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Abstract. In this paper, we use the left(right) stabilizers of a BCK-

algebra (X, ∗, 0) and produce two basis for two different topologies. Then

we show that the generated topological spaces by these basis are Bair,

connected, locally connected and separable. Also we study the other

properties of these topological spaces.
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1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iseki in 1966
as a generalization of the concept of set-theoretic difference and propositional
calculus. In 1997, Y. Hung and Z. Chen introduced the notions of right and left
stabilizers of every subset of a BCK-algebra. In this note, we by considering
the left(right) stabilizers of a BCK-algebra (X, ∗, 0), construct two basis for
two topologies on (X, ∗, 0). Then we obtain some results as mentioned in the
abstract. M. M. Zahedi defined hyper K(BCK)-algebras. Also, T. Roudbari
and M. M. Zahedi defined simple hyper K(BCK)-algebras [2,4,7]. Similar to
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them, we can define two topologies via left and right hyper K(BCK)-stabilizers
in hyper K(BCK)-algebras.

2. Preliminaries

We give herein the basic notions on BCK-algebras. For further information,
we refer to the book [5]. By a BCK-algebra we mean an algebra (X, ∗, 0) of
type (2,0) satisfying the following axioms: for every x, y, z ∈ X ,

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(ii) (x ∗ (x ∗ y)) ∗ y = 0,
(iii) x ∗ x = 0,
(iv) x ∗ y = y ∗ x = 0 ⇒ x = y,
(v) 0 ∗ x = 0.

We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0. In a
BCK-algebra X , the following hold: for all x, y, z ∈ X,

(a) x ∗ 0 = x,
(b) x ∗ y ≤ x,
(c) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(d) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,
(e) x ∗ (x ∗ (x ∗ y)) = x ∗ y.

A nonempty subset A of X is called an ideal of X if it satisfies
(i) 0 ∈ A,
(ii) (∀x ∈ X)(∀y ∈ A) (x ∗ y ∈ A ⇒ x ∈ A).
A subalgebra of X is a nonempty subset A of X such that x ∗ y ∈ A, for all
x, y ∈ A.
If there is an element 1 of X satisfying x ≤ 1, for all x ∈ X , then the element
1 is called unit of X . A BCK-algebra with unit is called bounded .

Definition 2.1. [3] Let X be a BCK-algebra and A be a nonempty sub-
set of X . Then the sets

A∗
l = {x ∈ X | a ∗ x = a, ∀a ∈ A}

and
A∗

r = {x ∈ X | x ∗ a = x, ∀a ∈ A}
are called the left and right stabilizers of A, respectively and the set A∗ =
A∗

l ∩ A∗
r is called the stabilizer of A.

Theorem 2.2. [3] Let A be a nonempty subset of a BCK-algebra X . Then
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(i) A∗
l is an ideal of X .

(ii) A∗
r is a subalgebra of X .

Definition 2.3. [1] Consider A as a nonempty set, a mapping φ : P (A) →
P (A) is called a closure operator on A, if for all X, Y ∈ P (A) the following
holds:
(1) X ⊆ φ(X),
(2) φ2(X) = φ(X),
(3) X ⊆ Y implies φ(X) ⊆ φ(Y ).

Note that all definitions and notations on a given topological space (X, τ) are
stated from [6].

3. Closure operator on BCK-algebras

In the sequel X is a BCK-algebra.

Theorem 3.1. Let A and B be two nonempty subsets of X . Then
(i) 0 ∈ A∗

l ∩ A∗
r ,

(ii) A ⊆ (A∗
l )

∗
r ∩ (A∗

r)
∗
l ,

(iii) If A ⊆ B, then B∗
l ⊆ A∗

l and B∗
r ⊆ A∗

r ,
(iv) A∗

l = ((A∗
l )

∗
r)

∗
l and A∗

r = ((A∗
r)

∗
l )

∗
r ,

(v)(
⋃
j∈J

Aj)∗l =
⋂
j∈J

(Aj)∗l .

Proof. (i) Since 0 ∗ x = 0 and x ∗ 0 = x, for all x ∈ X , then 0 ∈ A∗
l ∩ A∗

r .
(ii) Let a ∈ A. Then x ∗ a = x, ∀x ∈ A∗

r and a ∗ y = a, ∀y ∈ A∗
l . So

a ∈ (A∗
r)

∗
l ∩ (A∗

l )
∗
r .

(iii) Let x ∈ B∗
l . Then b ∗ x = b, ∀b ∈ B. Since A ⊆ B and b ∗ x = b, ∀b ∈ A.

So x ∈ A∗
l . Similarly B∗

r ⊆ A∗
r .

(iv) By (ii) we get that A∗
l ⊆ ((A∗

l )
∗
r)∗l and A∗

r ⊆ ((A∗
r)∗l )

∗
r . Also by (ii) and

(iii) we have ((A∗
r)

∗
l )

∗
r ⊆ A∗

r and ((A∗
l )

∗
r)

∗
l ⊆ A∗

l . Therefore A∗
l = ((A∗

l )
∗
r)

∗
l and

A∗
r = ((A∗

r)
∗
l )

∗
r .

(iv) The proof is easy.

Note that we define ∅∗l = ∅ and ∅∗r = ∅.

Theorem 3.2. The function α : P (X) → P (X), where α(D) = (D∗
l )∗r is

a closure operator on X .

Proof. By Theorem 3.1(ii), D ⊆ α(D), for all D ∈ P (X). Also by Theo-
rem 3.1(iv), α(D) = (D∗

l )∗r = (((D∗
l )∗r)

∗
l )

∗
r = α2(D) , for all D ∈ P (X). Let
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A ⊆ B. Then by Theorem 3.1(iii), α(A) ⊆ α(B). Therefore α is a closure
operator on X .

Theorem 3.3. The function γ : P (X) → P (X), where γ(D) = (D∗
r)∗l is a

closure operator on X .

Proof. The proof is similar to the proof of Theorem 3.2.

Theorem 3.4. Consider the function α given in Theorem 3.2. Then we can
obtain that βα = {A ∈ P (X)|α(A) = A} is a basis for a topology on X .

Proof. It is easy to see that X∗
l = {0} and also {0}∗r = X . Then α(X) = X and

so X ∈ βα. Thus for all x ∈ X there is at least one element of βα containing
x. Let x ∈ A ∩ B, for A, B ∈ βα. Since α is a closure operator, then we can
obtain that α(A ∩ B) = A ∩ B, i.e. A ∩ B ∈ βα containing x. Therefore βα is
a basis topology on X .

Theorem 3.5. Consider the function γ given in Theorem 3.3. Then βγ =
{A ∈ P (X)|γ(A) = A} is a basis for a topology on X .

Proof. The proof is similar to the proof of Theorem 3.4.

Note that by Theorem 2.2 elements of βα are subalgebras of X and elements
of βγ are ideals of X .

We define the topologies τα and τγ generated by basis βα and βγ , respec-
tively.

Example 3.6. Let X = {0, a, b, c} and ∗ operation be given by the following
table

∗ 0 a b c

0 0 0 0 0
a a 0 0 a

b b b 0 b

c c c c 0

Then (X, ∗, 0) is a BCK-algebra. We see that 0 ∈ α(A)(0 ∈ γ(A)) , for
all nonempty sub sets A of X , so if 0 �∈ A ⊆ X , we have A �∈ βα(βγ)).
By some manipulations we get that βα = {∅, X, {0, b}, {0, c}, {0}} and βγ =
{∅, X, {0, a}, {0, c}, {0, a, c}, {0, a, b}, {0}}. Thus τα = {∅, X, {0}, {0, b}, {0, c},
{0, b, c}} and τγ = {∅, X, {0}, {0, a}, {0, c}, {0, a, c}, {0, a, b}}. We see that in
this example {0, a, b} �∈ βα, because {0, a, b}∗l = {0, b} and {0, b}∗r = {0, c} and
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so {0, c} = ({0, a, b}∗l )∗r) �= {0, a, b}. Also since τα �⊆ τγ and τγ �⊆ τα, then τα is
not finer than τγ and also τγ is not finer than τα.

Theorem 3.7. (X, τα)((X, τγ)) is a Hausdorff space if and only if X = {0}.

Proof. Since for any U ∈ τα, we have 0 ∈ U , so for any two arbitrary ele-
ments U, V of τα, we have U

⋂
V �= ∅. Thus (X, τα)((X, τγ)) is not Housdorff.

Conversely, let X = {0}. Then τα = {∅, X}. Thus it is clear that (X, τα) is a
Hausdorff space.

Theorem 3.8. (X, τα)((X, τγ)) is connected.

Proof. Since 0 ∈ U , for any nonempty open set of X , then there are not
nonempty open subsets U and V of X such that X = U ∪ V and U ∩ V = ∅.
Thus (X, τα) is connected space.

Corollary 3.9. Let U be a nonempty open subset of (X, τα)((X, τγ)) . Then
U is a connected set of X .

Proof. It is similar to the proof of Theorem 3.8.

Corollary 3.10. Let U be a nonempty non-connected subset of (X, τα)((X, τγ))
. Then 0 ∈ U .

Proof. It is straightforward.

Corollary 3.11. Let A �= X and A �= ∅ be a closed subset of (X, τα)((X, τγ))
. Then A is a connected set of X .

Proof. Since A �= X is a closed set of (X, τα)((X, τγ)), then ∅ �= X − A is
an open set of (X, τα)((X, τγ)). By Theorem 3.1 we have 0 ∈ X −A, therefore
0 �∈ A. Thus by Corollary 3.10, we get that A is a connected set of X .

Note that Corollaries 3.9 and 3.11 imply that all proper subsets of (X, τα)((X, τγ))
are connected, whenever they are closed or open.

Theorem 3.12. Let A be a subset of topological space (X, τα)((X, τγ)) and
0 ∈ A. Then A = X .

Proof. Let x ∈ X . If x = 0, then 0 ∈ A. Let x �= 0, since 0 ∈ U , for
any nonempty open subset of X , then U ∩ A �= ∅, for any open set containing
x. Therefore x ∈ A.
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By the above theorem we can get that the following corollary.

Corollary 3.13. Let U be a nonempty open subset of X . Then U = X .

Proof. It is similar to a proof of Theorem 3.12.

Open problem. Is there any A ⊆ (X, τα)((X, τγ)) such that A = X , but
0 �∈ A.

Theorem 3.14. Let A be a nonempty subset of the topological space (X, τα)
((X, τγ)). Then 0 ∈ A if and only if A = X .

Proof. Let 0 ∈ A. Then 0 ∈ C, for all closed subset C of X containing A.
Since 0 is in any nonempty open subset of the topological space X , then the
only closed subset of X containing 0 and A is X . So A = X . The proof of the
converse is clear.

Lemma 3.15. {0} is an open subset of the topological space (X, τα)((X, τγ)).

Proof. By Definition 3.1 we can get that {0}∗l = X and X∗
r = {0}, then

{0} ∈ βα. Thus {0} is an open set of the topological space (X, τα)((X, τγ)).

Theorem 3.16. (X, τα)((X, τγ)) is separable.

Proof. By Theorem 3.15 and Lemma 3.16 we get that {0} = X . Then
(X, τα)((X, τγ)) is separable.

Theorem 3.17. (X, τα)((X, τγ)) is locally connected.

Proof. Let x be an arbitrary element of X and U be an open set contain-
ing x. By Theorem 3.8, we get that U is connected and also containing x.
Therefore (X, τα) is locally connected.

Open problem. How are the exact characterization of the compact sets in
these topological spaces?

Convention 3.18. Let (X, ∗, 0) be a totally ordered BCK-algebra and let
βo be the all sets of the following types:
(i) All open intervals (a, b) = {x ∈ X | a < x < b},
(ii) All intervals [0, b) = {x ∈ X | 0 ≤ x < b}.
(ii) All intervals (0, 1] = {x ∈ X | 0 < x ≤ 1}, where 1 is unit of X
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As we can see similar to [4] βo is a basic for a topology on X , which is called
the order topology. The topology induced by βo is denoted by τo.

Theorem 3.19. Let (X, ∗, 0) be a totally ordered BCK-algebra. Then (X, τγ)
is finer than (X, τo).

Proof. Let x ∈ A and A ∈ βγ . Then there is a ∈ A such that x ∗ a = 0.
We show that [0, a) ⊆ A = (A∗

r)
∗
l . Let b ∈ [0, a). Then b ∗ a = 0 and so b ∈ A,

by Theorem 2.2(i). Hence a ∈ A implies that b ∈ A. Thus [0, a) ⊆ A. Also
x ∈ [0, a) ∈ βo. Therefore (X, τγ) is finer than (X, τo).

The following example shows that the condition ” totally order ” in Convention
3.18 is necessary.

Example 3.20. Let X = {0, 1, 2, 3} and ∗ operation be given by the table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 3 3 0

Then (X, ∗, 0) is not a totally ordered BCK-algebra. We see that βo is not a
basis for a topology on X , because 1 ∈ [0, 2)

⋂
[0, 3)., but there is not a M ∈ τo

such that 1 ∈ [0, 2)
⋂

[0, 3).

The following example shows that (X, τo) may not finer than (X, τγ).

Example 3.21. Let X = {0, 1, 2, ...} . Define ” ∗ ” on X by

x ∗ y =

⎧⎨
⎩

0 if x ≤ y,

1 if y ≤ x, y �= 0,

x if y ≤ x, y = 0

Then (X, ∗, 0) is a non bounded BCK-algebra. By some manipulations we
get that βγ = {∅, X, {0}}. Consider A = [0, 2) . We see that 1 ∈ A, but there
is not any M ∈ βo such that 1 ∈ M ⊆ A.

The following example shows that (X, τo) may not finer than (X, τα).

Example 3.22. Let X = [0 , 1] . Define ” ∗ ” on X by

x ∗ y =
{

0 if x ≤ y,

x otherwise
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Then (X, ∗, 0) is a bounded BCK-algebra. By some manipulations we get that
βα = {∅, X, {0}}. Consider A = [0, 1/2) . We see that 1/3 ∈ A, but there is
not any M ∈ βo such that 1/3 ∈ M ⊆ A.

Open problem. Is there a BCK-algebra (X, ∗, 0) such that (X, τα) does
not be finer than (X, τo)?

Conclusion. The paper has shown that {0} is an open subset of the topo-
logical spaces (X, τα) and ((X, τγ)). The authors have proved that topological
spaces (X, τα) and ((X, τγ)) are Bair, locally connected and separable. Finally
they have shown that all proper subsets of (X, τα) and ((X, τγ)) are connected,
whenever they are closed or open.
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