamma$ which implies that

$$(2^{-2m}\beta^{\frac{1}{2m}})^m \le \gamma^m$$

and hence $2^{-2m^2}\beta^{\frac{1}{2}} \leq \gamma^m$. Now, by [12, Lemma 7.2.1], there exists an element δ in $\mathcal{R}L$ such that $\beta = \delta \gamma^m$. This shows $\beta \in I$ and hence $M_{\alpha} \subseteq I$.

Corollary 4.12. Let I and J be two ideals in $\mathcal{R}L$ and J be a strongly z-ideal. If $J \subseteq \sqrt{I}$, then $J \subseteq I$.

By Corollary 4.10, $J = \sum_{\alpha \in J} M_{\alpha} \subseteq \sqrt{I}$. Hence $M_{\alpha} \subseteq \sqrt{I}$, for every $\alpha \in J$ and, by Proposition 4.11, $M_{\alpha} \subseteq I$ for every $\alpha \in J$, that is, $J \subseteq I$.

Corollary 4.13. Let I be an ideal in RL. Then the following statements hold:

- $(1) \ (\sqrt{I})^{sz} = I^{sz}.$
- $(2) \ (\sqrt{I})_{sz} = I_{sz}.$

Proof. By Proposition 4.8 and Proposition 4.11, we have

$$(\sqrt{I})^{sz} = \Sigma_{M_{\alpha} \subseteq \sqrt{I}} M_{\alpha} = \Sigma_{M_{\alpha} \subseteq I} M_{\alpha} = I^{sz}.$$

Similarly, by Proposition 4.8 and Proposition 4.12, we have

$$(\sqrt{I})_{sz} = \sum_{\alpha \in \sqrt{I}} M_{\alpha} = \sum_{\alpha \in I} M_{\alpha} = I_{sz}$$

and the proof is complete.

Corollary 4.14. Let I be an ideal in $\mathcal{R}L$. Then \sqrt{I} is a strongly z-ideal if and only if I is a strongly z-ideal.

Proof. Let I be a strongly z-ideal. Then, by Remark 3.5 and [7, Proposition 3.3], $\sqrt{I} = I$ and hence \sqrt{I} is a strongly z-ideal.

Conversely, let \sqrt{I} be a strongly z-ideal. Then by Corollary 4.13,

$$I^{sz} \subseteq I \subseteq \sqrt{I} = (\sqrt{I})^{sz} = I^{sz},$$

so $I = I^{sz}$ and hence I is a strongly z-ideal.

Corollary 4.15. If I is a proper ideal in $\mathcal{R}L$, then I is a strongly z-ideal if and only if every minimal prime ideal over I is a strongly z-ideal.

Proof. If every prime ideal minimal over I is a strongly z-ideal, then, by Lemma 4.2, \sqrt{I} is a strongly z-ideal and hence, by Corollary 4.14, I is a strongly z-ideal. Conversely, let P be a minimal prime ideal over a strongly z-ideal I. Then $I = I^{sz} \subseteq P^{sz} \subseteq P$ and minimality of P implies that $P = P^{sz}$. Thus P is a strongly z-ideal.

Remark 4.16. The next example shows that the converse of Lemma 4.1 is not true in general.

EXAMPLE 4.17. Let I be an ideal of $\mathcal{R}L$ which is not semiprime. Put $J = \sqrt{I}$, then $I \neq J$. But, by Corollary 4.13, $J^{sz} = I^{sz}$ and $J_{sz} = I_{sz}$.

Proposition 4.18. Let I, J be two ideals and $\{I_{\lambda}\}_{{\lambda} \in \Lambda}$ be a family of ideals of $\mathcal{R}L$. Then

- (1) $(IJ)_{sz} = I_{sz}J_{sz}$.
- $(2) (IJ)^{sz} = I^{sz}J^{sz}.$
- $(3) \left(\bigcap_{\lambda \in \Lambda} I_{\lambda}\right)_{sz} = \bigcap_{\lambda \in \Lambda} I_{\lambda_{sz}}.$
- $(4) \left(\bigcap_{\lambda \in \Lambda} I_{\lambda}\right)^{sz} = \bigcap_{\lambda \in \Lambda} I_{\lambda}^{sz}.$
- (5) $(I+J)_{sz} = I_{sz} + J_{sz}$.
- (6) $(I+J)_{sz} = (I_{sz} + J_{sz})_{sz}$.
- $(7) I^{sz} + J^{sz} \subseteq (I+J)^{sz}.$

Proof. For ideals I and J we have $I^{sz} \subseteq I \subseteq I_{sz}$ and $J^{sz} \subseteq J \subseteq J_{sz}$.

(1) We have $IJ \subseteq (IJ)_{sz}$ and $IJ \subseteq I_{sz}J_{sz}$. Since $(IJ)_{sz}$ is the smallest strongly z-ideal containing IJ, we conclude that $(IJ)_{sz} \subseteq I_{sz}J_{sz}$. Now, suppose that $\alpha \in I_{sz}J_{sz}$. Then $\alpha = \alpha_1\alpha_2$ where $\alpha_1 \in I_{sz}$ and $\alpha_2 \in J_{sz}$. So, by Proposition 4.7, there exist $\beta_1 \in I$ and $\beta_2 \in J$ such that $\alpha_1 \in M_{\beta_1}$ and $\alpha_2 \in M_{\beta_2}$. Therefore $Z(\beta_1) \subseteq Z(\alpha_1)$ and $Z(\beta_2) \subseteq Z(\alpha_2)$ and hence

$$Z(\beta_1\beta_2)\subseteq Z(\alpha_1\alpha_2)=Z(\alpha).$$

Thus, $\alpha \in M_{\beta_1\beta_2}$ and $\beta_1\beta_2 \in IJ$. So, by Proposition 4.7, $\alpha \in (IJ)_{sz}$. Therefore $I_{sz}J_{sz} \subseteq (IJ)_{sz}$.

(2) We have $(IJ)^{sz} \subseteq IJ$ and $I^{sz}J^{sz} \subseteq IJ$. Since $(IJ)^{sz}$ is the biggest strongly z-ideal included in IJ, we infer that $I^{sz}J^{sz} \subseteq (IJ)^{sz}$. Also, we have $(IJ)^{sz} \subseteq I^{sz}$ and $(IJ)^{sz} \subseteq J^{sz}$. Hence $(IJ)^{sz} \subseteq I^{sz} \cap J^{sz}$. Therefore, by [7, Proposition 5.6] and [12, Lemma 7.2.2],

$$(IJ)^{sz} \subseteq I^{sz} \cap J^{sz} = I^{sz}J^{sz}.$$

Thus $(IJ)^{sz} = I^{sz}J^{sz}$.

- (3) We have $\bigcap I_{\lambda} \subseteq I_{\lambda}$, for every $\lambda \in \Lambda$. Then $(\bigcap I_{\lambda})_{sz} \subseteq I_{\lambda_{sz}}$ for every $\lambda \in \Lambda$. So $(\bigcap I_{\lambda})_{sz} \subseteq \bigcap I_{\lambda_{sz}}$. Now let $\beta \in \bigcap I_{\lambda_{sz}}$. Then $\beta \in I_{\lambda_{sz}}$ for every $\lambda \in \Lambda$. So, by Proposition 4.7, for every $\lambda \in \Lambda$ there exists an element α in I_{λ} such that $\beta \in M_{\alpha}$. Therefore $\alpha \in \bigcap I_{\lambda}$ and $\beta \in M_{\alpha}$. Now, by Proposition 4.7, $\beta \in (\bigcap I_{\lambda})_{sz}$. Hence $\bigcap I_{\lambda_{sz}} \subseteq (\bigcap I_{\lambda})_{sz}$.
- (4) We have $\bigcap I_{\lambda} \subseteq I_{\lambda}$, for every $\lambda \in \Lambda$. Then $(\bigcap I_{\lambda})^{sz} \subseteq I_{\lambda}^{sz}$ for every $\lambda \in \Lambda$. So $(\bigcap I_{\lambda})^{sz} \subseteq \bigcap I_{\lambda}^{sz}$. Now let $\beta \in \bigcap I_{\lambda}^{sz}$, then $\beta \in I_{\lambda}^{sz}$ for every $\lambda \in \Lambda$. So, by Proposition 4.7, $M_{\beta} \subseteq I_{\lambda}$ for every $\lambda \in \Lambda$. Therefore $M_{\beta} \subseteq \bigcap I_{\lambda}$. Again, by Proposition 4.7, $\beta \in (\bigcap I_{\lambda})^{sz}$.
- (5) We have $(I+J) \subseteq (I+J)_{sz}$ and $I+J \subseteq I_{sz}+J_{sz}$. Since $(I+J)_{sz}$ is the smallest strongly z-ideal containing I+J, we infer that $(I+J)_{sz} \subseteq I_{sz}+J_{sz}$. Now, suppose that $\alpha \in I_{sz}+J_{sz}$. Then $\alpha = \alpha_1 + \alpha_2$ where $\alpha_1 \in I_{sz}$ and $\alpha_2 \in J_{sz}$. Thus, by Proposition 4.7, there exist $\beta_1 \in I$ and $\beta_2 \in J$ such that

 $\alpha_1 \in M_{\beta_1}$ and $\alpha_2 \in M_{\beta_2}$. Therefore $Z(\beta_1) \subseteq Z(\alpha_1)$ and $Z(\beta_2) \subseteq Z(\alpha_2)$. So

$$Z(\beta_1^2 + \beta_2^2) = Z(\beta_1) \cap Z(\beta_2) \subseteq Z(\alpha_1) \cap Z(\alpha_2) \subseteq Z(\alpha).$$

Hence $\alpha \in M_{\beta_1^2 + \beta_2^2}$. Since $\beta_1^2 + \beta_2^2 \in I + J$, by Proposition 4.7, $\alpha \in (I + J)_{sz}$. Therefore $I_{sz} + J_{sz} \subseteq (I + J)_{sz}$.

(6) From (5) we have $(I+J)_{sz} \subseteq (I_{sz}+J_{sz})_{sz}$. Now, let $\beta \in (I_{sz}+J_{sz})_{sz}$. Then, by Proposition 4.7, there exists an element α in $I_{sz}+J_{sz}$ such that $\beta \in M_{\alpha}$. So there exist $\alpha_1 \in I_{sz}$ and $\alpha_2 \in J_{sz}$ such that $\alpha = \alpha_1 + \alpha_2$. Again, by Proposition 4.7, there exist $\beta_1 \in I$ and $\beta_2 \in J$ such that $\alpha_1 \in M_{\beta_1}$ and $\alpha_2 \in M_{\beta_2}$. Therefore, by Corollary 3.4,

$$\alpha = \alpha_1 + \alpha_2 \in M_{\beta_1} + M_{\beta_2} = M_{\beta_1^2 + \beta_2^2}.$$

Since

$$Z(\beta_1^2 + \beta_2^2) \subseteq Z(\alpha_1 + \alpha_2) = Z(\alpha) \subseteq Z(\beta),$$

we conclude that $\beta \in M_{\beta_1^2 + \beta_2^2}$. Also, $\beta_1^2 + \beta_2^2 \in I + J$ and, by Proposition 4.7 we infer that $\beta \in (I + J)_{sz}$. Thus $(I_{sz} + J_{sz})_{sz} \subseteq (I + J)_{sz}$.

(7) We have $I^{sz} + J^{sz} \subseteq I + J$. Then, since $(I + J)^{sz}$ is the biggest strongly z-ideal included in I + J, we infer that $I^{sz} + J^{sz} \subseteq (I + J)^{sz}$.

Proposition 4.19. Let P and Q be two prime ideals in $\mathcal{R}L$ which are not chains. If P_m and Q_m are minimal prime ideals such that $P_m \subseteq P$ and $Q_m \subseteq Q$, then $P + Q = P_m + Q_m$. In particular, P + Q is a prime strongly z-ideal.

Proof. Clearly $P_m + Q_m \subseteq P + Q$. Now, since P_m and Q_m are minimal prime ideals, we conclude from Corollary 4.3 that P_m and Q_m are strongly z-ideals. By Theorem 3.2, $P_m + Q_m$ is a strongly z-ideal and, since $P_m + Q_m$ contains the prime ideal P_m , we infer from [7, Theorem 5.11] that $P_m + Q_m$ is prime. Since the prime ideals $P_m + Q_m$ and P contain the prime ideal P_m , we conclude from [3, Proposition 3.7] that $P_m + Q_m$ and P form a chain; that is, $P \subseteq P_m + Q_m$ or $P_m + Q_m \subseteq P$. If $P_m + Q_m \subseteq P$, then the prime ideals P and Q contain the prime ideal Q_m and, by [3, Proposition 3.7], P and Q form a chain, which is a contradiction. Hence $P \subseteq P_m + Q_m$. Similarly, $Q \subseteq P_m + Q_m$. Therefore $P + Q \subseteq P_m + Q_m$. Thus $P + Q = P_m + Q_m$. Hence P + Q is a strongly z-ideal and, by [7, Theorem 5.11], we conclude that P + Q is a prime strongly z-ideal.

Corollary 4.20. Let P and Q be two prime ideals in $\mathcal{R}L$. Then $(P+Q)^{sz} = P^{sz} + Q^{sz}$.

Proof. If P and Q are chains, we are through. So, suppose that P and Q are not chains. Let P_m and Q_m are minimal prime ideals such that $P_m \subseteq P$ and $Q_m \subseteq Q$. Therefore, by Proposition 4.19, $P + Q = P_m + Q_m$ is a strongly z-ideals. By Corollary 4.3, P_m and Q_m are strongly z-ideals, which follows that $P_m \subseteq P^{sz}$ and $Q_m \subseteq Q^{sz}$. So

$$P_m + Q_m \subseteq P^{sz} + Q^{sz} \subseteq P + Q = P_m + Q_m.$$

Therefore, by Theorem 3.2, we have

$$(P+Q)^{sz} = (P_m + Q_m)^{sz} = P_m + Q_m = P^{sz} + Q^{sz}$$

and the proof is complete.

ACKNOWLEDGEMENTS

We appreciate the referee for his thorough comments and for taking the time and effort to review our manuscript.

References

- R.N. Ball, and J. Walters-Wayland, C and C* quotients on pointfree topology, Dissertations Mathematicae (Rozprawy Math.), 412, Warszawa, (2002).
- B. Banaschewski, The real numbers in pointfree topology, Textos de Mathematica (Series B), 12, University of Coimbra, Departmento de Mathematica, Coimbra, 1997.
- T. Dube, Some algebraic characterizations of F-frames, Algebra Univers., 62, (2009), 273–288.
- T. Dube, Concerning P-frames, essential P-frames and strongly zero-dimensional frames, Algebra Univers., 61, (2009), 115–138.
- M.M. Ebrahimi, and A. Karimi Feizabadi, Pointfree prime representation of real Riesz maps, Algebra Univers., 54, (2005), 291–299.
- A.A. Estaji, z-weak ideals and prime weak ideals, Iranian Journal of Mathematical Sciences and Informatics, 7(2), (2012), 53–62.
- A.A. Estaji, A. Karimi Feizabadi, and M. Abedi, Zero sets in pointfree topology and strongly z-ideals, Bull. Iranian Math. Soc., 41, (2015), 1071–1084.
- 8. A.A. Estaji, A. Karimi Feizabadi, and M. Abedi, Strongly fixed ideals in C(L) and compact frames, Arch. Math. (Brno), 51, (2015), 1–12.
- A.A. Estaji, A. Karimi Feizabadi, and M. Abedi, Intersection of essential ideals in the ring of real-valued continuous functions on a frame, J. Algebr. Syst., 5(2), (2017), 149–161.
- 10. L. Gillman, and M. Jerison, Rings of continuous functions, Springer-Verlag, 1976.
- 11. M. Henriksen and F.A. Smith, Sums of z-ideals and semiprime ideals, General Topology and Its Relations to Modern Analysis and Algebra, 5, (1982), 272–278.
- 12. O. Ighedo, Concerning ideals of pointfree function rings, Ph.D. Thesis, University of South Africa, 2013.
- 13. R.Y. Sharp, Steps in commutative algebra, Cambridge Univ. Press, Cambridge, 2000.
- 14. P.T. Johnstone, Stone spaces, Cambridge Univ. Press, Cambridge, 1982.
- 15. A. Karimi Feizabadi, A. A. Estaji and M. Abedi, On minimal ideals in the ring of real-valued continuous functions on a frame, *Arch. Math. (Brno)*, **54(1)**, (2018), 1–13.
- 16. C. Kohls, Ideals in rings of continuous functions, Fund. Math., 45, (1957), 28-50.
- 17. G. Mason, z-ideals and prime ideals, J. Algebra, $\mathbf{26}$, (1973), 280–297.
- J. Picado and A. Pultr, Frames and Locales: Topology without Points, Frontiers in Mathematics, Birkhäuser/Springer, Basel AG, Basel, 2012.
- 19. A. Rezaei Aliabad and M. Parsinia, z_R -Ideals and z_R° -Ideals in subrings of \mathbb{R}^X , Iranian Journal of Mathematical Sciences and Informatics, 14(1), (2019), 55–67.
- 20. D. Rudd, On two sum theorems for ideals of C(X), Mich. Math. J., 17, (1970), 139–141.