Linear Functions Preserving Sut-Majorization on \mathbb{R}^{n}

Asma Ilkhanizadeh Manesh
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Iran.
E-mail: a.ilkhani@vru.ac.ir, ailkhanizade@gmail.com

Abstract

Suppose \mathbf{M}_{n} is the vector space of all n-by- n real matrices, and let \mathbb{R}^{n} be the set of all n-by- 1 real vectors. A matrix $R \in \mathbf{M}_{n}$ is said to be row substochastic if it has nonnegative entries and each row sum is at most 1 . For $x, y \in \mathbb{R}^{n}$, it is said that x is sut-majorized by y (denoted by $x \prec_{\text {sut }} y$) if there exists an n-by- n upper triangular row substochastic matrix R such that $x=R y$. In this note, we characterize the linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving (resp. strongly preserving) $\prec_{\text {sut }}$ with additional condition $T e_{1} \neq 0$ (resp. no additional conditions).

Keywords:(strong) Linear preserver, Row substochastic matrix, Sut-majorization.

2000 Mathematics subject classification: 15A04, 15A21.

1. Introduction

Over the years, the theory of majorization as a powerful tool has widely been applied to the related research areas of pure mathematics and the applied mathematics (see [19]). A good survey on the theory of majorization was given by Marshall, Olkin, and Arnold [17]. Recently, the concept of generalized stochastic matrices has been attended specially and many papers have been published in this topic [1-8] and [10-15]. The triangular matrices play an important role in the matrix analysis and its application. So, in this work, we pay attention to a new kind of majorization which has been defined by a
special type of the triangular matrices. Some kinds of majorization with theirs linear preservers can be found in [9], [16], and [18].

Throughout the article,
\mathbf{M}_{n} denotes the set of all n-by- n real matrices.
\mathbb{R}^{n} denotes the set of all n-by- 1 real vectors.
$\mathcal{R} \mathcal{S}_{n}^{u t}$ denotes the collection of all n-by- n upper triangular row substochastic matrices.
$\left\{e_{1}, \ldots, e_{n}\right\}$ denotes the standard basis of \mathbb{R}^{n}.
$A\left(n_{1}, \ldots, n_{l} \mid m_{1}, \ldots, m_{k}\right)$ denotes the submatrix of A obtained from A by deleting rows n_{1}, \ldots, n_{l} and columns m_{1}, \ldots, m_{k}.
$A\left(n_{1}, \ldots, n_{l}\right)$ denotes the abbreviation of $A\left(n_{1}, \ldots, n_{l} \mid n_{1}, \ldots, n_{l}\right)$.
\mathbb{N}_{k} denotes the set $\{1, \ldots, k\} \subset \mathbb{N}$.
A^{t} denotes the transpose of a given matrix $A \in \mathbf{M}_{n}$.
$[T]$ denotes the matrix representation of a linear function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with respect to the standard basis.
$\mathcal{C}(\mathcal{A})$ denotes the set $\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid m \in \mathbb{N}, \quad \lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i} \leq 1, a_{i} \in A, \forall i \in \mathbb{N}_{m}\right\}$, where $A \subseteq \mathbb{R}^{n}$.
$x^{\downarrow}=\left(x_{1}^{\downarrow}, \ldots, x_{n}^{\downarrow}\right)^{t}$ denotes the decreasing rearrangment of a vector $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$
$\in \mathbb{R}^{n}$. This means $x_{1} \geq \ldots \geq x_{n}$.
$x^{\uparrow}=\left(x_{1}^{\uparrow}, \ldots, x_{n}^{\uparrow}\right)^{t}$ denotes the increasing rearrangment of a vector $x=\left(x_{1}, \ldots, x_{n}\right)^{t} \in$
\mathbb{R}^{n}. This means $x_{1} \leq \ldots \leq x_{n}$.

Definition 1.1. Let \mathcal{R} be a relation on \mathbb{R}^{n}. A linear function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be a linear preserver of \mathcal{R} if for all $x, y \in \mathbb{R}^{n}$

$$
x \mathcal{R} y \Rightarrow T x \mathcal{R} T y
$$

If T is a linear preserver of \mathcal{R} and $T x \mathcal{R} T y$ implies that $x \mathcal{R} y$, then T is called a strong linear preserver of \mathcal{R}.

A matrix $R \in \mathbf{M}_{n}$ with nonnegative entries is called row stochastic if $R e=e$, where $e=(1, \ldots, 1)^{t} \in \mathbb{R}^{n}$. Let $x, y \in \mathbb{R}^{n}$. We say that x is ut-majorized by y, written $x \prec_{u t} y$, if $x=R y$ for some upper triangular row stochastic matrix R. In [15], the authors found all linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving ut-majorization with additional condition $T e_{1} \neq 0$ and strong preserving utmajorization as follow.

Theorem 1.2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function. Assume $[T]=\left[a_{i j}\right]$, and $T e_{1} \neq 0$. Then T preserves $\prec_{u t}$ if and only if

$$
[T]=\left(\begin{array}{ccccccc}
a_{11} & 0 & 0 & \ldots & 0 & 0 & a_{1 n} \\
0 & a_{22} & 0 & \ldots & 0 & 0 & a_{2 n} \\
0 & 0 & a_{33} & \ldots & 0 & 0 & a_{3 n} \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & a_{n-1 n-1} & a_{n-1 n} \\
0 & 0 & 0 & \ldots & 0 & 0 & a_{n n}
\end{array}\right)
$$

$a_{11}+a_{1 n}=a_{22}+a_{2 n}=\cdots=a_{n-1 n-1}+a_{n-1 n}=a_{n n}$, and
the finite sequence $\left(0, a_{11}, a_{22}, \ldots, a_{n-1 n-1}\right)^{t}$ is monotone.
Theorem 1.3. A linear function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ strongly preserves $\prec_{u t}$ if and only if there exist $a, b \in \mathbb{R}$ such that $a, a+b \neq 0$, and

$$
[T]=\left(\begin{array}{ccccccc}
a & 0 & 0 & \ldots & 0 & 0 & b \\
0 & a & 0 & \ldots & 0 & 0 & b \\
0 & 0 & a & \ldots & 0 & 0 & b \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & a & b \\
0 & 0 & 0 & \ldots & 0 & 0 & a+b
\end{array}\right)
$$

In this paper, we introduce the relation $\prec_{\text {sut }}$ on \mathbb{R}^{n} and we obtain all linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving sut-majorization with additional condition $T e_{1} \neq 0$ and strongly preserving sut-majorization.

2. Sut-Majorization on \mathbb{R}^{n}

In this section, we focus on the upper triangular row substochastic matrices and introduce a new type of majorization. Then we characterize the structure of (resp. strong) linear preservers of sut-majorization on \mathbb{R}^{n} (resp. no additional conditions) with additional condition $T e_{1} \neq 0$.

Definition 2.1. A matrix R with nonnegative entries is called row substochastic if all its row sums is less than or equal to one.

Definition 2.2. Let $x, y \in \mathbb{R}^{n}$. We say that x sut-majorized by y (in symbol $\left.x \prec_{\text {sut }} y\right)$ if $x=R y$, for some $R \in \mathcal{R} \mathcal{S}_{n}^{u t}$.

Let $x=R y$, for some $R \in \mathcal{R} \mathcal{S}_{n}^{u t}$. Then

$$
R=\left(\begin{array}{ccccc}
r_{11} & r_{12} & \ldots & r_{1 n-1} & r_{1 n} \\
0 & r_{22} & \ldots & r_{2 n-1} & r_{2 n} \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
0 & \ldots & 0 & r_{n-1 n-1} & r_{n-1 n} \\
0 & \ldots & 0 & 0 & r_{n n}
\end{array}\right)
$$

$\sum_{j=i}^{n} r_{i j} \leq 1, r_{i j} \geq 0$, and $x_{i}=\sum_{j=i}^{n} r_{i j} y_{j}$, for each $i \in \mathbb{N}_{n}$. So $x_{i} \in$ $\mathcal{C}\left\{y_{i}, \ldots, y_{n}\right\}$, for each $i \in \mathbb{N}_{n}$.
Also, if $x_{i} \in \mathcal{C}\left\{y_{i}, \ldots, y_{n}\right\}$, for each $i \in \mathbb{N}_{n}$, then there exist $r_{i j} \geq 0$ such that $\sum_{j=i}^{n} r_{i j} \leq 1$ and $x_{i}=\sum_{j=i}^{n} r_{i j} y_{j}$, for each $i \in \mathbb{N}_{n}$ and for each $j \in \mathbb{N}_{i}$. Let $r_{i j}=0$ for each $1 \leq i<j$ and put $R=\left(r_{i j}\right)$. It is clear that $R \in \mathcal{R} \mathcal{S}_{n}^{u t}$ and $x=R y$. Therefore, $x \prec_{\text {sut }} y$.

We summarize the foregoing discussion in the following proposition. This proposition provides a criterion for sut-majorization on \mathbb{R}^{n}.

Proposition 2.3. Let $x=\left(x_{1}, \ldots, x_{n}\right)^{t}, y=\left(y_{1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n}$. Then $x \prec_{\text {sut }}$ y if and only if $x_{i} \in \mathcal{C}\left\{y_{i}, \ldots, y_{n}\right\}$, for all $i \in \mathbb{N}_{n}$.

Now, we assert some prerequisites for introducing the main results of this section.

Lemma 2.4. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear preserver of $\prec_{\text {sut }}$. Assume that $S: \mathbb{R}^{n-k} \rightarrow \mathbb{R}^{n-k}$ is a linear function with $[S]=[T](1, \ldots, k)$. Then S preserves $\prec_{\text {sut }}$ on \mathbb{R}^{n-k}.
Proof. Let $x^{\prime}=\left(x_{k+1}, \ldots, x_{n}\right)^{t}, y^{\prime}=\left(y_{k+1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}_{n-k}$, and let $x^{\prime} \prec_{\text {sut }}$ y^{\prime}. By Proposition 2.3, we obtain
$x:=\left(0, \ldots, 0, x_{k+1}, \ldots, x_{n}\right)^{t} \prec_{\text {sut }} y:=\left(0, \ldots, 0, y_{k+1}, \ldots, y_{n}\right)^{t}$, where $x, y \in$ \mathbb{R}^{n}, and hence $T x \prec_{\text {sut }} T y$. This shows that $S x^{\prime} \prec_{\text {sut }} S y^{\prime}$. Therefore, S preserves $\prec_{\text {sut }}$, as desired.

Lemma 2.5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear preserver of $\prec_{\text {sut }}$. Then $[T]$ is upper triangular.

Proof. Let $[T]=\left[a_{i j}\right]$. We proceed by induction. There is nothing to prove for $n=1$. Suppose that $n \geq 2$ and that the assertion has been established for all linear preservers of $\prec_{\text {sut }}$ on \mathbb{R}^{n-1}. Let $S: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be the linear function with $[S]=[T](1)$. By Lemma 2.4, S preserves $\prec_{\text {sut }}$ on \mathbb{R}^{n-1}. The induction hypothesis insures that $[S]$ is an $n-1$-by- $n-1$ upper triangular matrix. So it is enough to show that $a_{21}=\cdots=a_{n 1}=0$. As $e_{1} \prec_{\text {sut }} e_{2}$, we see that $T e_{1} \prec_{\text {sut }} T e_{2}$ and hence $\left(a_{11}, \ldots, a_{n 1}\right)^{t} \prec_{\text {sut }}\left(a_{12}, a_{22}, 0, \ldots, 0\right)^{t}$. It implies that $a_{31}=\cdots=a_{n 1}=0$. So it remains to prove that $a_{21}=0$. Assume, if possible, that $a_{21} \neq 0$. Set $x=e_{1}$ and $y=\left(\frac{-a_{22}}{a_{21}}, 1,0, \ldots, 0\right)^{t}$. So $x \prec_{\text {sut }} y$, and then $T x \prec_{\text {sut }} T y$. This follows that $a_{21}=0$, which is a contradiction. Thus $a_{21}=0$ and we observe that the induction argument is completed. Therefore, $[T]$ is an upper triangular matrix.

The following theorem characterizes structure of the linear functions $T: \mathbb{R}^{n}$ $\rightarrow \mathbb{R}^{n}$ preserving sut-majorization with additional condition $T e_{1} \neq 0$. Note that the vector $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$ is monotone if $x=\left(x_{1}^{\uparrow}, \ldots, x_{n}^{\uparrow}\right)^{t}$ or $x=$ $\left(x_{1}^{\downarrow}, \ldots, x_{n}^{\downarrow}\right)^{t}$.

Theorem 2.6. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function. Assume that $[T]=\left[a_{i j}\right]$ and $T e_{1} \neq 0$. Then T preserves $\prec_{\text {sut }}$ if and only if

$$
[T]=\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & \ldots & 0 \\
0 & a_{22} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 0 & a_{n n}
\end{array}\right)
$$

and the vector $\left(0, a_{11}, \ldots, a_{n n}\right)^{t}$ is monotone.
Proof. First, suppose that T preserves $\prec_{\text {sut }}$. It is clear that T preserves $\prec_{\text {sut }}$ if and only if αT preserves $\prec_{\text {sut }}$ for all $\alpha \in \mathbb{R} \backslash\{0\}$. So we can assume without loss of generality that $a_{11}=1$. By Lemma $2.5,[T]$ is upper triangular. We prove the statement by induction. The result is trivial for $n=1$. Assume that our claim has been proved for all linear preservers of $\prec_{\text {sut }}$ on \mathbb{R}^{n-1}. We claim that $a_{22} \neq 0$. If $a_{22}=0$, we consider the following two cases.
First, let $a_{12}=-1$. Then $e_{1} \prec_{\text {sut }} e_{2}$, but $T e_{1} \nprec_{\text {sut }} T e_{2}$, which is a contradiction.
Next, let $a_{12} \neq-1$. Put $x=e_{1}+e_{2}$ and $y=-a_{12} e_{1}+e_{2}$. We see that $x \prec_{\text {sut }} y$, but $T x \nprec_{\text {sut }} T y$. This means T does not preserve $\prec_{\text {sut }}$.

Thus $a_{22} \neq 0$.
Let $S: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be the linear function with $[S]=[T](1)$. By Lemma 2.4, S preserves $\prec_{\text {sut }}$ on \mathbb{R}^{n-1}. Since $a_{22} \neq 0$, the induction hypothesis ensures that

$$
[S]=\left(\begin{array}{ccccc}
a_{22} & 0 & 0 & \ldots & 0 \\
0 & a_{33} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 0 & a_{n n}
\end{array}\right)
$$

and the vector $\left(0, a_{22}, \ldots, a_{n n}\right)^{t}$ is monotone. So it is enough to show that $a_{12}=\cdots=a_{1 n}=0$ and $1 \leq a_{22}$. Assume that there is some $j(2 \leq j \leq n)$ such that $a_{1 j} \neq 0$. Choose $x=-a_{1 j} e_{1}$ and $y=-a_{1 j} e_{1}+e_{j}$. The proof is divided into two steps.
Step 1. If $a_{j j}>0$; We consider two cases.
Case 1. $a_{1 j}>0$. Since $x \prec_{\text {sut }} y$, but $T x \kappa_{\text {sut }} T y$, a contradiction.
Case 2. $a_{1 j}<0$. As $e_{j} \prec_{\text {sut }} y$, but $T e_{j} \nprec_{\text {sut }} T y$, we conclude T does not preserve $\prec_{\text {sut }}$.
Step 2. If $a_{j j}<0$; We have two cases.
Case 1. $a_{1 j}>0$. One can see that $e_{j} \prec_{\text {sut }} y$, but $T e_{j} \nprec_{\text {sut }} T y$, which is a contradiction.
Case 2. $a_{1 j}<0$. It is clear that $x \prec_{\text {sut }} y$, but $T x \nprec_{\text {sut }} T y$. It implies that T does not preserve $\prec_{\text {sut }}$.

Hence $a_{1 j}=0$ for each $j(2 \leq j \leq n)$, and so

$$
[T]=\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & \ldots & 0 \\
0 & a_{22} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 0 & a_{n n}
\end{array}\right)
$$

Since $e_{1} \prec_{\text {sut }} e_{2}$, we have $T e_{1} \prec_{\text {sut }} T e_{2}$. This means that $1 \leq a_{22}$. So the vector $\left(0,1, a_{22}, \ldots, a_{n n}\right)^{t}$ is monotone.

To prove the sufficiency, let $x=\left(x_{1}, \ldots, x_{n}\right)^{t}, y=\left(y_{1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n}$ and let $x \prec_{\text {sut }} y$. Then

$$
T x=\left(a_{11} x_{1}, a_{22} x_{2}, \ldots, a_{n n} x_{n}\right)^{t}
$$

and

$$
T y=\left(a_{11} y_{1}, a_{22} y_{2}, \ldots, a_{n n} y_{n}\right)^{t}
$$

We prove $(T x)_{i} \in \mathcal{C}\left\{(T y)_{i}, \ldots,(T y)_{n}\right\}$, for all $i \in \mathbb{N}_{n}$. Let $i \in \mathbb{N}_{n}$. Since $x_{i} \in \mathcal{C}\left\{y_{i}, \ldots, y_{n}\right\}$, then there exist $0 \leq \alpha_{i}, \ldots, \alpha_{n} \leq 1, \sum_{k=i}^{n} \alpha_{k} \leq 1$, and $x_{i}=$ $\sum_{k=i}^{n} \alpha_{k} y_{k}$. As $a_{i i}, \ldots, a_{n n} \neq 0$, we conclude that $(T x)_{i}=\sum_{k=i}^{n}\left(\frac{a_{i i} \alpha_{k}}{a_{k k}}\right)(T y)_{k}$. Clearly, $(T x)_{i} \in \mathcal{C}\left\{(T y)_{i}, \ldots,(T y)_{n}\right\}$. This implies that $T x \prec_{\text {sut }} T y$. Therefore, T preserves $\prec_{\text {sut }}$.

Corollary 2.7. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear preserver of $\prec_{\text {sut }}$ such that $T e_{1} \neq 0$, then $\operatorname{rank}[T]=n$.

We observe from Theorem 1.2 that if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear preserver of $\prec_{u t}$ such that $T e_{1} \neq 0$, then $\operatorname{rank}[T] \geq n-1$. We need the following lemma in the rest of this paper.

Lemma 2.8. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function that strongly preserves $\prec_{\text {sut }}$. Then T is invertible.

Proof. Let $x \in \mathbb{R}^{n}$, and let $T x=0$. Since $T x=T 0$ and T strongly preserves $\prec_{\text {sut }}$, we have $x \prec_{\text {sut }} 0$. So $x=0$. Therefore, T is invertible.

The following theorem characterizes the linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which strongly preserves sut-majorization. We close this paper with this theorem.

Theorem 2.9. A linear function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ strongly preserves $\prec_{\text {sut }}$ if and only if $[T]=\alpha I_{n}$, for some $\alpha \in \mathbb{R} \backslash\{0\}$.

Proof. First, suppose that T strongly preserves $\prec_{\text {sut }}$. Lemma 2.8 ensures that T is invertible and hence $T e_{1} \neq 0$. So by Theorem 2.6,

$$
[T]=\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & \ldots & 0 \\
0 & a_{22} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 0 & a_{n n}
\end{array}\right)
$$

and the vector $\left(0, a_{11}, \ldots, a_{n n}\right)^{t}$ is monotone.
By a simple calculation, we obtain

$$
[T]^{-1}=\left(\begin{array}{ccccc}
\frac{1}{a_{11}} & 0 & 0 & \ldots & 0 \\
0 & \frac{1}{a_{22}} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 0 & \frac{1}{a_{n n}}
\end{array}\right)
$$

Since T strongly preserves $\prec_{\text {sut }}$, we conclude T^{-1} is a linear preserver of $\prec_{\text {sut }}$, and hence the vector $\left(0, \frac{1}{a_{11}}, \ldots, \frac{1}{a_{n n}}\right)^{t}$ is monotone. Thus $a_{11}=\cdots=$ $a_{n n}$, as desired.

For the converse, assume that there exists $\alpha \in \mathbb{R}$ such that $\alpha \neq 0$ and $[T]=\alpha I_{n}$. Thus $[T]^{-1}=\frac{1}{\alpha} I_{n}$. It follows from Theorem 2.6, T and T^{-1} preserve $\prec_{\text {sut }}$, therefore, T strongly preserves $\prec_{\text {sut }}$.

ACKNOWLEDGMENTS

The author is indebted to an anonymous referee for his/her suggestions and helpful remarks.

References

1. A. Armandnejad, Right gw-majorization on $\mathbf{M}_{n, m}$, Bulletin of the Iranian Mathmatical Society, 35(2), (2009), 69-76.
2. A. Armandnejad, H. R. Afshin, Linear functions preserving multivariate and directional majorization, Iranian Journal of Mathematical Sciences and Informatics, 5(1), (2010), 1-5.
3. A. Armandnejad, F. Pasandi, Block diagonal majorization, Iranian Journal of Mathematical Sciences and Informatics, 8(2), (2013), 131-136.
4. A. Armandnejad, Z. Gashool, Strong linear preservers of g-tridiagonal majorization on \mathbb{R}^{n}, Electronic Journal of Linear Algebra, 123, (2012), 115-121.
5. A. Armandnejad, H. Heydari, Linear functions preserving gd-majorization from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$, Bulletin of the Iranian Mathmatical Society, 37(1), (2011), 215-224.
6. A. Armandnejad, A. Ilkhanizadeh Manesh, Gut-majorization on $\mathbf{M}_{n, m}$ and its linear preservers, Electronic Journal of Linear Algebra, 23, (2012), 646-654.
7. A. Armandnejad, A. Salemi, On linear preservers of lgw-majorization on $\mathbf{M}_{n, m}$, Bulletin of the Malaysian Mathmatical Society, 35(3), (2012), 755-764.
8. A. Armandnejad, A. Salemi, The structure of linear preservers of gs-majorization, Bulletin of the Iranian Mathmatical Society, 32(2), (2006), 31-42.
9. L. B. Beasley, S. G. Lee, Y. H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra and its Applications, 367, (2003), 341-346.
10. H. Chiang, C. K. Li, Generalized doubly stochastic matrices and linear preservers, Linear and Multilinear Algebra, 53(1), (2005), 1-11.
11. A. M. Hasani, M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra and its Applications, 423(2), (2007), 255-261.
12. A. M. Hasani, M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electronic Journal of Linear Algebra, 15(1), (2006), 260-268.
13. A. Ilkhanizadeh Manesh, On linear preservers of sgut-majorization on $\mathbf{M}_{n, m}$, Bulletin of the Iranian Mathmatical Society, 42(2), (2016), 471-481.
14. A. Ilkhanizadeh Manesh, Right gut-Majorization on $\mathbf{M}_{n, m}$, Electronic Journal of Linear Algebra, 31(1), (2016), 13-26.
15. A. Ilkhanizadeh Manesh, A. Armandnejad, Ut-Majorization on \mathbb{R}^{n} and its Linear Preservers, Operator Theory: Advances and Applications, Springer Basel, (2014), 253-259.
16. C. K. Li, E.Poon, Linear operators preserving directional majorization, Linear Algebra and its Applications, 235(1), (2001), 141-149.
17. A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, Springer, New York, 2011.
18. M. Soleymani, A. Armandnejad, Linear preservers of even majorization on $\mathbf{M}_{n, m}$, Linear and Multilinear Algebra, 62(11), (2014), 1437-1449.
19. B. Y. Wang, Foundations of majorization inequalities, Beijing Normal Univ. Press, Beijing China, 1990.
