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Abstract. In this paper, we have analyzed a mathematical model for the

study of interaction between tumor cells and oncolytic viruses. The model

is analyzed using stability theory of differential equations. We gain some

conditions for global stability of trivial and interior equilibrium point.
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1. Introduction

Cancer is one of the dangerous illnesses causing many death each year. Up

to now, many efforts have been done for the treatment of cancer. Specially it

is important if the tumor can be treated or controlled medically in order to

avoid an unnecessary surgery. In the middle of last century, a novel method

was tried by direct injection of virus into tumor [12, 9, 13, 6, 16, 17]. The first

viruses implemented in this regards, were found in the nature, but the immune

response began to destroy them and prevented them from destroying the cancer

[9, 5, 13]. To overcome this problem, genetic researchers altered the viruses in

the laboratory and created new ones which were useful for cancer therapy.

Of course, this prevented the immune system to distinguish the virus in first
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injection, but the problem was still remained for further injections. Later, the

virus was intellectually chosen such that it will infected and kill the tumor cells

but it did not effect normal cells [11, 4]. This method is known today as cancer

viral therapy and the special virus type is called oncolytic virus [8, 2].

The relation between the effect of virus and tumor growth is very com-

plex. For having a better understanding of the connection between them, many

mathematicians performed the modeling of their interactions with ordinary dif-

ferential equations. This leads us to better understanding and analyzing of the

treatment method. Several mathematical models that described these methods

were recently developed [19, 20, 10, 14, 15].

Our analyzed model is the Wodarz’s model [18]. Wodarz presented a math-

ematical model which described the interaction between two types of tumor

cells (the cells that are not infected but are susceptible to be infected so far

as they have the cancer phenotype) with ratio dependent functional response

between them.

This paper is organized as follows: In Section 2, the model is outlined.

Section 3 contains boundedness of solutions of the system which proves that

system is meaningful in biology. In Section 4, conditions for existence of equi-

librium points in natural phenomena are obtained. Sections 5 deals with the

local stability analysis of equilibrium points; furthermore, in this section we will

conclude that the existence of Hopf bifurcation at interior equilibrium point is

meaningless. In Section 6, we determine the conditions for global stability of

two important equilibrium points, and we explain interaction between equilib-

rium points. Section 7 presents the numerical results and finally, conclusions

are given in Section 8.

2. Mathematical Model

The model contains two types of tumor cells x and y that respectively are

the size of uninfected tumor cells and infected tumor cells by the virus. It is

explained schematically in Figure 1. In this model r is growth rate of tumor

in a logistic fashion, d is death rate. The maximum size or space that tumor

is allowed to occupy is given by its carrying capacity k. Parameter β is spread

rate of virus in tumor cells (this parameter can be viewed as summarizing

the replication rate of the virus). Death rate of infected tumor cells by virus

represents by a; moreover, s shows growth rate in a logistic fashion. Based on

these assumption model is given the following form [18]:

ẋ = rx(1− x+ y

k
)− dx− βxy,

ẏ = βxy + sy(1− x+ y

k
)− ay. (2.1)

With the conditions x(0) = x0 > 0 and y(0) = y0 > 0.

Agarwal and Bhadauria [1] considered the model that Novozhilov [10] presented
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and analyzed it. The model that we considered is a little easier but more

accurate, because death rate of the uninfected cells exists.

Figure 1. Interactions between the virus and the tumor cells [18].

3. Boundedness of Solutions

Boundedness may be interpreted as a natural restriction to grew because of

limited resources. To establish the biological validity of the system, we have

to show that the solutions of system (2.1) are bounded. For this, we find the

region of attraction in the following lemma.

Lemma 3.1. All the solutions of (2.1) starting in the positive orthant (R+
0 )

2

either approaches, enter or remain in the subset of (R+
0 )

2 defined by

Ω = {(x, y) ∈ (R+
0 )

2 : 0 < x+ y ≤ k}

where (R+
0 )

2 denote the non-negative cone of R2 including its lower dimensional

faces.

Proof. From system (2.1) we get:

ẋ+ ẏ = (rx+ sy)(1− x+ y

k
)− dx− ay,

ẋ+ ẏ ≤ δ(x+ y)(1− x+ y

k
)

where δ = max(r, s). If we consider z(t) = x(t) + y(t); therefore,

ż = ẋ + ẏ ≤ δ(x + y)(1 − x+y
k ) = δz(1 − z

k ). Hence, we consider

U̇ = δU(1−U
k ), with solving this differential equation we have U(t) = ( k

1−ekt0−δt ),

which gives lim sup
t→∞

U(t) = k. On the other hand, we know that ż(t) ≤ U̇(t);

then, By usual comparison theorem [7], because z(t) ≤ U(t), it implies that

lim sup
t→∞

z(t) ≤ lim sup
t→∞

U(t) = k. Hence, we get the following expression as

t → ∞,

lim sup
t→∞

x(t) + y(t) ≤ k.
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Thus, it is sufficient to consider solutions in the region Ω. Solutions of the

initial value problem starting in Ω and defined by (2.1) exist and are unique

on a maximal interval [3]. Since solutions remain bounded in the positively

invariant region Ω , the maximal interval is well posed both mathematically

and epidemiologically. □

4. Admissibility of Equilibriums in Relation

System (2.1) have the following equilibrium points

E0 = (0, 0),

E1 = (
k(r − d)

r
, 0), (4.1)

E2 = (0,
k(s− a)

s
), (4.2)

E3 = (
βk(a− s) + ar − sd

β(βk + r − s)
,
βk(r − d) + sd− ar

β(βk + r − s)
) := (x∗, y∗).

The equilibriums of E1 and E2 are biologically admissible if and only if r > d

and s > a respectively. For stability of E3 we have following theorem;

Theorem 4.1. equilibrium E3 exists if and only if one of the following condi-

tions holds:

(i) βk < s < βk + r and max{a− βk

s− βk
r, 0} < d < βk(

a

s
− 1) +

a

s
r,

(ii) s < βk and 0 < d < min{a− βk

s− βk
r, βk(

a

s
− 1) +

a

s
r},

(iii) s > βk + r and max{βk(a
s
− 1) +

a

s
r, 0} < d <

a− βk

s− βk
r.

Proof. At first, we suppose βk + r − s > 0; therefore,

βk(a− s) + ar − ds > 0, (4.3)

βk(r − d) + ds− ar > 0. (4.4)

From (4.3) we have d <
(
βk(a− s)+ar

)
/s; also, with the help of (4.4) we gain

d(s − βk) > (a − βk)r. It means that if s > βk, then d > a−βk
s−βk r. Because

of positivity of d we have max{a−βk
s−βk r, 0} < d. Although, we get d < a−βk

s−βk r if

s < βk. Because d is positive, we gain d < min{a−βk
s−βk r, βk(

a
s − 1) + a

s r}.
Secondly, if βk + r − s < 0; thus,

βk(a− s) + ar − ds < 0,

βk(r − d) + ds− ar < 0.

Because of s > βk+ r > βk, we get d >
(
βk(a−s)+ar

)
/s and d < a−βk

s−βk r. □

Consequently, all situation for existence of equilibrium points were obtained.
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5. Local Stability Analysis of Equilibrium Points

An equilibrium point is locally asymptotically stable if all solutions of the

system approach it as t → ∞. To discuss the local stability of equilibrium

points we compute the variational matrix of system (2.1). The signs of real

parts of eigenvalues of the variational matrix evaluated at a given equilibrium

point determine its stability. The entries of general variational matrix are given

by differentiating the right hand side of system (2.1) with respect to x and y.

The variational matrix is given by

V (E) =

[
A B

C D

]
where

A = r(1− x+ y

k
)− r

k
x− βy − d,

B = −βx− r

k
x,

C = βy − s

k
y,

D = s(1− x+ y

k
)− s

k
y + βx− a.

We denote the variational matrix corresponding to Ei by V (Ei), i = 0, 1, 2, 3.

5.1. Local stability analysis of E0. To explore local stability of trivial equi-

librium point, we compute variational matrix of E0. The variational matrix of

equilibrium point E0 is given by

V (E0) =

[
r − d 0

0 s− a

]
.

Eigenvalues of V (E0) are given by λ1 = r − d and λ2 = s − a. E0 is a stable

equilibrium point if and only if E1 and E2 do not exist.

Biological interpretation: In this case both infected and uninfected cells

destroyed and it means that therapy is successful.

5.2. Local stability analysis of E1. Now, to study the stability behavior of

E1, we compute the variational matrix V (E1) corresponding to E1 as follows:

V (E1) =

[
d− r (d−r)(βk+r)

r

0 ds−ar+βk(−d+r)
r

]
.

We observe that eigenvalues of the matrix V (E1) are given by λ1 = d − r

and λ2 =
(
βk(r − d) + ds − ar

)
/r. Thus E1 is a stable equilibrium point if

a > (βk(r−d)+ds)/r; furthermore, E1 is a saddle point if a < (βk(r−d)+ds)/r.

Biological interpretation: In this case, uninfected cells exist and do not

destroy which means after virus injection, all viruses destroy but tumor still

exists. Hence, stability of this point is not useful for cancer therapy.
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5.3. Local stability analysis of E2. The variational matrix of equilibrium

point E2 is given by

V (E2) =

[
βk(a−s)+ar−ds

s 0
(a−s)(s−βk)

s a− s

]
.

We observe that eigenvalues of the matrix V (E2) are given by λ1 = a − s

and λ2 =
(
βk(a − s) + ar − sd

)
/s. Thus E2 is a stable equilibrium point if

a < [s(βk + d)]/(βk + r); in addition, E2 is a saddle point if

a > [s(βk + d)]/(βk + r).

Biological interpretation: In this case, infected cells exist and do not de-

stroy which means after virus injection, all tumor cells infected but did not

disappear. Hence, stability of this point is not useful for cancer therapy.

5.4. Local stability analysis of E3. Variational matrix of E3 is given by

V (E3) =

[
A∗ B∗

C∗ D∗

]
(5.1)

where

A∗ =
r
(
s(d+ βk)− a(βk + r)

)
βk(βk + r − s)

, B∗ =
(βk + r)

(
s(d+ βk)− a(βk + r)

)
βk(βk + r − s)

,

C∗ =
(s− βk)

(
βk(d− r) + ar − ds

)
βk(βk + r − s)

, D∗ =
s
(
βk(d− r) + ar − ds

)
βk(βk + r − s)

.

From variational matrix V (E3) , we find that eigenvalues are λ± where

λ± =
ds− ar

2βk

±

√
(
ds− ar

2βk
)2 +

(βk(d− r) + ar − ds)(βk(a− s) + ar − ds)

βk(βk + r − s)

=
1

2βk
(A±

√
A2 − 4β3k(βk + r − s)x∗y∗)

where A = ds− ar. Studying stability of E3 two cases will happen:

Case1 s < r + βk: In this case if A > 0 then E3 is source, and if A < 0, then

E3 is locally asymptotically stable,

Case2 s > r + βk: In this case E3 is a saddle point.

One of the important subjects that affects on the stability of E3 is the

possibility of existence for Hopf bifurcation. If we wanted to have a Hopf

bifurcation in E3, there should be a pair of pure imaginary eigenvalues.

For existence of Hopf bifurcation in E3 := (x∗, y∗), trace of (5.1) must be

equal to zero and determinant of (5.1) must be positive. Therefore, we must

have (−ar + ds)/(βk) = 0; then, ds = ar. Moreover, − βk(d−r)2s
r(βk+r−s) must be

positive; then, βk+ r− s < 0 which means there is a δ > 0 that s = βk+ r+ δ.

With this assumption, we have E3 = (−k(d−r)(βk+r+δ)
rδ , k(d−r)

δ ); it means that
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E3 does not exist because one of the components is negative. Hence, as we said

in introduction, Hopf bifurcation in E3 does not mean in biology.

Biological interpretation: In this cases two infected and uninfected cells

exist but if this equilibrium point is stable it means that size of tumor is

constant and will not grow.

6. Interaction Between Equilibrium Points

In section 5, we showed that E3 did not pass through a Hopf bifurcation.

This means that any change in the stability of E3 causing by change in the sign

of Rel(λ±), does not cause a limit cycle. Now we are going to determine the

way that stabilities of equilibrium points effect on the system. In this section

we will study global stability of E0 and E3 and relevance of equilibrium points

with each other. An equilibrium point is globally stable if a solution of system

always approaches to it, regardless of its initial position. For equilibrium E0

we construct Lyapunov functions that enable us to find biologically realistic

conditions sufficient to ensure of a globally stable equilibrium state. Global

stability of the trivial equilibrium point of system (2.1) is determined in the

below theorem:

Theorem 6.1. If E1, E2 and E3 do not exist then E0 is globally stable.

Proof. Since E1 and E2 do not exist, so from (4.1) and (4.2) we have r− d < 0

and s − a < 0. Now consider the Lyapunov‘s function V = x + y. It must be

noticed that the first region of the x, y plane is positively invariant for (2.1),

so V (t) = x(t) + y(t) is positively defined in the first region of the coordinate

plane. Since E3 does not exists; hence, for x > 0 and y > 0, we have dx
dt ̸= 0

and dy
dt ̸= 0. Therefore, computing the derivative of V with respect to t, from

(2.1), we get

dV

dt
=

dx

dt
+

dy

dt
=

kx(r − d) + y(s− a)− (x+ y)(rx+ sy)

k
< 0.

□

We know E3 means both of uninfected and infected cells exist. This case

happens in nature, and is important in biology, so in the rest of this section we

suppose E3 exists. We see βk+ r− s has a virtual role for determining kind of

E3. Consequently, we have following theorem;

Theorem 6.2.

(i) If E3 is a saddle point, then E1 and E2 exist and are stable point. Also, E0

is source.

(ii) If E3 is source, then E1 and E2 do not exist, and E0 is a stable point.

(iii) If E3 is a stable point, then E1 exist and is a saddle point. In this case,

if E2 does not exist, then E0 is a saddle point, and if E2 exists, then it is a

saddle point, and E0 is source.
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Proof. First, E3 is a saddle point if and only if βk + r − s is negative. From

existence of E3 we should have

βk(a− s)−A < 0, βk(r − d) +A < 0. (6.1)

Thus, we gain

a− s <
A

βk
< d− r. (6.2)

Because βk + r − s < 0 we get βk < βk + r < s and with the help of (6.1) we

have
a(r + βk)

s
− βk < d <

r(a− βk)

s− βk
. (6.3)

As a result, we have a(r+βk)
s − βk − r(a−βk)

s−βk < 0; therefore, (a−s)(s−r−βk)
s(s−βk) < 0

which means that a < s. Therefore, E2 always exists. Although, with the help

of (6.3) and a < s we have d < r(a−βk)
s−βk < r(s−βk)

s−βk = r which means E1 exists.

Existence of E1 and E2 imply that E0 is source; also, (6.1) proves that E1 and

E2 are stable points. Determining stability type of all equilibrium points we

can draw phase space, so we have figure 2(a). In this case we can not have a

periodic solution and therapy fails.

Secondly, if βk+ r− s is positive, then E3 might be a stable or an unstable

point which stability of it depends on sign A. We know that switches from

unstability to stability or vice versa is not a result of Hopf bifurcation here

because we showed that E3 did not have Hopf bifurcation. For existence of E3

we should have

βk(a− s)−A > 0, βk(r − d) +A > 0. (6.4)

Thus, we have

d− r <
A

βk
< a− s. (6.5)

If A is positive, then E3 is source, so E2 and E1 do not exist. Because existence

of E2 implies a − s < 0, noticing positivity of A, it has a contradiction with

(6.5). Thus, a > s, and if E1 exists, then r > d, the result will be ar > ds that

is a contradiction with positivity of A. The absence of E1 and E2 imply E0

is a stable point. Phase space is shown in Figure 2(b), and cancer completely

treated. Virus therapy will be succeed in condition that parameters of system

are as what we explain before.

Now we suppose A is negative, result is stability of E3; also, equilibrium

points E1 and E2 will be saddle points from (6.4) if they exist. In this case,

E1 should exist because non-existence of E1 implies a− r > 0, we know A < 0,

therefore, we have a contradiction with (6.5), but for equilibrium E2 we assume

that two conditions: i) We suppose E2 does not exist; hence, E0 is a saddle

point, and phase space is shown in Figure 2(c). ii) If all equilibrium points

exist, then E0 is source, and we see phase space in Figure 2(d).

□
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Figure 2. phase space for solutions. (a): E3 is a saddle point, so

E1 and E2 are stable points and E0 is source. (b): E3 is source;

hence, E0 is a stable point, and E1 and E2 do not exist. (c): E3 is

a stable point, and E2 does not exist; thus, E0 and E1 are saddle

points. (d): E3 is a stable point, and E2 exists; therefore, E0 is

source, and E1 and E2 are saddle points.

Now we turn to the global stability of E3.

Theorem 6.3. suppose all equilibrium points exist and E1 and E2 are saddle

point, then E3 is globally stable.

Proof. We suppose all equilibrium points exist. Existence of E1 and E2 means

E0 is source. If E1 and E2 are saddle points it means βk+ r− s > 0. Also, one

solution path of E0 approaches to them on coordinate axes. Other solutions

that keep out them must approach to a periodic solution or an equilibrium

point with assistance of Poincaré − Bendixson theorem. Furthermore, this

case is correct for other solutions which do not occur on coordinate axes and

keep out of E0. However, we saw that E3 did not Hopf bifurcation; hence, it
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did not have any periodic solution. As a result, these solutions approach to

E3; then, E3 is globally stable. □

Hence, we attain conditions for global stability of E3, and it is the best situ-

ation for therapy. Because as we said before, this equilibrium point happens in

the natural phenomena. As a result, parameters which happen in this situation

cause to control tumor.

7. Numerical Simulation

In this section, we carry out some numerical simulations to confirm some

of above results. We suppose that parameters are arbitrary and fixed at the

following values:

r = 0.2, d = 0.01, β = 0.1, s = 1, a = 2, k = 70. (7.1)

In this case E3 = (11.9194, 1.51613) and system (2.1) is:

ẋ = 0.2x (t)(1− x (t) + y (t)

70
)− 0.01x (t)− 0.1x (t)y (t),

ẏ = 0.1x (t)y (t) + y (t)(1− x (t) + y (t)

70
)− 2y (t). (7.2)

We see that βk+r−s = 6.2 and A := ds−ar = −0.39; hence, E3 is asymptot-

ically stable (see Figures 3 and 4). In this case eigenvalues for E0 are λ1 = 0.19

and λ2 = −1; moreover, eigenvalues for E1 = (66.5, 0) are λ1 = −0.19 and

λ2 = 4.7. As a result, E0 and E1 are saddle points. However, E2 does not

exist.

Figure 3. x(t) and y(t) are attracted to components of E3 with

parameters given in (7.1).

Now, if we suppose that parameters are arbitrary and fixed at the following

values:

r = 0.2, d = 0.1, β = 0.1, s = 1.001, a = 1, k = 29. (7.3)
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Figure 4. The equilibrium E3 of system (7.2) is asymptotically

stable with parameters given in (7.1).

In this case E3 = (0.462125, 0.905669) and system (2.1) is:

ẋ = 0.2x (t)(1− x (t) + y (t)

29
)− 0.1x (t)− 0.1x (t)y (t),

ẏ = 0.1x (t)y (t) + 1.001y (t)(1− x (t) + y (t)

29
)− y (t). (7.4)

We see that βk+ r−s = 2.099 and A = ds−ar = −0.099; hence, E3 is asymp-

totically stable. In this case eigenvalues for E0 are λ1 = 0.1 and λ2 = 0.001.

Eigenvalues for E1 = (14.5, 0) are λ1 = −0.1 and λ2 = 0.9505. Furthermore,

eigenvalues for E2 = (0, 0.028971) are λ1 = −0.001 and λ2 = 0.0969031. As a

result, E1 and E2 are saddle points, and E0 is source. Hence, we have condi-

tions in theorem (6.3), so E3 is globally stable. It will be seen in Figures 5 and

6. Another parameters, that we assume, are for stability of E0. If we assume

Figure 5. x(t) and y(t) are attracted to components of E3 with

parameters given in (7.3).

that parameters are arbitrary and fixed at the following values:

r = 0.1, d = 1, β = 5, s = 2, a = 3, k = 5. (7.5)
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Figure 6. The equilibrium E3 of system (7.4) is asymptotically

stable with parameters given in (7.3).

In this case system (2.1) is:

ẋ = 0.1x (t)(1− x (t) + y (t)

5
)− x (t)− 5x (t)y (t),

ẏ = 5x (t)y (t) + 2y (t)(1− x (t) + y (t)

5
)− 3y (t). (7.6)

We see that eigenvalues for E0 are λ1 = −0.9 and λ2 = −1. Therefore, E0 is a

stable point. On the other hand, E1, E2 and E3 do not exist. Hence, we have

conditions in theorem (6.1), so E0 is globally stable. It will be seen in Figures

7 and 8.

Figure 7. x(t) and y(t) are attracted to components of E0 with

parameters given in (7.5).
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Figure 8. The equilibrium E0 of system (7.6) is asymptotically

stable with parameters given in (7.5).

8. Conclusion

In this paper, we consider a virus therapy for cancer and analyze stability

of four equilibrium points of this system. Furthermore, we investigated global

stability for E0 and E3 because these points are important in biology. As we

saw, equilibrium E1 exists and may be stable. Stability of E1 is not useful be-

cause it means that uninfected tumor cells exist then therapy fails. In addition,

equilibrium E2 implies that all tumor cells were infected but the virus could

not destroy cells and finally tumor cells remained with infection. In two cases

volume of tumor can be reduced to a lower size.

We note that E3 is the most interesting equilibrium point from the biological

point of view since its existence means that both of the uninfected and infected

tumor cells exist and its stability means that the tumor growth is controlled

in a way that it can not reach to the carrying capacity k. Especially when

solutions are attracted to E3 we hope to have comparative treatment. Hence,

if we provide conditions for parameters in theorem 6.3 it means that with this

therapy we could control size of tumor, that is x + y, which not to be greater

but tumor exists and does not completely destroy. In addition, if we provide

conditions for parameters in theorem 6.1 then therapy is effective.
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