New Jensen and Ostrowski Type Inequalities for General Lebesgue Integral with Applications

S. S. Dragomir

Mathematics, College of Engineering & Science, Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia.

School of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa.

E-mail: sever.dragomir@vu.edu.au

Abstract. Some new inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral are obtained. Applications for f-divergence measure are provided as well.

Keywords: Ostrowski’s inequality, Jensen’s inequality. f-Divergence measures.

1. Introduction

Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω, a σ-algebra \mathcal{A} of parts of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup \{\infty\}$. Assume, for simplicity, that $\int_{\Omega} d\mu = 1$. Consider the Lebesgue space

$$L(\Omega, \mu) := \{ f : \Omega \rightarrow \mathbb{R}, \ f \text{ is } \mu\text{-measurable and } \int_{\Omega} |f(t)| \, d\mu(t) < \infty \}.$$

For simplicity of notation we write everywhere in the sequel $\int_{\Omega} w(t) \, d\mu(t)$ instead of $\int_{\Omega} w(t) \, d\mu(t)$.

In order to provide a reverse of the celebrated Jensen’s integral inequality for convex functions, S.S. Dragomir obtained in 2002 [29] the following result:
Theorem 1.1. Let \(\Phi : [m, M] \subset \mathbb{R} \to \mathbb{R} \) be a differentiable convex function on \((m, M)\) and \(f : \Omega \to [m, M] \) so that \(\Phi \circ f, f, \Phi' \circ f, (\Phi' \circ f) : f \in L(\Omega, \mu) \). Then we have the inequality:

\[
0 \leq \int_{\Omega} \Phi \circ f \, d\mu - \Phi \left(\int_{\Omega} f \, d\mu \right) \tag{1.1}
\]

\[
\leq \int_{\Omega} f : (\Phi' \circ f) \, d\mu - \int_{\Omega} \Phi' \circ f \, d\mu \int f \, d\mu
\]

\[
\leq \frac{1}{2} \left[\Phi' (M) - \Phi' (m) \right] \int_{\Omega} \left| f - \int_{\Omega} f \, d\mu \right| \, d\mu.
\]

In the case of discrete measure, we have:

Corollary 1.2. Let \(\Phi : [m, M] \to \mathbb{R} \) be a differentiable convex function on \((m, M)\). If \(x_i \in [m, M] \) and \(w_i \geq 0 \) \((i = 1, \ldots, n)\) with \(W_n := \sum_{i=1}^{n} w_i = 1 \), then one has the counterpart of Jensen’s weighted discrete inequality:

\[
0 \leq \sum_{i=1}^{n} w_i \Phi (x_i) - \Phi \left(\sum_{i=1}^{n} w_i x_i \right) \tag{1.2}
\]

\[
\leq \sum_{i=1}^{n} w_i \Phi' (x_i) x_i - \sum_{i=1}^{n} w_i \Phi' (x_i) \sum_{i=1}^{n} w_i x_i
\]

\[
\leq \frac{1}{2} \left[\Phi' (M) - \Phi' (m) \right] \sum_{i=1}^{n} w_i \left| x_i - \sum_{j=1}^{n} w_j x_j \right|.
\]

Remark 1.3. We notice that the inequality between the first and the second term in (1.2) was proved in 1994 by Dragomir & Ionescu, see [36].

If \(f, g : \Omega \to \mathbb{R} \) are \(\mu \)-measurable functions and \(f, g, fg \in L(\Omega, \mu) \), then we may consider the Čebyšev functional

\[
T (f, g) := \int_{\Omega} f g \, d\mu - \int_{\Omega} f \, d\mu \int_{\Omega} g \, d\mu. \tag{1.3}
\]

The following result is known in the literature as the Grüss inequality

\[
|T (f, g)| \leq \frac{1}{4} (\Gamma - \gamma) (\Delta - \delta), \tag{1.4}
\]

provided

\[-\infty < \gamma \leq f (t) \leq \Gamma < \infty, \quad -\infty < \delta \leq g (t) \leq \Delta < \infty \tag{1.5}\]

for \(\mu \)-a.e. \(t \in \Omega \).

The constant \(\frac{1}{4} \) is sharp in the sense that it cannot be replaced by a smaller quantity.

If we assume that \(-\infty < \gamma \leq f (t) \leq \Gamma < \infty \) for \(\mu \)-a.e. \(t \in \Omega \), then by the Grüss inequality for \(g = f \) and by the Schwarz’s integral inequality, we have

\[
\int_{\Omega} \left| f - \int_{\Omega} f \, d\mu \right| \, d\mu \leq \left[\int_{\Omega} f^2 \, d\mu - \left(\int_{\Omega} f \, d\mu \right)^2 \right]^{\frac{1}{2}} \leq \frac{1}{2} (\Gamma - \gamma). \tag{1.6}
\]
On making use of the results (1.1) and (1.6), we can state the following string of reverse inequalities

\[
0 \leq \int_{\Omega} \Phi \circ f d\mu - \Phi \left(\int_{\Omega} f d\mu \right) \\
\leq \int_{\Omega} f \cdot (\Phi' \circ f) d\mu - \int_{\Omega} \Phi' \circ f \int_{\Omega} f d\mu \\
\leq \frac{1}{2} \left[\Phi'(M) - \Phi'(m) \right] \left[\int_{\Omega} f^2 d\mu - \left(\int_{\Omega} f d\mu \right)^2 \right]^{\frac{1}{2}} \\
\leq \frac{1}{4} \left[\Phi'(M) - \Phi'(m) \right] (M - m),
\]

provided that \(\Phi : [m, M] \subset \mathbb{R} \to \mathbb{R} \) is a differentiable convex function on \((m, M)\) and \(f : \Omega \to [m, M] \) so that \(\Phi \circ f, f, \Phi' \circ f, f \cdot (\Phi' \circ f) \in L(\Omega, \mu) \), with \(\int_{\Omega} d\mu = 1 \).

The following reverse of the Jensen’s inequality also holds [33]:

Theorem 1.4. Let \(\Phi : I \to \mathbb{R} \) be a continuous convex function on the interval of real numbers \(I \) and \(m, M \in \mathbb{R} \), \(m < M \) with \([m, M] \subset \mathbb{I} \), where \(\mathbb{I} \) is the interior of \(I \). If \(f : \Omega \to \mathbb{R} \) is \(\mu \)-measurable, satisfies the bounds

\[-\infty < m \leq f(t) \leq M < \infty \text{ for } \mu\text{-a.e. } t \in \Omega\]

and such that \(f, \Phi \circ f \in L(\Omega, \mu) \), then

\[
0 \leq \int_{\Omega} \Phi \circ f d\mu - \Phi \left(\int_{\Omega} f d\mu \right) \\
\leq \left(M - \int_{\Omega} f d\mu \right) \left(\int_{\Omega} f d\mu - m \right) \frac{\Phi'(M) - \Phi'(m)}{M - m} \\
\leq \frac{1}{4} \left(M - m \right) \left[\Phi'_{-}(M) - \Phi'_{+}(m) \right],
\]

where \(\Phi'_{-} \) is the left and \(\Phi'_{+} \) is the right derivative of the convex function \(\Phi \).

For other reverse of Jensen inequality and applications to divergence measures see [33].

In 1938, A. Ostrowski [55], proved the following inequality concerning the distance between the integral mean \(\frac{1}{b-a} \int_{a}^{b} \Phi(t) dt \) and the value \(\Phi(x) \), \(x \in [a, b] \).

For various results related to Ostrowski’s inequality see [6]-[9], [15]-[41], [43] and the references therein.

Theorem 1.5. Let \(\Phi : [a, b] \to \mathbb{R} \) be continuous on \([a, b]\) and differentiable on \((a, b)\) such that \(\Phi' : (a, b) \to \mathbb{R} \) is bounded on \((a, b)\), i.e., \(\| \Phi' \|_{\infty} := \sup_{t \in (a, b)} |\Phi'(t)| < \)
∞. Then
\[\left| \Phi(x) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^2 \right] \| \Phi' \|_\infty (b-a), \quad (1.9) \]

for all \(x \in [a, b] \) and the constant \(\frac{1}{4} \) is the best possible.

Now, for \(\gamma, \Gamma \in \mathbb{C} \) and \([a, b]\) an interval of real numbers, define the sets of complex-valued functions [34]
\begin{equation}
\tilde{U}_{[a,b]}(\gamma, \Gamma) := \{ f : [a, b] \to \mathbb{C} | \Re \left((\Gamma - f(t)) \left(\overline{f(t)} - \gamma \right) \right) \geq 0 \text{ for almost every } t \in [a, b] \}.
\end{equation}

and
\begin{equation}
\tilde{\Delta}_{[a,b]}(\gamma, \Gamma) := \left\{ f : [a, b] \to \mathbb{C} \left| \left| f(t) - \frac{\gamma + \Gamma}{2} \right| \leq \frac{1}{2} |\Gamma - \gamma| \right. \text{ for a.e. } t \in [a, b] \right\}.
\end{equation}

The following representation result may be stated [34].

Proposition 1.6. For any \(\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma \), we have that \(\tilde{U}_{[a,b]}(\gamma, \Gamma) \) and \(\tilde{\Delta}_{[a,b]}(\gamma, \Gamma) \) are nonempty, convex and closed sets and
\begin{equation}
\tilde{U}_{[a,b]}(\gamma, \Gamma) = \tilde{\Delta}_{[a,b]}(\gamma, \Gamma). \quad (1.10)
\end{equation}

On making use of the complex numbers field properties we can also state that:

Corollary 1.7. For any \(\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma \), we have that
\begin{equation}
\tilde{U}_{[a,b]}(\gamma, \Gamma) = \{ f : [a, b] \to \mathbb{C} | (\Re \Gamma - \Re f(t)) (\Re f(t) - \Re \gamma) + (\Im \Gamma - \Im f(t)) (\Im f(t) - \Im \gamma) \geq 0 \text{ for a.e. } t \in [a, b] \}. \quad (1.11)
\end{equation}

Now, if we assume that \(\Re(\Gamma) \geq \Re(\gamma) \) and \(\Im(\Gamma) \geq \Im(\gamma) \), then we can define the following set of functions as well:
\begin{equation}
\tilde{S}_{[a,b]}(\gamma, \Gamma) := \{ f : [a, b] \to \mathbb{C} | \Re(\Gamma) \geq \Re f(t) \geq \Re(\gamma) \text{ and } \Im(\Gamma) \geq \Im f(t) \geq \Im(\gamma) \text{ for a.e. } t \in [a, b] \}. \quad (1.12)
\end{equation}

One can easily observe that \(\tilde{S}_{[a,b]}(\gamma, \Gamma) \) is closed, convex and
\begin{equation}
\emptyset \neq \tilde{S}_{[a,b]}(\gamma, \Gamma) \subseteq \tilde{U}_{[a,b]}(\gamma, \Gamma). \quad (1.13)
\end{equation}

The following result holds [34]:

Theorem 1.8. Let \(\Phi : I \to \mathbb{C} \) be an absolutely continuous functions on \([a, b] \subseteq I\), the interior of \(I \). For some \(\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma \), assume that \(\Phi' \in \tilde{U}_{[a,b]}(\gamma, \Gamma) (= \tilde{\Delta}_{[a,b]}(\gamma, \Gamma)) \). If \(g : \Omega \to [a, b] \) is Lebesgue \(\mu \)-measurable on \(\Omega \) and such that \(\Phi \circ g, g \in L(\Omega, \mu) \), then we have the inequality
\begin{equation}
\left| \int_\Omega \Phi \circ g d\mu - \Phi(x) - \frac{\gamma + \Gamma}{2} \left(\int_\Omega g d\mu - x \right) \right| \leq \frac{1}{2} |\Gamma - \gamma| \int_\Omega |g - x| d\mu \quad (1.14)
\end{equation}
for any $x \in [a, b]$. In particular, we have

$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\frac{a+b}{2} \right) - \frac{\gamma + \Gamma}{2} \left(\int_{\Omega} g d\mu - \frac{a+b}{2} \right) \right| \leq \frac{1}{2} |\Gamma - \gamma| \int_{\Omega} \left| g - \frac{a+b}{2} \right| d\mu \leq \frac{1}{4} (b-a) |\Gamma - \gamma| \tag{1.15}$$

and

$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\int_{\Omega} g d\mu \right) \right| \leq \frac{1}{2} |\Gamma - \gamma| \int_{\Omega} \left| g - \int_{\Omega} g d\mu \right| d\mu \leq \frac{1}{4} (b-a) |\Gamma - \gamma| \tag{1.16}$$

Motivated by the above results, in this paper we provide more upper bounds for the quantity

$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi (x) - \lambda \left(\int_{\Omega} g d\mu - x \right) \right|, \ x \in [a, b],$$

under various assumptions on the absolutely continuous function Φ, which in the particular case of $x = \int_{\Omega} g d\mu$ provides some results connected with Jensen’s inequality while in the case $\lambda = 0$ provides some generalizations of Ostrowski’s inequality. Applications for divergence measures are provided as well.

2. SOME IDENTITIES

The following result holds [34]:

Lemma 2.1. Let $\Phi : I \to \mathbb{C}$ be an absolutely continuous functions on $[a, b] \subset \bar{I}$, the interior of I. If $g : \Omega \to [a, b]$ is Lebesgue μ-measurable on Ω and such that $\Phi \circ g, g \in L(\Omega, \mu)$, then we have the equality

$$\int_{\Omega} \Phi \circ g d\mu - \Phi (x) = \int_{\Omega} \left[(g-x) \int_{0}^{1} (\Phi'((1-s)x+sg) - \lambda) \ ds \right] d\mu \tag{2.1}$$

for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$.

In particular, we have

$$\int_{\Omega} \Phi \circ g d\mu - \Phi (x) = \int_{\Omega} \left[(g-x) \int_{0}^{1} \Phi'((1-s)x+sg) \ ds \right] d\mu, \tag{2.2}$$

for any $x \in [a, b]$.

Downloaded from ijmsi.ir at 23:32 +0430 on Saturday May 29th 2021 [DOI: 10.7508/ijmsi.2016.02.001]
Remark 2.2. With the assumptions of Lemma 2.1 we have
\[
\int_{\Omega} \Phi \circ g d\mu - \Phi \left(\frac{a + b}{2} \right) = \int_{\Omega} \left[\left(g - \frac{a + b}{2} \right) \int_{0}^{1} \Phi' \left((1 - s) \frac{a + b}{2} + sg \right) ds \right] d\mu.
\] (2.3)

Corollary 2.3. With the assumptions of Lemma 2.1 we have
\[
\int_{\Omega} \Phi \circ g d\mu - \Phi \left(\int_{\Omega} g d\mu \right) = \int_{\Omega} \left[\left(g - \int_{\Omega} g d\mu \right) \int_{0}^{1} \Phi' \left((1 - s) \int_{\Omega} g d\mu + sg \right) ds \right] d\mu.
\] (2.4)

Proof. We observe that since \(g : \Omega \to [a, b] \) and \(\int_{\Omega} d\mu = 1 \) then \(\int_{\Omega} g d\mu \in [a, b] \) and by taking \(x = \int_{\Omega} g d\mu \) in (2.2) we get (2.4). \(\square \)

Corollary 2.4. With the assumptions of Lemma 2.1 we have
\[
\int_{\Omega} \Phi \circ g d\mu - \left(\frac{b - a}{b - a} \right) \int_{a}^{b} \Phi (x) dx - \lambda \left(\int_{\Omega} g d\mu - \int_{\Omega} h d\mu \right) = \int_{\Omega} \int_{\Omega} \left[(g(t) - h(\tau)) \int_{0}^{1} \Phi' \left((1 - s) h(\tau) + sg(t) \right) ds \right] d\mu(t) d\mu(\tau),
\] (2.5)

for any \(\lambda \in \mathbb{C} \) and \(x \in [a, b] \).

Proof. Follows by integrating the identity (2.1) over \(x \in [a, b] \), dividing by \(b - a > 0 \) and using Fubini’s theorem. \(\square \)

Corollary 2.5. Let \(\Phi : I \to \mathbb{C} \) be an absolutely continuous functions on \([a, b] \subset \hat{I}, \) the interior of \(I \). If \(g, h : \Omega \to [a, b] \) are Lebesgue \(\mu \)-measurable on \(\Omega \) and such that \(\Phi \circ g, \Phi \circ h, g, h \in L(\Omega, \mu) \), then we have the equality
\[
\int_{\Omega} \Phi \circ g d\mu - \int_{\Omega} \Phi \circ h d\mu - \lambda \left(\int_{\Omega} g d\mu - \int_{\Omega} h d\mu \right) = \int_{\Omega} \int_{\Omega} \int_{0}^{1} \Phi' \left((1 - s) h(\tau) + sg(t) \right) ds \times d\mu(t) d\mu(\tau) - \lambda \left(\int_{\Omega} g d\mu - \int_{\Omega} h d\mu \right),
\] (2.6)

for any \(\lambda \in \mathbb{C} \) and \(x \in [a, b] \).

In particular, we have
\[
\int_{\Omega} \Phi \circ g d\mu - \int_{\Omega} \Phi \circ h d\mu = \int_{\Omega} \int_{\Omega} \int_{0}^{1} \Phi' \left((1 - s) h(\tau) + sg(t) \right) ds \times d\mu(t) d\mu(\tau),
\] (2.7)

for any \(x \in [a, b] \).
Remark 2.6. The above inequality (2.6) can be extended for two measures as follows
\[
\int_{\Omega_1} \Phi \circ g d\mu_1 - \int_{\Omega_2} \Phi \circ h d\mu_2 - \lambda \left(\int_{\Omega_1} g d\mu_1 - \int_{\Omega_2} h d\mu_2 \right)
\]
\[
= \int_{\Omega_1} \int_{\Omega_2} \left[(g(t) - h(\tau)) \int_0^1 (\Phi'((1-s)h(\tau) + sg(t)) - \lambda) ds \right]
\times d\mu_1(t) d\mu_2(\tau),
\]
for any \(\lambda \in \mathbb{C} \) and \(x \in [a, b] \) and provided that \(\Phi \circ g, g \in L(\Omega_1, \mu_1) \) while \(\Phi \circ h, h \in L(\Omega_2, \mu_2) \).

Remark 2.7. If \(w \geq 0 \) \(\mu \)-almost everywhere (\(\mu \)-a.e.) on \(\Omega \) with \(\int_{\Omega} wd\mu > 0 \), then by replacing \(d\mu \) with \(\int_{\Omega} w d\mu \) in (2.1) we have the weighted equality
\[
\frac{1}{\int_{\Omega} w d\mu} \int_{\Omega} w (\Phi \circ g) d\mu - \Phi(x) - \Phi'(a) + \Phi'(b)
\]
\[
\leq \frac{1}{2} \int_a^b (\Phi') \int_{\Omega} |g - x| d\mu
\]
for any \(\lambda \in \mathbb{C} \) and \(x \in [a, b] \), provided \(\Phi \circ g, g \in L_w(\Omega, \mu) \) where
\[
L_w(\Omega, \mu) := \{ g | \int_{\Omega} w|g| d\mu < \infty \}.
\]
The other equalities have similar weighted versions. However the details are omitted.

3. Inequalities for Derivatives of Bounded Variation

The following result holds:

Theorem 3.1. Let \(\Phi : I \to \mathbb{C} \) be an absolutely continuous functions on \([a, b] \subset \tilde{I} \), the interior of \(I \) and with the property that the derivative \(\Phi' \) is of bounded variation on \([a, b] \). If \(g : \Omega \to [a, b] \) is Lebesgue \(\mu \)-measurable on \(\Omega \) and such that \(\Phi \circ g, g \in L(\Omega, \mu) \), then we have
\[
\left| \int_{\Omega} \Phi \circ g d\mu - \Phi(x) - \frac{\Phi'(a) + \Phi'(b)}{2} \left(\int_{\Omega} g d\mu - x \right) \right|
\]
\[
\leq \frac{1}{2} \sqrt{\Phi'} \int_{\Omega} |g - x| d\mu
\]
for any \(x \in [a, b] \).

In particular, we have
\[
\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\frac{a+b}{2} \right) - \frac{\Phi'(a) + \Phi'(b)}{2} \left(\int_{\Omega} g d\mu - \frac{a+b}{2} \right) \right|
\]
\[
\leq \frac{1}{2} \sqrt{\Phi'} \int_{\Omega} |g - \frac{a+b}{2}| d\mu \leq \frac{1}{2} (b-a) \sqrt{\Phi'}
\]
and
\[
\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\int_{\Omega} g d\mu \right) \right| \leq \frac{1}{2} \left(\Phi' \right) \left(\int_{\Omega} g^2 d\mu \right)^{1/2} \left(\int_{\Omega} g d\mu \right) \leq \frac{1}{4} (b - a) \left(\Phi' \right).
\]

Proof. From the identity (2.1) we have
\[
\int_{\Omega} \Phi \circ g d\mu - \Phi (x) - \Phi' (a) + \Phi' (b) = \int_{\Omega} \left[(g - x) \int_{0}^{1} \left(\Phi' ((1 - s) x + sg) - \frac{\Phi'(a) + \Phi'(b)}{2} \right) ds \right] d\mu
\]
for any \(x \in [a, b] \).

Taking the modulus in (3.4) we get
\[
\left| \int_{\Omega} \Phi \circ g d\mu - \Phi (x) - \Phi' (a) + \Phi' (b) \left(\int_{\Omega} g d\mu - x \right) \right| \leq \int_{\Omega} \left| (g - x) \int_{0}^{1} \left(\Phi' ((1 - s) x + sg) - \frac{\Phi'(a) + \Phi'(b)}{2} \right) ds \right| d\mu
\]
for any \(x \in [a, b] \).

Since \(\Phi' \) is of bounded variation on \([a, b]\), then for any \(s \in [0, 1] \), \(x \in [a, b] \) and \(t \in \Omega \) we have
\[
\left| \Phi' ((1 - s) x + sg (t)) - \frac{\Phi'(a) + \Phi'(b)}{2} \right|
= \frac{1}{2} \left| \Phi' ((1 - s) x + sg (t)) - \Phi' (a) + \Phi' ((1 - s) x + sg (t)) - \Phi' (b) \right|
\leq \frac{1}{2} \left| \Phi' ((1 - s) x + sg (t)) - \Phi' (a) \right| + \left| \Phi' (b) - \Phi' ((1 - s) x + sg (t)) \right|
\leq \frac{1}{2} \left(\Phi' \right).
\]

Then we have
\[
\int_{\Omega} |g - x| \int_{0}^{1} \left| \Phi' ((1 - s) x + sg) - \frac{\Phi'(a) + \Phi'(b)}{2} \right| ds d\mu \leq \frac{1}{2} \left(\Phi' \right) \int_{\Omega} |g - x| d\mu
\]
for any $x \in [a, b]$.

Making use of (3.5) and (3.6) we deduce the desired result (3.1). □

Remark 3.2. Let $\Phi : I \to \mathbb{C}$ be an absolutely continuous functions on $[a, b] \subset \hat{I}$, the interior of I and with the property that the derivative Φ' is of bounded variation on $[a, b]$. If $x_i \in [m, M]$ and $w_i \geq 0 \ (i = 1, \ldots, n)$ with $W_n := \sum_{i=1}^{n} w_i = 1$, then one has the weighted discrete inequality:

$$\left| \sum_{i=1}^{n} w_i \Phi (x_i) - \Phi (x) - \frac{\Phi' (a) + \Phi' (b)}{2} \left(\sum_{i=1}^{n} w_i x_i - x \right) \right| (3.7)$$

$$\leq \frac{1}{2} \sqrt{\Phi' \sum_{i=1}^{n} w_i |x_i - x|}$$

for any $x \in [a, b]$.

In particular, we have

$$\sum_{i=1}^{n} w_i \Phi (x_i) - \Phi \left(\frac{a + b}{2} \right) - \frac{\Phi' (a) + \Phi' (b)}{2} \left(\sum_{i=1}^{n} w_i x_i - \frac{a + b}{2} \right) \right| (3.8)$$

$$\leq \frac{1}{2} \sqrt{\Phi' \sum_{i=1}^{n} w_i |x_i - \frac{a + b}{2}|} \leq \frac{1}{4} (b - a) \sqrt{\Phi'}$$

and

$$\left| \sum_{i=1}^{n} w_i \Phi (x_i) - \Phi \left(\sum_{i=1}^{n} w_i x_i \right) \right| \leq \frac{1}{2} \sqrt{\Phi' \sum_{i=1}^{n} w_i |x_i - \sum_{i=1}^{n} w_i x_i|} \right| (3.9)$$

$$\leq \frac{1}{2} \sqrt{\Phi' \left(\sum_{j=1}^{n} w_j x_j^2 - \left(\sum_{k=1}^{n} w_k x_k \right)^2 \right) \right}^{1/2}$$

$$\leq \frac{1}{4} (b - a) \sqrt{\Phi'}.$$

4. Inequalities for Lipschitzian Derivatives

The following result holds:

Theorem 4.1. Let $\Phi : I \to \mathbb{C}$ be an absolutely continuous functions on $[a, b] \subset \hat{I}$, the interior of I and with the property that the derivative Φ' is Lipschitzian with the constant $K > 0$ on $[a, b]$. If $g : \Omega \to [a, b]$ is Lebesgue μ-measurable on Ω and such that $\Phi \circ g, g \in L (\Omega, \mu)$, then we have

$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi (x) - \Phi' (x) \left(\int_{\Omega} g d\mu - x \right) \right| (4.1)$$

$$\leq \frac{1}{2} K \left[\sigma^2 \mu (g) + \left(\int_{\Omega} g d\mu - x \right)^2 \right]$$
for any $x \in [a, b]$, where $\sigma_{\mu}(g)$ is the dispersion or the standard variation, namely

$$\sigma_{\mu}(g) := \left(\int_{\Omega} (g - \int_{\Omega} gd\mu)^2 \, d\mu \right)^{1/2} = \left(\int_{\Omega} g^2 d\mu - \left(\int_{\Omega} gd\mu \right)^2 \right)^{1/2}.$$

In particular, we have

$$\left| \int_{\Omega} \Phi \circ gd\mu - \Phi \left(\int_{\Omega} gd\mu \right) \right| \leq \frac{1}{2} K \left[\sigma_{\mu}^2(g) + \left(\int_{\Omega} gd\mu - \frac{a + b}{2} \right)^2 \right]$$

and

$$\left| \int_{\Omega} \Phi \circ gd\mu - \Phi \left(\int_{\Omega} gd\mu \right) \right| \leq \frac{1}{2} K \sigma_{\mu}^2(g) \leq \frac{1}{8} K (b - a)^2. \quad (4.3)$$

Proof. From the identity (2.1) we have for $\lambda = \Phi'(x)$ that

$$\int_{\Omega} \Phi \circ gd\mu - \Phi \left(\int_{\Omega} gd\mu \right) - \Phi'(x) \left(\int_{\Omega} gd\mu - x \right)$$

$$= \int_{\Omega} \left[(g - x) \int_0^1 \Phi'(s(1 - s) x + sg) - \Phi'(x) \right] ds \, d\mu \quad (4.4)$$

for any $x \in [a, b]$.

Taking the modulus in (4.4) we get

$$\left| \int_{\Omega} \Phi \circ gd\mu - \Phi \left(\int_{\Omega} gd\mu \right) - \Phi'(x) \left(\int_{\Omega} gd\mu - x \right) \right| \leq \int_{\Omega} |g - x| \left| \int_0^1 \Phi'(s(1 - s) x + sg) - \Phi'(x) \right| ds \, d\mu$$

$$\leq \int_{\Omega} \left[|g - x| \int_0^1 |\Phi'(s(1 - s) x + sg) - \Phi'(x)| \right] ds \, d\mu$$

$$\leq K \int_{\Omega} \left[|g - x| \int_0^1 s |g - x| \right] ds \, d\mu = \frac{1}{2} K \int_{\Omega} (g - x)^2 \, d\mu$$

for any $x \in [a, b]$.
However,
\[\int_{\Omega} (g - x)^2 \, d\mu \]
\[= \int_{\Omega} \left(g - \int_{\Omega} gd\mu + \int_{\Omega} gd\mu - x \right)^2 \, d\mu \]
\[= \int_{\Omega} \left(g - \int_{\Omega} gd\mu \right)^2 \, d\mu + 2 \int_{\Omega} \left(g - \int_{\Omega} gd\mu \right) \left(\int_{\Omega} gd\mu - x \right) \, d\mu \]
\[+ \int_{\Omega} \left(\int_{\Omega} gd\mu - x \right)^2 \, d\mu \]
\[= \int_{\Omega} \left(g - \int_{\Omega} gd\mu \right)^2 \, d\mu + \left(\int_{\Omega} gd\mu - x \right)^2 \]
for any \(x \in [a, b] \), and by (4.5) we get the desired result (4.1).

Corollary 4.2. Let \(\Phi : I \to \mathbb{C} \) be a twice differentiable functions on \([a, b] \subset \bar{I} \) with \(\| \Phi'' \|_{[a, b], \infty} := \text{ess sup}_{t \in [a, b]} | \Phi''(t) | < \infty \). Then the inequalities (4.1)-(4.3) hold for \(K = \| \Phi'' \|_{[a, b], \infty} \).

Remark 4.3. Let \(\Phi : I \to \mathbb{C} \) be an absolutely continuous functions on \([a, b] \subset \bar{I} \) and with the property that the derivative \(\Phi' \) is Lipschitzian with the constant \(K > 0 \) on \([a, b] \). If \(x_i \in [m, M] \) and \(w_i \geq 0 \ (i = 1, \ldots, n) \) with \(W_n := \sum_{i=1}^{n} w_i = 1 \), then one has the weighted discrete inequality:
\[\left| \sum_{i=1}^{n} w_i \Phi(x_i) - \Phi(x) \left(\sum_{i=1}^{n} w_i x_i - x \right) \right| \]
\[\leq \frac{1}{2} K \left[\sigma_w^2(x) + \left(\sum_{i=1}^{n} w_i x_i - x \right)^2 \right] \]
for any \(x \in [a, b] \), where
\[\sigma_w(x) := \left(\sum_{i=1}^{n} w_i \left(x_i - \sum_{k=1}^{n} w_k x_k \right)^2 \right)^{1/2} = \left(\sum_{i=1}^{n} w_i x_i^2 - \left(\sum_{k=1}^{n} w_k x_k \right)^2 \right)^{1/2} \]

The following lemma may be stated:

Lemma 4.4. Let \(u : [a, b] \to \mathbb{R} \) and \(l, L \in \mathbb{R} \) with \(L > l \). The following statements are equivalent:

(i) The function \(u - \frac{l + L}{2} e \), where \(e(t) = t, t \in [a, b] \) is \(\frac{1}{2} (L - l) \) -Lipschitzian;

(ii) We have the inequalities \[l \leq \frac{u(t) - u(s)}{t - s} \leq L \quad \text{for each} \ t, s \in [a, b] \quad \text{with} \ t \neq s; \]

(iii) We have the inequalities \[l(t - s) \leq u(t) - u(s) \leq L(t - s) \quad \text{for each} \ t, s \in [a, b] \quad \text{with} \ t > s. \]
Following [53], we can introduce the definition of \((l, L)\)-Lipschitzian functions:

Definition 4.5. The function \(u : [a, b] \to \mathbb{R}\) which satisfies one of the equivalent conditions (i) – (iii) from Lemma 4.4 is said to be \((l, L)\)-Lipschitzian on \([a, b]\).

If \(L > 0\) and \(l = -L\), then \((-L, L)\)-Lipschitzian means \(L\)-Lipschitzian in the classical sense.

Utilising Lagrange’s mean value theorem, we can state the following result that provides examples of \((l, L)\)-Lipschitzian functions.

Proposition 4.6. Let \(u : [a, b] \to \mathbb{R}\) be continuous on \([a, b]\) and differentiable on \((a, b)\). If \(-\infty < l = \inf_{t \in [a, b]} u'(t)\) and \(\sup_{t \in [a, b]} u'(t) = L < \infty\), then \(u\) is \((l, L)\)-Lipschitzian on \([a, b]\).

The following result holds.

Corollary 4.7. Let \(\Phi : I \to \mathbb{R}\) be an absolutely continuous functions on \([a, b] \subset I\), with the property that the derivative \(\Phi'\) is \((l, L)\)-Lipschitzian on \([a, b]\), where \(l, L \in \mathbb{R}\) with \(L > l\). If \(g : \Omega \to [a, b]\) is Lebesgue \(\mu\)-measurable on \(\Omega\) and such that \(\Phi \circ g, g \in L(\Omega, \mu)\), then we have

\[
\left| \int_\Omega \Phi \circ gd\mu - \Phi \left(\frac{a + b}{2} \right) \right| - \Phi' \left(\frac{a + b}{2} \right) \left(\int_\Omega gd\mu - x \right) \leq \frac{1}{4} \left(L + l \right) \left(\int_\Omega gd\mu - x \right)^2 \tag{4.9}
\]

for any \(x \in [a, b]\).

In particular, we have

\[
\left| \int_\Omega \Phi \circ gd\mu - \Phi \left(\frac{a + b}{2} \right) \right| - \Phi' \left(\frac{a + b}{2} \right) \left(\int_\Omega gd\mu - \frac{a + b}{2} \right) \leq \frac{1}{4} \left(L + l \right) \left(\int_\Omega gd\mu - \frac{a + b}{2} \right)^2 \tag{4.10}
\]

and

\[
\left| \int_\Omega \Phi \circ gd\mu - \Phi \left(\int_\Omega gd\mu \right) - \frac{1}{4} \left(L + l \right) \sigma^2 (g) \right| \leq \frac{1}{4} \left(L - l \right) \sigma^2 (g) \tag{4.11}
\]

\[
\leq \frac{1}{16} \left(L - l \right) \sigma^2 (g) \leq \frac{1}{16} \left(L - l \right) (b - a)^2.
\]
Proof. Consider the auxiliary function \(\Psi : [a, b] \to \mathbb{R} \) given by
\[
\Psi (x) = \Phi (x) - \frac{1}{4} (L + l) x^2.
\]
We observe that \(\Psi \) is differentiable and
\[
\Psi' (x) = \Phi' (x) - \frac{1}{2} (L + l) x.
\]
Since \(\Phi' \) is \((l, L)\)-Lipschitzian on \([a, b]\) it follows that \(\Psi' \) is Lipschitzian with the constant \(\frac{1}{2} (L - l) \), so we can apply Theorem 4.1 for \(\Psi \), i.e. we have the inequality
\[
\left| \int _{\Omega} \Psi \circ g d\mu - \Psi (x) - \Psi' (x) \left(\int _{\Omega} g d\mu - x \right) \right| \leq \frac{1}{4} (L - l) \left[\sigma _\mu ^2 (g) + \left(\int _{\Omega} g d\mu - x \right)^2 \right].
\] (4.12)

However
\[
\int _{\Omega} \Psi \circ g d\mu - \Psi (x) - \Psi' (x) \left(\int _{\Omega} g d\mu - x \right)
= \int _{\Omega} \Phi \circ g d\mu - \Phi (x) - \Phi' (x) \left(\int _{\Omega} g d\mu - x \right)
- \frac{1}{4} (L + l) \left[\int _{\Omega} g^2 d\mu - x^2 - 2x \left(\int _{\Omega} g d\mu - x \right) \right]
= \int _{\Omega} \Phi \circ g d\mu - \Phi (x) - \Phi' (x) \left(\int _{\Omega} g d\mu - x \right)
- \frac{1}{4} (L + l) \left[\sigma _\mu ^2 (g) + \left(\int _{\Omega} g d\mu - x \right)^2 \right]
\]
and by (4.12) we get the desired result (4.9). \(\square \)

Remark 4.8. We observe that if the function \(\Phi \) is twice differentiable on \(\bar{I} \) and for \([a, b] \subseteq \bar{I}\) we have
\[-\infty < l \leq \Phi'' (x) \leq L < \infty \text{ for any } x \in [a, b],
\]
then \(\Phi' \) is \((l, L)\)-Lipschitzian on \([a, b]\) and the inequalities (4.9)-(4.11) hold true.

The following result also holds:

Theorem 4.9. Let \(\Phi : I \to \mathbb{C} \) be an absolutely continuous functions on \([a, b] \subseteq \bar{I}\), the interior of \(I \) and with the property that the derivative \(\Phi' \) is Lipschitzian with the constant \(K > 0 \) on \([a, b]\). If \(g : \Omega \to [a, b] \) is Lebesgue \(\mu \)-measurable on
and such that $\Phi \circ g, g \in L(\Omega, \mu)$, then we have

\[
\left| \int_{\Omega} \Phi \circ gd\mu - \Phi (x) - \Phi' \left(\int_{\Omega} gd\mu \right) \left(\int_{\Omega} gd\mu - x \right) \right| \leq \frac{1}{2} K \left[\left| x - \int_{\Omega} gd\mu \right| \left| g - x \right| d\mu + \left| \int_{\Omega} gd\mu \right| d\mu \right]
\]

\[
\leq \frac{1}{2} K \left[\left| x - \int_{\Omega} gd\mu \right| + \left| g - \int_{\Omega} gd\mu \right| \right] \int_{\Omega} \left| g - x \right| d\mu
\]

for any $x \in [a, b]$, where

\[
\left\| g - \int_{\Omega} gd\mu \right\|_{\Omega, \infty} := \text{ess sup}_{t \in \Omega} \left| g(t) - \int_{\Omega} gd\mu \right| < \infty.
\]

In particular, we have

\[
\left| \int_{\Omega} \Phi \circ gd\mu - \Phi \left(\frac{a+b}{2} \right) - \Phi' \left(\int_{\Omega} gd\mu \right) \left(\int_{\Omega} gd\mu - \frac{a+b}{2} \right) \right| \leq \frac{1}{2} K \left[\left| \frac{a+b}{2} - \int_{\Omega} gd\mu \right| \left| g - \frac{a+b}{2} \right| d\mu + \left| g - \int_{\Omega} gd\mu \right| \right] \int_{\Omega} \left| g - \frac{a+b}{2} \right| d\mu.
\]

Proof. From the identity (2.1) we have for $\lambda = \Phi' \left(\int_{\Omega} gd\mu \right)$ that

\[
\int_{\Omega} \Phi \circ gd\mu - \Phi (x) - \Phi' \left(\int_{\Omega} gd\mu \right) \left(\int_{\Omega} gd\mu - x \right) = \int_{\Omega} \left[(g - x) \int_{0}^{1} \Phi' \left((1-s)x + sg \right) - \Phi' \left(\int_{\Omega} gd\mu \right) \right] ds d\mu
\]

for any $x \in [a, b]$.
Taking the modulus in (4.15) we get
\[
\left| \int_{\Omega} \Phi \circ g d\mu - \Phi (x) - \Phi' \left(\int_{\Omega} g d\mu \right) \left(\int_{\Omega} g d\mu - x \right) \right| \tag{4.16}
\]
\[
\leq \int_{\Omega} |g - x| \left| \int_{0}^{1} \left(\Phi' \left((1-s) x + sg \right) - \Phi' \left(\int_{\Omega} g d\mu \right) \right) ds \right| d\mu
\]
\[
\leq \int_{\Omega} \left| g - x \right| \left| \int_{0}^{1} \left(\Phi' \left((1-s) x + sg \right) - \Phi' \left(\int_{\Omega} g d\mu \right) \right) ds \right| d\mu
\]
\[
\leq K \int_{\Omega} \left| g - x \right| \int_{0}^{1} (1-s) x + sg - \int_{\Omega} g d\mu \right| ds d\mu
\]
\[
= K \int_{\Omega} \left| g - x \right| \int_{0}^{1} (1-s) x + sg - (1-s) \int_{\Omega} g d\mu - s \int_{\Omega} g d\mu \right| ds d\mu
\]
\[
:= B.
\]
Using the triangle inequality we have for any \(t \in \Omega \)
\[
\int_{0}^{1} (1-s) x + sg \left(t \right) - (1-s) \int_{\Omega} g d\mu - s \int_{\Omega} g d\mu \right| ds
\]
\[
\leq \int_{0}^{1} (1-s) \left| x - \int_{\Omega} g d\mu \right| ds + \int_{0}^{1} s \left| g \left(t \right) - \int_{\Omega} g d\mu \right| ds
\]
\[
= \frac{1}{2} \left[\left| x - \int_{\Omega} g d\mu \right| + \left| g \left(t \right) - \int_{\Omega} g d\mu \right| \right]
\]
and then
\[
B \leq \frac{1}{2} K \int_{\Omega} \left| g - x \right| \left[\left| x - \int_{\Omega} g d\mu \right| + \left| g \left(t \right) - \int_{\Omega} g d\mu \right| \right] d\mu \tag{4.17}
\]
\[
= \frac{1}{2} K \left[\left| x - \int_{\Omega} g d\mu \right| \int_{\Omega} \left| g - x \right| d\mu + \int_{\Omega} \left| g - x \right| \left| g - \int_{\Omega} g d\mu \right| d\mu \right].
\]
Making use of (4.16) and (4.17) we deduce the desired result (4.13). \(\square \)

Corollary 4.10. Let \(\Phi : I \to \mathbb{R} \) be an absolutely continuous functions on \([a, b] \subset I\), with the property that the derivative \(\Phi' \) is \((l, L)\)-Lipschitzian on \([a, b]\), where \(l, L \in \mathbb{R} \) with \(L > l \). If \(g : \Omega \to [a, b] \) is Lebesgue \(\mu \)-measurable on \(\Omega \) and such that \(\Phi \circ g, g \in L(\Omega, \mu) \), then we have
\[
\left| \int_{\Omega} \Phi \circ g d\mu - \Phi (x) - \Phi' \left(\int_{\Omega} g d\mu \right) \left(\int_{\Omega} g d\mu - x \right) \right| \tag{4.18}
\]
\[
\leq \frac{1}{4} (L + l) \left[\sigma_{\mu}^{2} (g) - \left(x - \int_{\Omega} g d\mu \right)^{2} \right]
\]
\[
\leq \frac{1}{4} (L - l) \left[\left| x - \int_{\Omega} g d\mu \right| \int_{\Omega} \left| g - x \right| d\mu + \int_{\Omega} \left| g - x \right| \left| g - \int_{\Omega} g d\mu \right| d\mu \right]
\]
\[
\leq \frac{1}{4} (L - l) \left[\left| x - \int_{\Omega} g d\mu \right| + \left| g - \int_{\Omega} g d\mu \right| \right] \int_{\Omega} \left| g - x \right| d\mu
\]
for any $x \in [a, b]$.

In particular, we have

\[
\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\frac{a + b}{2} \right) - \Phi' \left(\int_{\Omega} g d\mu \right) \left(\int_{\Omega} g d\mu - \frac{a + b}{2} \right) \right| \leq \frac{1}{4} (L + l) \left[\sigma^2_{\mu} (g) - \left(\frac{a + b}{2} - \int_{\Omega} g d\mu \right)^2 \right].
\]

5. APPLICATIONS FOR f-DIVERGENCE

One of the important issues in many applications of Probability Theory is finding an appropriate measure of distance (or difference or discrimination) between two probability distributions. A number of divergence measures for this purpose have been proposed and extensively studied by Jeffreys [47], Kullback and Leibler [52], Rényi [58], Havrda and Charvat [44], Kapur [50], Sharma and Mittal [62], Burbea and Rao [5], Rao [57], Lin [53], Csiszár [12], Ali and Silvey [1], Vajda [68], Shioya and Da-te [63] and others (see for example [54] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [57], genetics [54], finance, economics, and political science [60], [66], [67], biology [56], the analysis of contingency tables [42], approximation of probability distributions [11], [51], signal processing [48], [49] and pattern recognition [4], [10]. A number of these measures of distance are specific cases of Csiszár f-divergence and so further exploration of this concept will have a flow on effect to other measures of distance and to areas in which they are applied.

Assume that a set Ω and the σ-finite measure μ are given. Consider the set of all probability densities on μ to be $\mathcal{P} := \{ p | p : \Omega \to \mathbb{R}, p(t) \geq 0, \int_{\Omega} p(t) d\mu(t) = 1 \}$.

The Kullback-Leibler divergence [52] is well known among the information divergences. It is defined as:

\[
D_{KL}(p, q) := \int_{\Omega} p(t) \ln \left(\frac{p(t)}{q(t)} \right) d\mu(t), \quad p, q \in \mathcal{P},
\]

where \ln is to base e.

In Information Theory and Statistics, various divergences are applied in addition to the Kullback-Leibler divergence. These are the: variation distance D_v, Hellinger distance D_H [45], χ^2-divergence D_{χ^2}, α-divergence D_α, Bhattacharyya distance D_B [3], Harmonic distance $D_{H\alpha}$, Jeffrey’s distance D_J [47],...
triangular discrimination D_Δ [65], etc... They are defined as follows:

\[D_v (p, q) := \int_\Omega |p(t) - q(t)| \, d\mu(t), \quad p, q \in \mathcal{P}; \]

\[D_H (p, q) := \int_\Omega \left| \sqrt{p(t)} - \sqrt{q(t)} \right| \, d\mu(t), \quad p, q \in \mathcal{P}; \]

\[D_{\chi^2} (p, q) := \int_\Omega \left[\left(\frac{q(t)}{p(t)} \right)^2 - 1 \right] \, d\mu(t), \quad p, q \in \mathcal{P}; \]

\[D_\alpha (p, q) := \frac{4}{1 - \alpha^2} \left[1 - \int_\Omega \left[p(t)^{1-\alpha} \frac{q(t)}{p(t)} \right]^{\frac{1+\alpha}{2}} \, d\mu(t) \right], \quad p, q \in \mathcal{P}; \]

\[D_B (p, q) := \int_\Omega \sqrt{p(t)q(t)} \, d\mu(t), \quad p, q \in \mathcal{P}; \]

\[D_{Ha} (p, q) := \int_\Omega \left(\frac{2p(t)q(t)}{p(t) + q(t)} \right) \, d\mu(t), \quad p, q \in \mathcal{P}; \]

\[D_J (p, q) := \int_\Omega [p(t) - q(t)] \ln \left(\frac{p(t)}{q(t)} \right) \, d\mu(t), \quad p, q \in \mathcal{P}; \]

\[D_\Delta (p, q) := \int_\Omega \left[\frac{p(t) - q(t)}{p(t) + q(t)} \right]^2 \, d\mu(t), \quad p, q \in \mathcal{P}. \]

For other divergence measures, see the paper [50] by Kapur or the book on line [64] by Taneja.

Csiszár f-divergence is defined as follows [13]

\[I_f (p, q) := \int_\Omega p(t) f \left(\frac{q(t)}{p(t)} \right) \, d\mu(t), \quad p, q \in \mathcal{P}, \]

where f is convex on $(0, \infty)$. It is assumed that $f(u)$ is zero and strictly convex at $u = 1$. By appropriately defining this convex function, various divergences are derived. Most of the above distances (5.1)-(5.9), are particular instances of Csiszár f-divergence. There are also many others which are not in this class (see for example [64]). For the basic properties of Csiszár f-divergence see [13], [14] and [68].

The following result holds:

Proposition 5.1. Let $f : (0, \infty) \to \mathbb{R}$ be a twice differentiable convex function with the property that $f(1) = 0$ and there exists the constants γ, Γ so that

\[-\infty < \gamma < f(t) \leq \Gamma < \infty. \]

Assume that $p, q \in \mathcal{P}$ and there exists the constants $0 < r < 1 < R < \infty$ such that

\[r \leq \frac{q(t)}{p(t)} \leq R \text{ for } \mu\text{-a.e. } t \in \Omega. \]
If $x \in [r, R]$, then we have the inequality
\[
\left| I_f (p, q) - f(x) - f'(x)(1 - x) - \frac{1}{4} (L + l) \left[D_{\chi^2} (p, q) + (1 - x)^2 \right] \right| \leq \frac{1}{4} (L - l) \left[D_{\chi^2} (p, q) + (1 - x)^2 \right].
\] (5.12)

In particular, we have
\[
\left| I_f (p, q) - f \left(\frac{r + R}{2} \right) - f' \left(\frac{r + R}{2} \right) \left(1 - \frac{r + R}{2} \right) \right| \leq \frac{1}{4} (L - l) \left[D_{\chi^2} (p, q) + \left(1 - \frac{r + R}{2} \right)^2 \right].
\] (5.13)

and
\[
\left| I_f (p, q) - \frac{1}{4} (L + l) D_{\chi^2} (p, q) \right| \leq \frac{1}{4} (L - l) D_{\chi^2} (p, q).
\] (5.14)

Proof. From (4.9) we have
\[
\left| \int_{\Omega} p(t) f \left(\frac{q(t)}{p(t)} \right) d\mu(t) - f(x) - f'(x)(1 - x) \right|
\]
\[
- \frac{1}{4} (L + l) \left[\int_{\Omega} p(t) \left(\frac{q(t)}{p(t)} \right)^2 d\mu(t) - 1 + (1 - x)^2 \right]
\]
\[
\leq \frac{1}{4} (L - l) \left[\int_{\Omega} p(t) \left(\frac{q(t)}{p(t)} \right)^2 d\mu(t) - 1 + (1 - x)^2 \right]
\]
for any $x \in [r, R]$, which is equivalent to (5.12). \qed

Utilising Corollary 4.10 we can state the following result as well:

Proposition 5.2. With the assumptions in Proposition 5.1, we have
\[
\left| I_f (p, q) - f(x) - f'(1)(1 - x) - \frac{1}{4} (L + l) \left[D_{\chi^2} (p, q) - (1 - x)^2 \right] \right| \leq \frac{1}{4} (L - l) \left[x - 1 \right] \int_{\Omega} |q - xp| d\mu + \int_{\Omega} |q - xp| \left| \frac{q}{p} - 1 \right| d\mu
\]
\[
\leq \frac{1}{4} (L - l) \left[x - 1 \right] + \left\| \frac{q}{p} - 1 \right\|_{\Omega, \infty} \int_{\Omega} |q - xp| d\mu
\]
for any $x \in [r, R]$.

If we consider the convex function $f : (0, \infty) \rightarrow \mathbb{R}$, $f(t) = t \ln t$ then
\[
I_f (p, q) := \int_{\Omega} p(t) \frac{q(t)}{p(t)} \ln \left(\frac{q(t)}{p(t)} \right) d\mu(t) = \int_{\Omega} q(t) \ln \left(\frac{q(t)}{p(t)} \right) d\mu(t)
\]
\[
= D_{KL} (q, p).
\]
We have \(f'(t) = \ln t + 1 \) and \(f''(t) = \frac{1}{t} \) and then we can choose \(l = \frac{1}{R} \) and \(L = \frac{1}{r} \). Applying the inequality (5.14) we get

\[
\left| D_{KL}(q,p) - \left(\frac{R + r}{4rR} \right) D_{\chi^2}(p,q) \right| \leq \frac{R - r}{4rR} D_{\chi^2}(p,q). \tag{5.16}
\]

If we consider the convex function \(f : (0, \infty) \to \mathbb{R} \), \(f(t) = -\ln t \) then

\[
I_f(p,q) := -\int_{\Omega} p(t) \ln \left(\frac{q(t)}{p(t)} \right) d\mu(t) = \int_{\Omega} p(t) \ln \left(\frac{p(t)}{q(t)} \right) d\mu(t)
= D_{KL}(p,q).
\]

We have \(f'(t) = -\frac{1}{t} \) and \(f''(t) = \frac{1}{t^2} \) and then we can choose \(l = \frac{1}{R^2} \) and \(L = \frac{1}{r^2} \). Applying the inequality (5.14) we get

\[
\left| D_{KL}(p,q) - \frac{R^2 + r^2}{4R^2r^2} D_{\chi^2}(p,q) \right| \leq \frac{R^2 - r^2}{4R^2r^2} D_{\chi^2}(p,q). \tag{5.17}
\]

ACKNOWLEDGMENTS

The author would like to thank the referees for giving fruitful advices.

REFERENCES

23. S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) \, du(t)$ where f is of H"older type and u is of bounded variation and applications, *J. KSIAM*, 5(1), (2001), 35-45.
36. S. S. Dragomir, N. M. Ionescu, Some converse of Jensen’s inequality and applications,
37. S. S. Dragomir, Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in
38. S. S. Dragomir, S. Wang, A new inequality of Ostrowski’s type in L_1 norm and applica-
tions to some special means and to some numerical quadrature rules, Tamkang J. of
39. S. S. Dragomir, S. Wang, Applications of Ostrowski’s inequality to the estimation of
error bounds for some special means and some numerical quadrature rules, Appl. Math.
40. S. S. Dragomir, S. Wang, A new inequality of Ostrowski’s type in L_p norm and applica-
tions to some special means and some numerical quadrature rules, Indian J. of Math.,
41. A. M. Fink, Bounds on the deviation of a function from its averages, Czechoslovak Math.
J., 42 (117), (1992), 298-310.
42. D. V. Gokhale, S. Kullback, Information in Contingency Tables, New York, Marcel
43. A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard
44. J. H. Havrda, F. Charvat, Quantification method classification process: concept of struc-
tural α-entropy, Kybernetika, 3 , (1967), 30-35.
45. E. Hellinger, Neue Berggründerung du Theorie quadratischer Formen von uneudlichvieleu
46. A. Sheikh Hossein, A generalized singular value inequality for Heinz means, Iranian
Journal of Mathematical Sciences and Informatics, 10(2), (2015), 23–27.
49. T. Kailath, The divergence and Bhattacharyya distance measures in signal selection,
50. J. N. Kapur, A comparative assessment of various measures of directed divergence,
Advances in Management Studies, 3 , (1984), 1-16.
51. D. Kazakos, T. Cotsidas, A decision theory approach to the approximation of discrete
52. S. Kullback, R. A. Leibler, On information and sufficiency, Annals Math. Statist., 22 ,
(1951), 79-86.
54. M. Mei, The theory of genetic distance and evaluation of human races, Japan J. Human
Genetics, 23 (1978), 341-369.
55. A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren
57. C. R. Rao, Diversity and dissimilarity coefficients: a unified approach, Theoretic Popula-
tion Biology, 21 , (1982), 24–43.