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Abstract. In this paper, we consider convex quadratic semidefinite op-

timization problems and provide a primal-dual Interior Point Method

(IPM) based on a new kernel function with a trigonometric barrier term.

Iteration complexity of the algorithm is analyzed using some easy to check

and mild conditions. Although our proposed kernel function is neither a

Self-Regular (SR) function nor logarithmic barrier function, the primal-

dual IPMs based on this kernel function enjoy the worst case iteration

bound O
(√

n logn log n
ϵ

)
for the large-update methods with the special

choice of its parameters. This bound coincides to the so far best known

complexity results obtained from SR kernel functions for linear and semi-

definite optimization problems. Finally, some numerical issues regarding

the practical performance of the new proposed kernel function are re-

ported.
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1. Introduction

In this paper, we deal with the Convex Quadratic Semidefinte Optimization

(CQSDO) problem

(P ) minC •X +
1

2
X • Ω(X),

s.t. Ai •X = bi, i = 1, ...,m,

X ⪰ 0,

along with its dual problem:

(D) max bT y − 1

2
X • Ω(X),

s.t.
m∑
i=1

yiAi − Ω(X) + S = C,

S ⪰ 0,

where C and Ai’s, for 1 ≤ i ≤ m, are symmetric n×n matrices and b, y ∈ Rm.

Moreover, the self-adjoint positive semidefinite linear operator Ω(X) : Sn 7→
Sn, defined on the set of all symmetric n × n matrices Sn, is defined by the

properties Ω(A)•B = A•Ω(B) and Ω(A)•A ⪰ 0, for all A,B ∈ Sn. Note that,

the classical Löwner partial ordering ⪰ for symmetric matrices is defined by

A ⪰ B(A ≻ B) if and only if A−B is positive semidefinite (positive definite).

Moreover, throughout the paper, as LO case [26], we assume that the matrices

Ai are linearly independent and the problems (P) and (D) satisfy the Interior

Point Condition (IPC), i.e. there exists
(
X0, S0

)
≻ 0 so that

Ai •X0 = bi, i = 1, . . . ,m,
m∑
i=1

yiAi − Ω(X0) + S = C.

The CQSDO problems have some important applications, such as the nearest

Euclidian distance and correlation matrix problems, see e.g. [1, 25]. Moreover,

it is an extension of the well known Semidefinite Optimization (SDO) problems

and can be reformulated as a semidefinite linear complementarity problem [13].

Indeed, the CQSDO problem is reduced to the SDO problem under the operator

Ω(A) = 0.

After the seminal paper of Karmarkar [10] in 1984, the polynomial time Inte-

rior Point Methods (IPMs) have been revitalized as an active area of research.

Since then, many variants of this algorithm have been studied and developed for

the many classes of convex optimization problems, including Linear Comple-

mentary Problem (LCP), Second Order Cone Optimization (SOCO) problems,

Semidefinite Optimization (SDO) problems and most recently CQSDO prob-

lems, see e.g. [7, 27, 29, 30, 31, 33]. These methods have shown their power not

only in theoretical complexity results but also in practical performance. Due to
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these nice behaviors, nowadays, IPMs are of great interest for the researchers

in the optimization fields. The so called path following IPMs were first pro-

posed by Kojima et al. [12] and Megiddo [15]. These methods follow the so

called central path curve approximately to get close to the optimal point. The

existence of the central path for CQSDO was first provided by Nie et al. in

[19].

All variants of the interior point methods designed for Linear Optimization

(LO) have been successfully extended to SDO. An extension of the primal dual

IPMs from LO to SDO was first done by Nesterov and Nemirovski [16] and

obtained a polynomial complexity for solving conic problems by introducing

the so called self concordant barrier functions which consist of the logarithmic

barrier function. Peng et al. [22] proposed a new paradigm in the classical

IPM for solving LO and some other extensions of this problem in which the

logarithmic barrier function is replaced by the so called Self-Regular (SR) bar-

rier functions. The iteration complexity of LO and its extensions, based on SR

barrier functions, led them to obtain the so far best known iteration bound for

small and large update IPMs as O (
√
nL) and O (

√
n log nL), respectively. Note

that, based on the logarithmic barrier functions, these bounds are O (
√
nL) and

O (nL), respectively. Moreover, a class of primal-dual interior-point algorithms

for linear optimization based on a new family of kernel functions which is fairly

general and includes the classical logarithmic function, the prototype self regu-

lar function, and some non-self-regular kernel functions as its special case was

proposed by Bai et al. in [4].

Nie et al. in [19] proposed an IPM based on potential reduction approach

and obtained an iteration bound O
(√
n log n

ϵ

)
in the worst case. A predictor-

corrector IPM has also been proposed by Nie et al. in [20] with the same order

of complexity as the potential reduction approach. An interior point method

based on kernel function for solving CQSDO was first proposed by Wang et al.

in [31] in which they employed a parametric kernel function, provided in [2]

for LO, and obtained O(
√
n log n log n

ϵ ) iteration bound for the large update

method IPMs.

Recently, Wang et al. in [33] proposed a primal-dual IPM for CQSDO based

on a kernel function which was previously introduced for LO in [3]. They

obtained the best known iteration complexity for large-update methods, i.e.

O
(√
n log n log n

ϵ

)
. Later on, Zhang in [30] suggested a new kernel function for

solving CQSDO problems for the first time and obtained its iteration complex-

ity as O
(√
n(log n)2 log n

ϵ

)
for the CQSDO problems. Although their complex-

ity was not as good as that of [33], the kernel function and their approach for

analyzing the algorithm was rather interesting.

Due to literature, it seems that analyzing of IPMs based on trigonomet-

ric kernel function is of interest for the researchers. The first work in this

subject for LO problems was done by El Ghami et al. in [6]. They showed
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that the primal-dual interior point methods for solving LO meet O
(
n

3
4 log n

ϵ

)
iteration bound in the worst case. Later, Kheirfam in [11] proposed a new

kernel function with a trigonometric barrier term and analyzed the complexity

of large-update primal-dual IPMs for SDO problems based on this kernel func-

tion. He achieved the same complexity of El Ghami et al. in [6]. Moreover, El

Ghami in [8] proposed a primal dual IPMs for P∗(κ)-linear complementarity

problem based on a kernel function with trigonometric barrier term which was

previously introduced for LO in [6]. He obtained the iteration complexity as

O
(
(1 + 2κ)n

3
4 log n

ϵ

)
for the large-update methods. In a more recent paper,

Peyghami et al. in [24] introduced a new kernel function with trigonometric

barrier term for LO problems and achieved the worst case complexity for the

large update IPMs as O
(
n

2
3 log n

ϵ

)
which improves the bound obtained in [6]

and [8] significantly.

In this paper, we propose a new kernel function with trigonometric barrier

term which is not considered in the literature so far. This kernel function is

neither the so called self-regular [22] kernel function nor the logarithmic barrier

function. The large-update primal-dual IPMs for solving CQSDO problems

are analyzed based on this kernel function. Using a simple analysis and under

some mild conditions, we show that large-update primal-dual IPMs based on

our new kernel function enjoy the so far best known iteration complexity for

linear optimization problems, i.e. O
(√
n log n log n

ϵ

)
, for specific choices of the

function’s parameters. To our best knowledge, this is the first work in which the

trigonometric kernel function is proposed for the complexity analysis of primal-

dual IPMs in solving CQSDO problems. Numerical results on a problem taken

from the literature show that the new proposed function is well promising and

perform well enough in practice in comparison with some other existing kernel

functions in the literature.

The paper is organized as follows: In Section 2, we name some basic concepts

of linear algebra and the properties of the matrices. The new kernel function

and its properties are given in Section 3. Section 4 is devoted to recall the

central path concept and the interior point methods for CQSDO. A default

value for the step size together with the proximity reduction are introduced in

Section 5. The worst case iteration bound for the primal-dual IPMs based on

the new kernel function is provided in Section 6. We illustrate the practical

performance of the new proposed kernel function in Section 7. Finally, some

concluding remarks are given in Section 8.

The following notational conventions are used throughout this paper: Rn
+

and Rn
++ stand for the subsets of nonnegative and positive vectors in Rn,

respectively. ∥ . ∥ denotes the Frobenius norm for the matrices, and the 2-norm

for the vectors. Rm×n is the space of all m× n matrices. Sn, Sn
+ and Sn

++ are

the cone of symmetric, symmetric positive semidefinite and symmetric positive
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definite n×nmatrices, respectively. The matrix E indicates the identity matrix

of order n. The inner product of the same size matrices A and B is defined

by A • B = Tr(ATB). For given Q ∈ Sn
++, the expression Q

1
2 stands for

the symmetric square root of Q. For the vector λ ∈ Rn, the matrix Λ is a

diagonal matrix whose diagonal entries are λi’s. For V ∈ Sn
++, the vector

λ(V ) denotes the vector of its eigenvalues arranged in non-increasing order, i.e.

λ1(V ) ≥ λ2(V ) ≥ . . . ≥ λn(V ).

2. Preliminaries

In this section, we provide an introduction to the CQSDO problem and some

related elementary results from linear algebra. The new kernel function along

with its properties are also given in this section.

Let us consider the primal and dual CQSDO problem as given by (P) and

(D). As in [20] and [31], we restrict the self adjoint positive semidefinite linear

operator Ω to the following special case:

Ω(X) =

l∑
i=1

HT
i XHi,

where l is a positive integer not greater than n2 and Hi ∈ Rn×n. It can be

easily seen that

Ω(X) = Ω(X)T , Ω(X) •X ≥ 0, ∀X ∈ Rn×n.

In what follows, we present some properties of the symmetric matrices along

with the matrix function and its derivatives.

Theorem 2.1. (Spectral theorem for symmetric matrices [34] and [9]) The real

n×n matrix A is symmetric if and only if there exists an orthogonal basis with

respect to which A is real and diagonal, i.e. if and only if there exists a matrix

U ∈ Rn×n such that UTU = E and UTAU = Λ.

Due to Theorem 2.1, let U ∈ Rn×n be an orthogonal matrix that diagonalizes

V ∈ Sn
++, i.e. V = UT diag(λ(V ))U and UTU = E. Then, for the real function

ψ(t), t ∈ R+, the matrix function ψ : Sn
++ → Sn

++ and the real valued matrix

function Ψ : Sn
++ → R+ are defined by

ψ(V ) = UT diag (ψ(λ1(V )), ψ(λ2(V )), . . . , ψ(λn(V )))U, (2.1)

Ψ(V ) := Tr(ψ(V )) =

n∑
i=1

ψ(λi(V )), (2.2)

where Tr(.) stands for the trace operator. For the matrix function ψ(V ), its

first and second derivatives are defined by replacing ψ(λi(V ))’s in (2.1) with

ψ′(λi(V ))’s and ψ′′(λi(V ))’s, respectively.

Definition 2.1. A matricM(t) is said to be a matrix of functions if each entry

of M(t) is a function of t, i.e., M(t) = [Mij(t)].
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The following properties hold for the matrix of functions. One can find their

proof in [9, 14, 22].

For M,N ∈ Sn
+, one has

|Tr(MN)| ≤ |λ1(M)|
n∑

i=1

|λi(N)|, T r(MN) ≤ (Tr(M2))
1
2 (Tr(N2))

1
2 . (2.3)

Moreover, if M1 ⪯M2 and N ⪰ 0, then

Tr(M1N) ≤ Tr(M2N). (2.4)

An extension of the usual concepts of analysis such as continuity, differentia-

bility, and integrability is straight for the matrix of functions by interpreting

them as entry-wise. Furthermore, for the matrix functions M(t) and N(t), one

can easily see that

d

dt
Tr(M(t)) = Tr

(
d

dt
M(t)

)
= Tr(M ′(t)), (2.5)

d

dt
Tr(ψ(M(t))) = Tr(ψ′(M(t))M ′(t), (2.6)

d

dt
(M(t)N(t)) =

(
d

dt
M(t)

)
N(t) +M(t)

(
d

dt
N(t)

)
= M ′(t)N(t) +M(t)N ′(t). (2.7)

3. The New Kernel Function and Its Properties

In this section, a new kernel function with trigonometric barrier term along

with its properties are provided. Let us define the new univariate function:

ψ(t) =
t2 − 1

2
−
∫ t

1

4

(1 + x)2
tan2p(h(x))dx, p ≥ 1, (3.1)

where

h(x) =
π

2 + 2x
. (3.2)

It can be easily seen that as t→ 0 or t→ ∞, then ψ(t) → ∞. Therefore, ψ(t)

is indeed a kernel function. As we need the first three derivatives of ψ(t), we

list them here:

ψ′(t) = t− 4

(1 + t)2
tan2p(h(t)) (3.3)

ψ′′(t) = 1 +
8

(1 + t)3
tan2p(h(t)) +

4pπ

(1 + t)4
tan2p−1(h(t))r(t) (3.4)

ψ′′′(t) = − 4

(1 + t)4
tan2p−2(h(t))k(t), (3.5)
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where

r(t) = 1 + tan2(h(t))

k(t) = 6 tan2(h(t)) +
6pπ

1 + t
tan(h(t))r(t) +

π2p(2p− 1)

2(1 + t)2
r2(t)

+
pπ2

(1 + t)2
tan2(h(t))r(t).

The following results provide some essential properties of the kernel function

ψ(t) which are used in our analysis in the next sections.

Lemma 3.1. For the function h(t), defined by (3.2), the following inequality

holds for all t ∈ (0, 1]:

tan(h(t)) ≥ 1

πt
.

Proof. The proof is similar to the proof of Lemma 2.1 in [6], however we restate

it here. Let g(t) be defined as

g(t) := tan(h(t))− 1

πt
.

For this function, one has:

g′(t) =
h′(t)

cos2(h(t))
+

1

πt2
=

1

πt2 cos2(h(t))

(
h′(t)πt2 + cos2(h(t))

)
,

where h′(t) = −π
2(1+t)2 . As for all t ∈ (0, 1], the inequality π

4 ≤ h(t) < π
2 holds,

therefore, we have:

sin
(π
2
− h(t)

)
= cos(h(t)) ≤ π

2
− h(t),

which implies that

g′(t) =
1

πt2 cos2(h(t))

(
h′(t)πt2 + sin2

(π
2
− h(t)

))
≤ 1

πt2 cos2(h(t))

(
h′(t)πt2 +

(π
2
− h(t)

)2)
≤ 1

πt2 cos2(h(t))
(

−π2t2

(2 + 2t)2
) < 0.

This shows that g(t) is a decreasing function on (0, 1] which completes the proof

by considering the fact that g(1) > 0. □

Lemma 3.2. For the function ψ(t), defined by (3.1), we have:

i): ψ′′(t) > 1, ∀t > 0,

ii): tψ′′(t)− ψ′(t) > 0, ∀t > 1,

iii): tψ′′(t) + ψ′(t) > 0, ∀t > 0

iv): ψ′′′(t) < 0, ∀t > 0.
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Proof. First of all, we note that

tan(h(t)) ≥ 1, for all 0 < t ≤ 1, (3.6)

0 ≤ tan(h(t)) < 1, for all t > 1. (3.7)

Using (3.6) and (3.7), we obtain:

ψ′′(t) = 1 +
8

(1 + t)3
tan2p(h(t)) +

4pπ

(1 + t)4
tan2p−1(h(t))r(t) > 1,

which shows that (i) holds. To prove (ii), for all t ≥ 1, we have:

tψ′′(t)− ψ′(t) =
12t+ 4

(1 + t)3
tan2p(h(t)) +

4pπt

(1 + t)4
tan2p−1(h(t))r(t) > 0.

Now, we prove that (iii) holds. For t ≥ 1, the statement is trivial as ψ′(1) = 0

and ψ′(t) is a strictly increasing function. For t ∈ (0, 1), using Lemma 3.1, we

have:

tψ′′(t) + ψ′(t) = 2t+
4t− 4

(1 + t)3
tan2p(h(t)) +

4pπt

(1 + t)4
tan2p−1(h(t))r(t)

≥
(

4t− 4

(1 + t)3
+

4p

(1 + t)4

)
tan2p(h(t)) +

4pπt

(1 + t)4
tan2p−1(h(t))

=
4(t2 + (p− 1))

(1 + t)4
tan2p(h(t)) +

4pπt

(1 + t)4
tan2p−1(h(t)) > 0.

The statement (iv) can be easily followed by considering (3.5). □

The first and the third parts of Lemma 3.2 are respectively known as super

convexity and exponential convexity (e-convexity) of the kernel function ψ(t)

in the literature and play important roles in the analysis of the primal-dual

IPMs based on kernel functions. It is shown that the e-convexity property is

equivalent to the convexity of the function ψ(eξ) and to the following inequality

[22]:

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)), for all t1, t2 > 0. (3.8)

Using the e-convexity property of the kernel function, the following result for

the real valued matrix function Ψ(V ) can be concluded.

Theorem 3.1. (Proposition 5.2.6 in [21]) Suppose that matrices V1 and V2
are symmetric and positive definite. Then

Ψ

([
V

1
2
1 V2V

1
2
1

] 1
2

)
≤ 1

2
(Ψ(V1) + Ψ(V2)) .

In what follows, we provide some other results related to the new kernel

function which are crucial in deriving the iteration complexity of IPMs based
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on kernel functions. Let the norm-based proximity measure δ(V ) be defined

by:

δ := δ(V ) =
1

2
∥ψ′(V )∥ =

1

2

√√√√ n∑
i=1

(ψ′(λi(V )))2. (3.9)

Moreover, using ψ(1) = ψ′(1) = 0, the function ψ(t) can be totally described

by its second derivative according to:

ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ)dζdξ. (3.10)

From the super convexity property of the kernel function and (3.10), one can

easily obtain the following properties for the kernel function and the related

real valued matrix function.

Lemma 3.3. Let the kernel function ψ(t) be defined as in (3.1). Then, we

have:

i): 1
2 (t− 1)2 ≤ ψ(t) ≤ 1

2ψ
′(t)2, for all t > 0.

ii): Ψ(V ) ≤ 2δ(V )2, ∀ V ≻ 0.

iii): ∥λ(V )∥ ≤
√
n+

√
2Ψ(V ), ∀ V ≻ 0.

Proof. The proof is similar to the proof of Lemma 3.4 in [23] and therefore is

omitted here. □

Now, we discuss about the growth behavior of the new kernel function and

its related real valued matrix function. For this purpose, we have the following

results:

Lemma 3.4. Let β ≥ 1. Then, we have

ψ(βt) ≤ ψ(t) +
1

2
(β2 − 1)t2.

Proof. Let the function ψ(t) be defined by ψ(t) = t2−1
2 + p(t), where p(t) is

given by

p(t) = −
∫ t

1

4

(1 + x)2
tan2p(h(x))dx.

In order to prove the statement, it is sufficient to show that the function p(t)

is a decreasing function. To do so, one has

p′(t) = − 4

(1 + t)2
tan2p(h(t)) < 0.

This completes the proof by considering the fact that βt ≥ t, for β ≥ 1. □

An immediate consequence of Lemma 3.4 for the real valued matrix function

Ψ(V ) is given by the following lemma.
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Lemma 3.5. Let β ≥ 1 and V be a symmetric positive definite matrix. Then,

for V+ := βV , we have

Ψ(V+) ≤ Ψ(V ) +
β2 − 1

2

(
2Ψ(V ) + 2

√
2nΨ(V ) + n

)
.

Proof. Using Lemma 3.4, we have

Ψ(βV ) =
n∑

i=1

ψ(βλi(V ))

≤
n∑

i=1

(
ψ(λi(V )) +

1

2
(β2 − 1)λi(V )2

)

= Ψ(V ) +
1

2
(β2 − 1)

n∑
i=1

λi(V )2

= Ψ(V ) +
1

2
(β2 − 1)∥λ(V )∥2.

The proof is completed by using the third part of Lemma 3.3. □

4. A Primal-dual IPM for CQSDO

The optimality conditions for the problems (P) and (D) are given by:

Ai •X = bi, X ≻ 0, i = 1, . . . ,m,
m∑
i=1

yiAi − Ω(X) + S = C, S ≻ 0, (4.1)

XS = 0.

A key idea in the primal-dual IPMs for solving CQSDO problem is to replace

the third equality in (4.1), the so called complementarity condition, with the

parametric equation XS = µE, for µ > 0. This leads us to the following

system:

Ai •X = bi, X ≻ 0, i = 1, . . . ,m,
m∑
i=1

yiAi − Ω(X) + S = C, S ≻ 0, (4.2)

XS = µE.

The IPC implies that system (4.2) has a unique solution (X(µ), y(µ), S(µ)),

for each µ > 0. The set of all solutions of system (4.2) for every µ > 0 is

called the central path for the problems (P) and (D). X(µ) and (y(µ), S(µ))

are called the µ-centers of (P) and (D), respectively. As µ → 0, it has been

shown that the limit of the central path exists and goes to the so called analytic

center of the optimal set of problems (P) and (D) [12]. Most of IPMs follow

the central path approximately to get close enough to the optimal solution, see

e.g. [5, 15, 28, 34].
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An application of Newton method to the system (4.2) leads us to the following

linear system for the search direction (∆X,∆y,∆S):

Ai •∆X = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi − Ω(∆X) + ∆S = 0, (4.3)

X∆S + S∆X = µE −XS.

System (4.3) has a unique solution [34], in which ∆X is not necessarily sym-

metric. Some symmetrization techniques exist in the literature that are used

to obtain a symmetric solution for the ∆X, see e.g [17, 18]. In this paper, we

use the Nesterov-Todd symmetrization scheme [17, 18] which leads us to the

so called NT direction. Let

P := X
1
2 (X

1
2SX

1
2 )−

1
2X

1
2 = S− 1

2 (S
1
2XS

1
2 )

1
2S− 1

2 ,

and D = P
1
2 . Using D, one can define the symmetric and positive definite

matrix V as follows:

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DSD. (4.4)

It can be easily seen that

V 2 :=
1

µ
D−1XSD. (4.5)

Let us further define

Āi := DAiD, 1 ≤ i ≤ m,

DX :=
1
√
µ
D−1∆XD−1, (4.6)

DS :=
1
√
µ
D∆SD,

Ω̄(DX) :=

l∑
i=1

DHT
i DDXDHiD.

Now, using (4.6), system (4.3) can be scaled as follows to generate the (scaled)

NT search direction (∆X,∆y,∆S):

Āi •DX = 0, 1 ≤ i ≤ m,
m∑
i=1

∆yiĀi − Ω̄(DX) +DS = 0, (4.7)

DX +DS = V −1 − V.

A crucial observation in this system is that the right hand side of the third

equation is the negative gradient of the matrix function induced from the so

called logarithmic barrier kernel function. This function is a strictly convex

function with minimum value zero at t = 1. Now, let ψ(t) be any strictly



142 M. Reza Peyghami, S. Fathi Hafshejani

convex function on R++ with minimizer at t = 1, and ψ(1) = 0. A new idea

in the IPMs was proposed by Peng et al. [22], in which the right hand side of

the centering equation is replaced by −∇Ψ(V ). Now, given the kernel function

ψ(t) and its associated matrix function ψ(V ), the right-hand side of the third

equation in (4.7) is replaced by −ψ′(V ). Thus, the new search direction DX

and DS can be obtained by solving the following system:

Āi •DX = 0, 1 ≤ i ≤ m,
m∑
i=1

∆yiĀi − Ω̄(DX) +DS = 0, (4.8)

DX +DS = −ψ′(V ).

Again, this system has a unique solution DX , DS and ∆y [31], which can be

used to compute ∆X and ∆S according to (4.6). Note that, due to (4.6), we

have DX •DS ≥ 0. Moreover,

DX = DS = 0 ⇔ ψ′(V ) = 0 ⇔ V = E ⇔ Ψ(V ) = 0 ⇔ XS = µE,

which implies that X = X(µ) and S = S(µ).

By taking an appropriate step along the search direction obtained from (4.8),

one can construct a new triple (X+, y+, S+) according to

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S. (4.9)

Summarizing the above arguments, we can describe one step of the IPMs

based on the kernel function as follows: Starting with (X0, y0, S0), µ0 > 0,

an accuracy parameter ϵ > 0 and the real valued matrix function Ψ(V ) =∑n
i=1 ψ(λi(V )), let an approximation of the µ-center (X(µ), y(µ), S(µ)) be

known for µ > 0. Then, the parameter µ is decreased by a factor 1 − θ, for

θ ∈ (0, 1), and set µ := (1 − θ)µ. In this case, an approximate solution of the

µ-center is obtained by frequently using Newton method. Indeed, we first solve

system (4.8) for DX and DS and then find Newton directions ∆X, ∆y and ∆S

by using (4.6). This procedure is repeated until we get to the point in which

nµ < ϵ. In this case, we say that the current X and (y, S) are ϵ-approximate

solutions of the primal and dual problems (P) and (D), respectively.

Now, we can outline and customize the primal-dual interior point scheme

based on kernel functions to the CQSDO problems as follows [22]:

Algorithm 1: Generic Primal-dual IPM for CQSDO

Input

A proximity function Ψ(V ) = Ψ(X,S, µ)

a threshold parameter τ > 0

an accuracy parameter ε > 0

a fixed barrier update parameter 0 < θ < 1
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a strictly feasible pair (X0, S0) and µ0 so that Ψ(X0, S0, µ0) ≤ τ ;

begin

X := X0;S := S0;µ := µ0;

while nµ > ε do

µ := (1− θ)µ;

while Ψ(X,S, µ) > τ do

solve system (4.8) and use (4.6) to obtain (∆X,∆y,∆S);

determine a step size α;

X+ := X + α∆X

y+ := y + α∆y

S+ := S + α∆S

V := 1√
µ (D

−1XSD)
1
2

end do

end do

end

Algorithm 1 consists of inner and outer while loops which are called inner

and outer iterations, respectively. The total number of iterations is the mul-

tiplication of the inner and outer iterations and is described as a function of

the dimension n and ϵ. Choosing the barrier parameter θ plays an important

role in theory and practice of IPMs. For a constant θ, let say θ = 1
2 , we ob-

tain the so called large-update IPMs, while for θ be dependent on n, let say

θ =
1√
n
, the algorithm is called small-update IPM. It is well known that small-

update methods have the best iteration bound in theory while the large update

methods are practically efficient [26].

5. An Estimation for the Step Size

In this section, we will discuss about a default value for the step size during

an inner iteration of Algorithm 1. To do so, we first note that, after an inner

iteration, the new point is then given by

X+ := X + α∆X = X + α
√
µDDXD =

√
µD(V + αDX)D,

S+ := S + α∆S = S + α
√
µD−1DSD

−1 =
√
µD−1(V + αDS)D

−1,

where α is the step size. On the other hand, from (4.5), we obtain

V+ =
1
√
µ
(D−1X+S+D)

1
2 . (5.1)

It is easily seen that the matrix V 2
+ is unitarily similar to the matricesX

1
2
+S+X

1
2
+

and V̄ 2
+ := (V + αDX)

1
2 (V + αDS)(V + αDX)

1
2 and therefore have the same
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eigenvalues. Thus, from the definition of Ψ(V ), we obtain

Ψ(V+) = Ψ
(
V̄+
)
≤ 1

2
(Ψ(V + αDX) + Ψ(V + αDS)) ,

where the last inequality is followed from Theorem 3.1. Now, by defining

f(α) := Ψ(V+)−Ψ(V ) = Ψ(V̄+)−Ψ(V ),

f1(α) :=
1

2
[Ψ(V + αDX) + Ψ(V + αDS)]−Ψ(V ), (5.2)

we have: f(α) ≤ f1(α). Furthermore, the function f1(α) is a convex function

with respect to α due to the fact that Ψ is a convex function and its arguments

in the first two terms are linear with respect to α. The first two derivatives of

the function f1(α) with respect to α are as follows:

f ′1(α) =
1

2
Tr (ψ′(V + αDX)DX + ψ′(V + αDS)DS) ,

f ′′1 (α) =
1

2
Tr
(
ψ′′(V + αDX)D2

X + ψ′′(V + αDS)D
2
S

)
.

The third inequality of system (4.8) implies that

f ′1(0) =
1

2
Tr (ψ′(V )(DX +DS)) =

1

2
Tr(−ψ′(V )2) = −2δ2, (5.3)

where the last equality is obtained from (3.9).

In what follows, we are going to introduce conditions on the step size α in

which f ′1(α) < 0 holds. This allows us to deduce that the function f(α) is a

decreasing function using the fact that f(0) = f1(0) = 0 and f(α) ≤ f1(α). It

is worth mentioning that properties of the kernel function ψ(t) play major role

in providing the conditions in which f ′1(α) < 0 rather than the structure of the

CQSDO problem. Therefore, the results in this section is very similar to those

of existing papers in this subject and we will omit their proof by just providing

appropriate references.

The following lemma provides an upper bound for the second derivative of the

function f1(α). One can find its proof in [23].

Lemma 5.1. Let f1 be defined as in (5.2). Then, the second derivative of the

function f1 with respect to α satisfies the following inequality:

f ′′1 (α) ≤ 2δ2ψ′′(λn(V )− 2αδ).

Our aim in introducing a suitable step size is that it should be chosen so

that X+ and S+ are feasible and f(α) decreases sufficiently. The procedure for

choosing the largest possible step size is almost a ”word-by-word” extension of

the LO case in [2, 3]. Thus, we omit their proof here.

Lemma 5.2. f ′1(α) ≤ 0 holds if α satisfies the following inequality:

−ψ′(λn(V )− 2αδ) + ψ′(λn(V )) ≤ 2δ. (5.4)
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Lemma 5.3. Assume that ρ : [0,∞) → (0, 1] is the inverse of the function

− 1
2ψ

′(t) in the interval (0, 1]. Then, the largest possible value for the α satis-

fying (5.4) is given by

α =
1

2δ
(ρ(δ)− ρ(2δ)). (5.5)

Lemma 5.4. Let α be defined as in (5.5). Then, we have:

α ≥ 1

ψ′′(ρ(2δ))
. (5.6)

Due to Lemmas 5.3 and 5.4, we will consider the following value for the step

size as the default value in the further analysis:

α̃ =
1

ψ′′(ρ(2δ))
. (5.7)

It is easily seen that α̃ ≤ α. Now, an upper bound for the amount of decrease

in the real valued matrix function Ψ(V ) during an inner iteration can be given

by the following lemma.

Lemma 5.5. (Lemma 5.2 in [23]) For the step size α satisfying α ≤ ᾱ, we

have:

f(α) ≤ −αδ2. (5.8)

The following lemma customizes the result of Lemma 5.5 for the default step

size.

Lemma 5.6. Let Ψ(V ) ≥ 1, and ρ and α̃ be defined as in Lemma 5.3 and

(5.7), respectively. Then, we have

f(α̃) ≤ Θ

(
−δ

2p−1
2p

p

)
. (5.9)

Proof. Lemma 5.5 and the fact that α̃ ≤ α imply that f(α̃) ≤ −α̃δ2 =

− δ2

ψ′′(ρ(2δ))
, the first inequality in (5.9). To prove the second inequality, we

need to compute the inverse function of −1
2ψ

′(t) in the interval (0, 1] for the

our proposed kernel function. To do so, the equation − 1
2ψ

′(t) = s should be

solved for t. Equality

t− 4

(1 + t)2
tan2p(h(t)) = −2s,

implies that,

4

(1 + t)2
tan2p(h(t)) ≤ 2s+ t⇒ tan2p(h(t)) ≤ 2s+ 1,

where the last inequality is obtained by the fact that t ≤ 1. Now, putting

t = ρ(2δ), we get 4δ = −ψ′(t). Thus, we have

tan2p(h(t)) ≤ 4δ + 1 ⇒ tan(h(t)) ≤ (4δ + 1)
1
2p . (5.10)
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Also, for all t ∈ (0, 1], we have:

tan(h(t)) ≥ 1, (5.11)

1

1 + t
≤ 1. (5.12)

Now, using (5.10)–(5.12), we have:

α̃ =
1

ψ′′(t)
=

1

1 + 8
(1+t)3 tan

2p(h(t)) + 4pπ
(1+t)4 tan

2p−1(h(t))r(t)

≥ 1

1 + 8 tan2p(h(t)) + 8pπ tan2p+1(h(t))

≥ 1

17pπ tan2p+1(h(t)

≥ Θ

(
1

pδ
2p+1
2p

)
,

which implies that

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
≤ Θ

(
− δ2

pδ
2p+1
2p

)
= Θ

(
−δ

2p−1
2p

p

)
.

This completes the proof. □

A direct application of the second part of Lemma 3.3 in (5.9) provides the

following inequality which is crucial in deriving the iteration complexity in the

next section:

f(α̃) ≤ Θ

(
−δ

2p−1
2p

p

)
≤ Θ

(
−Ψ

2p−1
4p

p

)
. (5.13)

6. Iteration Complexity

In this section, we derive the worst case iteration bound for Algorithm 1

based on the real valued matrix function Ψ(V ) induced from the kernel function

ψ defined by (3.1). In our analysis, we utilize α̃, defined by (5.7), as a default

value for the step size during an inner iteration. Since after updating the

parameter µ to (1 − θ)µ, for θ ∈ (0, 1), we have V+ = 1√
1−θ

V , then, from

Lemma 3.5 with β = 1√
1−θ

, we have

Ψ(V+) ≤ Ψ(V ) +
θ

2(1− θ)
(2Ψ(V ) + 2

√
2nΨ(V ) + n). (6.1)

At the start of an outer iteration, we have Ψ(V ) ≤ τ right before updating of the

parameter µ, which may cause the function Ψ(V ) to be exceeded the threshold

τ due to (6.1). Since we are interested to work in large neighborhood of the

central path, we assume that τ = O(n) ≥ 1. In order to provide the iteration

bound, we need to compute the number of inner iterations that are required to
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return value of the function Ψ(V ) back to the situation where Ψ(V ) ≤ τ . Let

us denote the value of Ψ(V ) after µ-update by Ψ0, and the subsequent values

by Ψj , for j = 1, . . . , L− 1, where L is the total number of inner iterations in

an outer iteration.

As we focus on large-update IPMs, we have θ = Θ(1). Therefore, from (6.1)

and Ψ(V ) ≤ τ = O(n), we obtain:

Ψ0 ≤ τ +
θ

2(1− θ)
(2τ + 2

√
2nτ + n) = O(n). (6.2)

Using (5.13) and the fact that in the inner iterations, we have Ψj > τ ≥ 1, the

decrease of Ψ in each inner iteration is then given by

Ψj+1 ≤ Ψj − κ∆Ψj , j = 0, 1, . . . , L− 1, (6.3)

where κ is some positive constant and ∆Ψj is defined by

∆Ψj =
Ψ

2p−1
4p

p
. (6.4)

The following technical lemma is crucial in deriving the number of inner itera-

tions in an outer iteration. One can find its proof in [22].

Lemma 6.1. Given α ∈ [0, 1] and t ≥ −1, one has

(1 + t)α ≤ 1 + αt.

Now, using Lemma 6.1, we can provide the worst case upper bound for the

total number of inner iterations in an outer iteration as follows:

Theorem 6.1. Let τ ≥ 1 and the kernel function ψ be defined by (3.1). Then,

considering (6.3), the number of inner iterations that are required to return the

iterations back to the situation Ψ(V ) ≤ τ is bounded above by

L ≤ 1 +
4p2

(2p+ 1)κ
Ψ

2p+1
4p

0 . (6.5)

Proof. Using (6.3), for all j = 0, 1, . . . , L− 1, we have

0 ≤ Ψ
2p+1
4p

j+1 ≤
(
Ψj −

κ

p
Ψ

2p−1
4p

j

) 2p+1
4p

= Ψ
2p+1
4p

j

(
1− κ

p
Ψ

− 2p+1
4p

j

) 2p+1
4p

≤ Ψ
2p+1
4p

j

(
1− κ(2p+ 1)

4p2
Ψ

− 2p+1
4p

j

)
= Ψ

2p+1
4p

j − κ(2p+ 1)

4p2
, (6.6)
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where the last inequality is obtained from Lemma 6.1. By subsequently using

(6.6), we obtain

Ψ
2p+1
4p

j+1 ≤ Ψ
2p+1
4p

0 − jκ(2p+ 1)

4p2
.

Letting j = L− 1 implies that

0 ≤ Ψ
2p+1
4p

L ≤ Ψ
2p+1
4p

0 − (L− 1)κ(2p+ 1)

4p2
,

which shows that

L ≤ 1 +
4p2

(2p+ 1)κ
Ψ

2p+1
4p

0 .

This completes the proof of the theorem. □

Using (6.2), we have Ψ0 = O(n). Now, from Theorem 6.1, we obtain the

following upper bound for the total number of inner iterations in an outer

iteration:

L ≤
⌈
1 +

4p2

(2p+ 1)κ
Ψ

2p+1
4p

0

⌉
= O

(
pn

2p+1
4p

)
. (6.7)

On the other hand, for given accuracy parameter ϵ > 0, the total number of

outer iterations for getting nµ ≤ ϵ in the large update methods is bounded

above by O
(
1
θ log

n
ϵ

)
, see Lemma I.36 in [26]. Therefore, the total number of

iterations in Algorithm 1 is obtained by multiplying the total number of inner

and outer iterations. Thus, we need the following total number of iterations

to get an ϵ solution for the problems (P) and (D), i.e. a solution that satisfies

xT s = nµ ≤ ϵ:

L ≤ O
(
pn

2p+1
4p log

n

ϵ

)
. (6.8)

This bound significantly improves the so far iteration bound of large update

primal-dual interior point methods based on the trigonometric kernel functions

for solving LO problems which was obtained in [6]. By taking p = O(log n),

one can easily see that the obtained upper bound in (6.8) gives the complexity

O
(√
n log n log n

ε

)
for the CQSDO problems which coincides to the so far best

known complexity result for LO, SDO and LCP cases.

7. Numerical Results

In this section, our main focus is to provide a numerical experiences regard-

ing the practical performance of the new proposed kernel function in compar-

ison with some other kernel functions which have been proposed in the liter-

ature. Let us consider the following special case of CQSDO problem, whose
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primal-dual pair have the following data [32]:

A1 =


0 1 0 0 0

1 2 0 0 −1

0 0 0 0 1

0 0 0 −2 −1

0 −1 1 −1 −2

 , A2 =


0 0 −2 2 0

0 2 1 0 2

−2 1 −2 0 1

2 0 0 0 0

0 2 1 0 2

 ,

A3 =


2 2 −1 −1 1

2 0 2 1 1

−1 2 0 1 0

−1 1 1 −2 0

1 1 0 0 −2

 , C =


3 3 −3 1 1

3 5 3 1 2

−3 −1 1 2

1 1 1 −3 −1

1 2 2 −1 −1

 ,
b = [−2, 2,−2]T , Ω(X) = 0.

The optimal solution of the problems (P) and (D) are [32]:

X =


0.0704 −0.0717 0.0133 0.0695 −0.1465

−0.0717 0.0753 −0.0162 −0.0636 0.1631

0.0133 −0.0162 0.0105 −0.0124 −0.0703

0.0695 −0.0636 −0.0124 0.1695 0.0178

−0.1465 0.1631 −0.0703 0.0178 0.5829

 ,

S =


1.4249 0.5669 −0.0204 −0.4045 0.2125

0.5669 1.0918 0.3289 0.2125 −0.1216

−0.0204 0.3289 1.1921 0.2125 0.0459

−0.4045 0.2125 0.2125 0.2912 −0.1420

0.2125 −0.1216 0.0459 −0.1420 0.0991

 , y =

 0.8580

1.0960

0.7875

 .
Starting by the strictly feasible primal and dual solutions X = E, S = E and

y = (1, 1, 1)T , we apply Algorithm 1 on the above mentioned CQSDO problem

with the new proposed kernel function ψ(t) and the kernel functions listed in

Table 1.

Table 1: Considered kernel functions

ψ1(t) =
t2−1
2 − log(t) [26]

ψ2(t) =
t2−1
2 − (t− 1)e

1
t−1 [30]

ψ3(t) =
t2−1
2 +

1
t−1

2 − t−1
2 [22]

ψ4(t) =
t2−1
2 + 6

π tan(h(t)), h(t) = 1−t
2+4tπ [6]

ψ5(t) =
t2−1
2 + 4

π cot(h(t)), h(t) = πt
1+t [11]

ψ6(t) =
t2−1
2 − log(t) + 1

8 tan
2(h(t)), h(t) = 1−t

2+4tπ [24]

We have also considered the threshold parameter τ = 15 and the accuracy

parameter ε = 10−8. We have implemented Algorithm 1 in MATLAB 7.10.0

(R2010a) environment and run the above mentioned problem on a PC with

CPU 2.0 GHz and 2G RAM memory and double precision format. The results

of applying Algorithm 1 based on the kernel functions given in Table 1 with
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different values of θ are given in Table 2. It has to be noted that the value of

the stepsize is chosen as an approximation of the default value in the related

references. Moreover, for the new proposed kernel function, the results are

given in Table 3 with different values of θ and p.

Table 2: The numerical results

θ 0.1 0.2 0.3 0.4 0.5 0.6

ψ1(t) 104 125 128 135 152 163

ψ2(t) 108 130 132 139 150 165

ψ3(t) 112 136 137 143 156 171

ψ4(t) 136 139 137 142 154 175

ψ5(t) 110 132 135 144 153 171

ψ6(t) 101 127 128 136 150 162

Table 3: Numerical results of ψ(t) with different values of p

θ 0.1 0.2 0.3 0.4 0.5 0.6

p = 1 91 114 118 130 142 151

p = 2 90 113 117 124 139 149

p = 3 90 112 117 124 137 149

p = 4 90 113 118 124 137 148

p = 10 90 114 118 124 137 148

As it is clear from Tables 2 and 3, the performance of the new proposed kernel

function is well promising and it provides less number of iterations in solving

the considered CQSDO problem in comparison with the other considered kernel

functions.

8. Conclusion

In this paper, we present a wide neighborhood large-update primal-dual Inte-

rior Point Methods (IPMs) based on a new kernel function with trigonometric

barrier term for the Convex Quadratic Semidefinite Optimization (CQSDO)

problems. The proposed kernel function is neither the so called self-regular

nor the logarithmic barrier functions. Our aim is to investigate the worst case

iteration complexity results for the proposed approach. Using a simple analy-

sis and under some suitable conditions, we show that the worst case iteration

bound achieves the so far best known complexity result for linear optimization,

i.e. O
(√
n log n log n

ϵ

)
, with special choices of the kernel function’s parame-

ters. To our best knowledge, this is the first work in which the trigonometric

kernel function is considered for complexity analysis of IPMs for the CQSDO

problems. To illustrate the numerical behavior of the new proposed function

against some other kernel functions in the literature, we have implemented Al-

gorithm 1 with these kernel function in MATLAB environment and ran it on

a problem in the literature. Numerical results confirm that the new proposed

kernel function is well promising.
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