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Abstract. In this article, we introduce a new class of ideal convergent

sequence spaces using an infinite matrix, Musielak-Orlicz function and a

new generalized difference matrix in locally convex spaces. We investigate

some linear topological structures and algebraic properties of these spaces.

We also give some relations related to these sequence spaces.
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1. Introduction

Kostyrko et al., [25] introduced the notion of I-convergence (I denotes the

ideal of the subsets of the set N of positive integers), which is a generalization

of statistical convergence (see [14, 35]) and further studied by many others (see

[6, 19, 20, 38, 39, 40]). Recently, Hazarika [21] introduced the notion general-

ized difference ideal convergent sequences and studied some interesting results.

Quite recently, Esi [11] introduced strongly almost ideal convergent sequence

spaces in 2-normed spaces defined by an Orlicz function and prove some results

related to this notion.
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16 B. Hazarika

Before proceeding let us recall a few concepts, which we shall use throughout

this paper.

Let X be a non-empty set, then a family of sets I ⊂ 2X (the class of all sub-

sets of X) is called an ideal if and only if for each A,B ∈ I we have A∪B ∈ I
and for each A ∈ I and each B ⊂ A we have B ∈ I. A non-empty family of

sets F ⊂ 2X is a filter on X if and only if φ /∈ F for each A,B ∈ F we have

A ∩ B ∈ F and each A ∈ F and each B ⊃ A we have B ∈ F. An ideal I is

called non-trivial ideal if I 6= φ and X /∈ I. Clearly I ⊂ 2X is a non-trivial ideal

if and only if F = F (I) = {X −A : A ∈ I} is a filter on X. A non-trivial ideal

I ⊂ 2X is called admissible if and only if {{x} : x ∈ X} ⊂ I. A non-trivial

ideal I is maximal if there cannot exists any non-trivial ideal J 6= I containing

I as a subset. Further details on ideals of 2X can be found in Kostyrko et al.,

[25]. Recall that a sequence x = (xk) of points in R is said to be I-convergent

to a real number ` if {k ∈ N : |xk − `| ≥ ε} ∈ I for every ε > 0 ([25]). In this

case we write I − limxk = `.

Throughout the article w, `∞, c, c0, denote the classes of all, bounded, con-

vergent, null sequences of complex numbers, respectively.

The notion of difference sequence space was introduced by Kizmaz [24],

who studied the difference sequence spaces `∞(∆), c(∆), c0(∆). The notion

was further generalized by Et and Colak [12] introducing the sequence spaces

`∞(∆p), c(∆p), c0(∆p). For a non negative integer p, the generalized difference

sequence spaces are defined as follows. For a given sequence space Z we have

Z(∆p) = {x = (xk) ∈ w : (∆pxk) ∈ Z},

where ∆pxk = ∆p−1xk −∆p−1xk+1, ∆0xk = xk, for all k ∈ N, the difference

operator is equivalent to the following binomial representation:

∆pxk =

p∑
ν=0

(−1)
ν

(
p

ν

)
xk+ν for all k ∈ N.

Taking p = 1, the spaces `∞(∆), c(∆), c0(∆), introduced and studied by Kizmaz

[24].

Tripathy and Esi [36] introduced and studied the new type of generalized

difference sequence spaces

Z(∆i) = {(xk) ∈ w : ∆ixk ∈ Z},

for Z = `∞, c, c0 where ∆ix = (∆ixk) = (xk − xk+i) for all k, i ∈ N.
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Tripathy et al., [37] further generalized this notion and introduced the fol-

lowing sequence spaces. For p ≥ 1 and i ≥ 1,

Z(∆p
i ) = {(xk) ∈ w : ∆p

i xk ∈ Z},

for Z = `∞, c, c0.This generalized difference has the following binomial repre-

sentation,

∆p
i xk =

n∑
ν=0

(−1)
ν

(
p

ν

)
xk+iν for all k ∈ N.

Dutta [10] introduced the following difference sequence spaces

Z(∆p
(i)) = {(xk) ∈ w : ∆p

(i)xk ∈ Z} for all p, i ∈ N,

for Z = `∞, c, c0 where c, c0 are the sets of statistically convergent and statisti-

cally null sequences, respectively, and ∆p
(i)x = (∆p

(i)xk) = (∆p−1
(i) xk−∆p−1

(i) xk−i)

and ∆0
(i)xk = xk for all k ∈ N, which is equivalent to the following binomial

representation:

∆p
(i)xk =

p∑
ν=0

(−1)
ν

(
p

ν

)
xk−iν .

Basar and Altay [3] introduced the generalized difference matrix B(r, s) =

(bpk(r, s)) which is a generalization of ∆1
(1)-difference operator as follows:

bpk(r, s) =


r, if k = p;

s, if k = p− 1;

0, if 0 ≤ k < p− 1 or k > p.

for all k, p ∈ N, r, s ∈ R− {0}.

Basarir and Kayikci [4] have defined the generalized difference matrix Bp of

order p, which reduced the difference operator ∆p
(1) in case r = 1, s = −1 and

the binomial representation of this operator is

Bpxk =

p∑
ν=0

(
p

ν

)
rp−νsνxk−ν ,

where r, s ∈ R− {0} and p ∈ N.

Recently Basarir et al., [5] introduced the following generalized difference

sequence spaces

Z(Bp(i)) = {(xk) ∈ w : Bp(i)xk ∈ Z} for all p, i ∈ N,

for Z = `∞, c, c0 where c, c0 are the sets of statistically convergent and sta-

tistically null sequences, respectively, and Bp(i)x = (Bp(i)xk) = (rBp−1(i) xk +
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sBp−1(i) xk−i) and B0
(i)xk = xk for all k ∈ N, which is equivalent to the following

binomial representation:

Bp(i)xk =

p∑
ν=0

(
p

ν

)
rp−νsνxk−iν .

Let X and Y be two nonempty subsets of the space w of complex se-

quences. Let A = (ank), (n, k = 1, 2, 3, ...) be an infinite matrix of complex

numbers. We write Ax = (An(x)) if An(x) =
∞∑
k=1

ankxk converges for each

n. If x = (xk) ∈ X ⇒ Ax = (An(x)) ∈ Y we say that A defines a (matrix)

transformation from X to Y and we denote it by A : X → Y.

A sequence x = (xk) ∈ `∞ is said to be almost convergent if all of its Ba-

nach limits coincide. Let ĉ denotes the space of all almost convergent sequences.

Lorentz [29] introduced the following sequence space.

ĉ =

{
x ∈ `∞ : lim

k
tm,k(x) exists uniformly in m

}
where tm,k(x) = xk+xk+1+....+xk+m

m+1 .

The following space of strongly almost convergent sequences was introduced

by Maddox [30],

[ĉ] =

{
x ∈ `∞ : lim

k
tm,k(|x− Le|) exists uniformly in m, for some L

}
where e = (1, 1, 1, ...).

It is clear that

tm,k(x) =

{
1

m+1

∑m
i=1 xk+i for m ≥ 1;

xk for m = 0

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,

non-decreasing and convex with M(0) = 0,M(x) > 0 as x > 0 and M(x)→∞
as x→∞ (see [26]).

An Orlicz function M can always be represented in the following integral

form:

M(x) =

∫ x

0

p(t)dt

where p is the known kernel of M, right differentiable for t ≥ 0, p(0) = 0, p(t) >

0 for t > 0 and p(t)→∞ as t→∞.
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If convexity of Orlicz function is replaced by M(x+y) ≤M(x) +M(y) then

this function is called the modulus function and characterized by Ruckle [34].

An Orlicz function M is said to satisfy ∆2 − condition for all values of u, if

there exists a constant K > 0 such that M(2u) ≤ KM(u), u ≥ 0.

Let M be an Orlicz function which satisfies ∆2−condition and let 0 < δ < 1.

Then for each t ≥ δ, we have M(t) < Kδ−1M(2) for some constant K > 0.

Two Orlicz functions M1 and M2 are said to be equivalent if there exist

positive constants α, β and x0 such that

M1(α) ≤M2(x) ≤M1(β)

for all x with 0 ≤ x < x0.

Lindenstrauss and Tzafriri [28] studied some Orlicz type sequence spaces

defined as follows:

`M =

{
(xk) ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
.

The space `M with the norm

||x|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
becomes a Banach space which is called an Orlicz sequence space. The space

`M is closely related to the space `p which is an Orlicz sequence space with

M(t) = |t|p for 1 ≤ p <∞.

A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz function

(for details see [9, 18, 22, 23]). Also a Musielak-Orlicz function φ = (φk) is

called a complementary function of a Musielak-Orlicz function M if

φk(t) = sup{| t|s−Mk(s) : s ≥ 0}, for k = 1, 2, 3, ....

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space

lM and its subspace hM are defined as follows:

lM = {x = (xk) ∈ w : IM(cx) <∞, for some c > 0};

hM = {x = (xk) ∈ w : IM(cx) <∞, for all c > 0},

where IM is a convex modular defined by

IM =

∞∑
k=1

Mk(xk), x = (xk) ∈ lM.
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We consider lM equipped with the Luxemburg norm

|| x || = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

|| x ||0 = inf

{
1

k
(1 + IM(kx)) : k > 0

}
.

The following well-known inequality will be used throughout the article. Let

p = (pk) be any sequence of positive real numbers with 0 ≤ pk ≤ supk pk = G,

D = max{1, 2G−1} then

|ak + bk|pk ≤ D(|ak|pk + |bk|pk)

for all k ∈ N and ak, bk ∈ C. Also |a|pk ≤ max{1, |a|G} for all a ∈ C.

Subsequently Orlicz function was used to define sequence spaces by Parashar

and Choudhary [33] and many others (see [2, 27, 31, 41]).

Remark 1.1. It is well known if M is a convex function and M(0) = 0,

then M(λx) ≤ λM(x), for all λ with 0 < λ < 1.

Definition 1.2. A sequence space E is said to be solid (or normal) if

(αkxk) ∈ E, whenever (xk) ∈ E and for all sequence (αk) of scalars with

|αk| ≤ 1, for all k ∈ N.

Let K = {k1 < k2 < ...} ⊆ N and E be a sequence space. A K-step space

of E is a sequence space λEK = {(xkn) ∈ w : (kn) ∈ E}.

A canonical preimage of a sequence {(xkn)} ∈ λEK is a sequence {yn} ∈ w
defined as

yk =

{
xk, if k ∈ K
0, otherwise.

A canonical preimage of a step space λEK is a set of canonical preimages of

all elements in λEK , i.e. y is in canonical preimage of λEK if and only if y is

canonical preimage of some x ∈ λEK .

Definition 1.3. A sequence space E is said to be monotone if it contains

the canonical preimages of its step spaces.

Lemma 1.1. Every normal space is monotone.
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Throughout this paper X we denote a locally convex Hausdorff topological

linear space whose topology is determined by a set Q of continuous seminorms

q. Also we denote I is an non-trivial admissible ideal of N.

2. ideal convergence in a locally convex space

In this section we define I-convergence and almost I-convergence in a locally

convex space X and investigate some basic properties.

Definition 2.1. A sequence x = (xk) in X is said to be I-convergent to

` ∈ X if for all q ∈ Q and all ε > 0,

{k ∈ N : q(xk − `) ≥ ε} ∈ I.

In this case we can write Iq−limxk = `. We denote Iq = {k ∈ N : q(xk−`) ≥ ε}.

Further, since X is Hausdorff, the limit of ideal convergent sequence is

unique.

Remark 2.1. We can introduced this concept in TVS-cone Normed Spaces

(for detalis on TVS-cone Normed Spaces see [32]) and in 2-inner Product Spaces

(for details on 2-inner Product Spaces see [1]).

Definition 2.2. A sequence x = (xk) in X is said to be almost I-convergent

to ` ∈ X if for all q ∈ Q and all ε > 0,

{k ∈ N : q(tm,k(x)− `) ≥ ε} ∈ I for all m ∈ N.

In this case we can write Îq − lim tm,k(x) = `. We denote Îq = {k ∈ N :

q(tm,k(x)− `) ≥ ε} for all m ∈ N.

Definition 2.3. Let M be a Musielak-Orlicz function. We say that a

sequence x = (xk) in ŵI(M) if and only if there exists ` ∈ X such that for all

q ∈ Q and for every ε > 0,{
n ∈ N :

1

n

n∑
k=1

[
Mk

(
q(tm,k(x)− `)

ρ

)]
≥ ε

}
∈ I for ρ > 0, for all m ∈ N.

(2.1)

When (2.1) holds we write

xk → `((ŵI(M))).

The condition (2.1) provides a definition of strong ideal summability for a se-

quence in a locally convex space.
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Theorem 2.1. Let A = (ank) be a non-negative reguler matrix and u = (uk)

be a bounded sequence of strictly positive real numbers. Let M be a Musielak-

Orlicz function. Then xk → `(ŵ(M, A, u)) implies that xk → `(Îq(A)).

Proof. Let q ∈ Q. Assume that xk → `(ŵ(M, A, u)), then for ρ > 0 we have

lim
n→∞

∞∑
k=1

ank

[
Mk

(
q(tm,k(x)− `)

ρ

)]uk

= 0 for ` ∈ C, for all m ∈ N.

Let ε > 0 be given. For all m ∈ N. We define

K(ε) = {k ∈ N : q(tm,k(x)− `) ≥ ε}

and we write
∞∑
k=1

ank

[
Mk

(
q(tm,k(x)− `)

r

)]tk
=

∑
k∈K(ε)

ank

[
Mk

(
q(tm,k(x)− `)

r

)]uk

+
∑

k/∈K(ε)

ank

[
Mk

(
q(tm,k(x)− `)

r

)]uk

≥

 ∑
k∈K(ε)

ank

[Mk

(ε
r

)]uk

.

Then we have xk → `(Îq(A)). �

Theorem 2.2. Let A = (ank) be a non-negative reguler matrix and u =

(uk) be a bounded sequence of strictly positive real numbers. Let M be a

Musielak-Orlicz function. If x = (xk) ∈ `∞ and xk → `(Îq(A)), then xk →
`(ŵ(M, A, u)).

Proof. Suppose that x = (xk) ∈ `∞ and xk → `(Îq(A)). Then there is a set

K ∈ F (Îq) such that

lim
k∈K

q(tm,k(x)− `) = 0 for all m ∈ N.

Now
∞∑
k=1

ank

[
Mk

(
q(tm,k(x)− `)

r

)]uk

=
∑

k∈K(ε)

ank

[
Mk

(
q(tm,k(x)− `)

r

)]uk

+
∑

k/∈K(ε)

ank

[
Mk

(
q(tm,k(x)− `)

r

)]uk

=

∞∑
k=1

ankχK(k)

[
Mk

(
q(tm,k(x)− `)

r

)]uk

+

∞∑
k=1

ankχKc(k)

[
Mk

(
q(tm,k(x)− `)

r

)]uk

.

If we consider the regularity of A, Kc ∈ Îq and boundedness of (xk), the right

side tends to zero. Hence xk → `(ŵ(M, A, u)). �
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3. Strongly ideal convergent sequences in a locally convex space

In this section we define some new classes of strongly I-convergent sequences

by using infinite matrix in a locally convex space X and investigate their linear

topological structures. Also we find out some relations related to these spaces.

Recall that a mapping g : X → R is called a paranorm on X if it satisfies

the following conditions:

(i) g(θ) = 0 where θ is the zero element of the space;

(ii) g(x) = g(−x);

(iii) g(x+ y) ≤ g(x) + g(y);

(iv) λn → λ(n → ∞) and g(xn − x) → 0(n → ∞) imply g(λnxn − λx) →
0(n → ∞) for all x, y ∈ X. The ordered a pair (X; g) is called a paranormed

space with respect to the paranorm g.

The main aim of this article is to introduce the following sequence spaces

and examine some properties of the resulting sequence spaces.

Let I be an admissible ideal of N, u = (uk) be a bounded sequence of
strictly positive real numbers and A = (ank) be an infinite matrix. Let M be
a Musielak-Orlicz function. Further w(X) denotes the space of all X-valued
sequences. For each ε > 0, for all q ∈ Q and for ρ > 0 we define the following
sequence spaces.
ŵI(A,Bp(i),M, u, q) =

(xk) ∈ w(X) :

n ∈ N :
∞∑

k=1

ank

Mk

 q
(
tm,k(B

p
(i)

(x))− `
)

ρ



uk

≥ ε

 ∈ I for ` ∈ X, for all m ∈ N

 ,
ŵI

0(A,B
p
(i)
, M, u, q) =

(xk) ∈ w(X) :

n ∈ N :
∞∑

k=1

ank

Mk

 q
(
tm,k(B

p
(i)

(x))
)

ρ



uk

≥ ε

 ∈ I for all m ∈ N

 ,
ŵI

∞(A,B
p
(i)
, M, u, q) =

(xk) ∈ w(X) : ∃K > 0s.t.

n ∈ N :
∞∑

k=1

ank

Mk

 q
(
tm,k(B

p
(i)

(x))
)

ρ



uk

≥ K

 ∈ I for all m ∈ N

 ,
ŵ∞(A,B

p
(i)
,M, u, q) =

(xk) ∈ w(X) : sup
n∈N

∞∑
k=1

ank

Mk

 q
(
tm,k(B

p
(i)

(x))
)

ρ



uk

<∞ for all m ∈ N

 .

Some classes are obtained by specializing p,A, M and u = (uk) for all k ∈ N.
Here are some examples.

(i) If p = 1, then above spaces are denoted by ŵI(A,B(i),M, u, q), ŵI0(A,B(i),

M, u, q), ŵI∞(A,B(i),M, u, q) and ŵ∞(A,B(i),M, u, q).
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(ii) If i = 1 then above spaces are denoted by ŵI(A,Bp,M, u, q), ŵI0(A,Bp,

M, u, q), ŵI∞(A,Bp,M, u, q) and ŵ∞(A,Bp,M, u, q).

(iii) If Mk(x) = x for all x ∈ [0,∞), k ∈ N then we obtain the above spaces

as ŵI(A,Bp(i), u, q), ŵ
I
0(A,Bp(i), u, q), ŵ

I
∞(A,Bp(i), u, q) and ŵ∞(A,Bp(i),

u, q).

(iv) If u = (uk) = (1, 1, 1...), then above spaces are denoted by ŵI(A,Bp(i),

M, q), ŵI0(A,Bp(i),M, q), ŵI∞(A,Bp(i),M, q) and ŵ∞(A,Bp(i),M, q).

(v) If we take A = (C, 1) ),i.e., the Cesàro matrix, then the above classes of

sequences are denoted by ŵI(Bp(i),M, u, q), ŵI0(Bp(i),M, u, q), ŵI∞(Bp(i),

M, u, q) and ŵ∞(Bp(i),M, u, q).

(vi) If we take A = (ank) is a de la Vallée Poussin mean, i.e.,

ank =

{
1
λn
, if k ∈ In = [n− λn + 1, n];

0, otherwise.

where (λn) is a non-decreasing sequence of positive numbers tending to

∞ and λn+1 ≤ λn+1, λ1 = 1, then the above classes of sequences are de-

noted by ŵI(λ,Bp(i),M, u, q), ŵI0(λ,Bp(i),M, u, q), ŵI∞(λ,Bp(i),M, u, q)

and ŵ∞(λ,Bp(i),M, u, q).

(vii) By a lacunary sequence θ = (kr), where k0 = 0 , we shall mean an

increasing sequence of non-negative integers with kr−kr−1 →∞ as r →
∞. The intervals determined by θ will be denoted by Jr = (kr−1, kr]

and we let hr = kr − kr−1. As a final illustration let

ank =

{
1
hr
, if k ∈ Ir = (kr−1, kr];

0, otherwise.

Then the above classes of sequences are denoted by ŵI(θ,Bp(i),M, u, q),

ŵI0(θ,Bp(i),M, u, q), ŵI∞(θ,Bp(i),M, u, q) and ŵ∞(θ,Bp(i),M, u, q).

Theorem 3.1. ŵI(A,Bp(i),M, u, q), ŵI0(A,Bp(i),M, u, q) and ŵI∞(A,Bp(i),M,

u, q) are topological linear spaces.

Proof. We will proved the result for the space ŵI0(A,Bp(i),M, u, q) only and the

others can be proved in similar way. Let x = (xk) and y = (yk) be two elements

in ŵI0(A,Bp(i),M, u, q). Then there exist ρ1 > 0 and ρ2 > 0 such that

A ε
2

=

n ∈ N :

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(x))

)
ρ1

uk

≥ ε

2

 ∈ I
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and

B ε
2

=

n ∈ N :

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(y))

)
ρ2

uk

≥ ε

2

 ∈ I.
Let α, β be two scalars in R. Since Bp(i) is linear and the continuity of the

Musielak-Orlicz function M, the following inequality holds:

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(αx+ βy))

)
|α|ρ1 + |β|ρ2

uk

≤ D
∞∑
k=1

ank

 |α|
|α|ρ1 + |β|ρ2

Mk

q
(
tm,k(Bp(i)(x))

)
ρ1

uk

+D

∞∑
k=1

ank

 |β|
|α|ρ1 + |β|ρ2

Mk

q
(
tm,k(Bp(i)(y))

)
ρ2

uk

≤ DK
∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(x))

)
ρ1

pk

+DK

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(y))

)
ρ2

uk

,

where K = max{1,
(

|α|ρ1
|α|ρ1+|β|ρ2

)
,
(

|β|ρ2
|α|ρ1+|β|ρ2

)
}.

From the above relation we getn ∈ N :

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(αx+ βy))

)
(|α|ρ1 + |β|ρ2)

uk

≥ ε


⊆

n ∈ N : DK

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(x))

)
ρ1

uk

≥ ε

2


∪

n ∈ N : DK

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(y))

)
ρ2

uk

≥ ε

2

 . (3.1)

Since both of the sets on the right hand of (3.1) are belong to I, this completes

the proof. �
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Remark 3.2. It is easy to verify that the space ŵ∞(A,Bp(i),M, u, q) is a

linear space.

Theorem 3.3. Let S = (Sk) and T = (Tk) be Musielak-Orlicz functions.

Then the following holds:

ŵI0(A,Bp(i),S, u, q) ∩ ŵ
I
0(A,Bp(i),T, u, q) ⊆ ŵ

I
0(A,Bp(i),S + T, u, q).

Proof. Let x = (xk) ∈ ŵI0(A,Bp(i),S, u, q)∩ ŵ
I
0(A,Bp(i),T, u, q). Then the result

follows from the inequality

∞∑
k=1

ank

(Sk + Tk)

q
(
tm,k(B

p
(i)(x))

)
ρ

uk

≤ D

∞∑
k=1

ank

Sk
q

(
tm,k(B

p
(i)(x))

)
ρ

uk

+D

∞∑
k=1

ank

Tk
q

(
tm,k(B

p
(i)(x))

)
ρ

pk .
�

Theorem 3.4. Let S = (Sk) and T = (Tk) be Musielak-Orlicz functions.

Then the following holds:

ŵI0(A,Bp(i),T, u, q) ⊆ ŵ
I
0(A,Bp(i),ST, u, q)

provided h = inf uk > 0.

Proof. For a given ε > 0, we first choose ε0 > 0 such that supn (
∑n
k=1 ank)

max{εh0 , εH0 } < ε. Using the continuity of M, choose 0 < δ < 1 such that 0 <

δ < t implies that Sk(t) < ε0 for all k ∈ N. Let x = (xk) ∈ ŵI0(A,Bp(i),T, u, q).

For some ρ > 0 we denote

A5 =

n ∈ N :

n∑
k=1

ank

Tk
q

(
tm,k(Bp(i)(x))

)
ρ

uk

≥ δH
 ∈ I,m ∈ N.

If n /∈ A5, then we have

n∑
k=1

ank

Tk
q

(
tm,k(Bp(i)(x))

)
ρ

uk

< δH

i.e.

Tk
q

(
tm,k(Bp(i)(x))

)
ρ

uk

< δH for all k,m ∈ N

i.e.Tk

q
(
tm,k(Bp(i)(x))

)
ρ

 < δ for all k,m ∈ N
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i.e.Sk

Tk
q

(
tm,k(Bp(i)(x))

)
ρ

 < ε0 for all k,m ∈ N.

Consequently, we get

n∑
k=1

ank

Sk
Tk

q
(
tm,k(Bp(i)(x))

)
ρ

uk

< sup
n

(
n∑
k=1

ank

)
max{εh0 , εH0 } < ε

, m ∈ N. i.e.

n∑
k=1

ank

Sk
Tk

q
(
tm,k(Bp(i)(x))

)
ρ

uk

< ε,m ∈ N.

This shows thatn ∈ N :

n∑
k=1

ank

Sk
Tk

q
(
tm,k(Bp(i)(x))

)
ρ

uk

≥ ε

 ⊂ A5 ∈ I.

This completes the proof. �

Theorem 3.5. The inclusions Z(A,Bp−1(i) ,M, u, q) ⊂ Z(A,Bp(i),M, u, q),

are strict for p ≥ 1. In general Z(A,Bj(i),M, u, q) ⊂ Z(A,Bp(i),M, u, q), for

j = 0, 1, 2, . . . , p− 1 and the inclusions are strict, where Z = ŵI0 , ŵ
I , ŵI∞.

Proof. We shall give the proof for ŵI0(A,Bp−1(i) ,M, u, q) only. The others can

be proved by similar arguments. Let x = (xk) be any element in the space

ŵI0(A,Bp−1(i) ,M, u, q). Let ε > 0 be given. Then there exists δ > 0 such that

the set n ∈ N :

∞∑
k=1

ank

Mk

q
(
tm,k(Bp−1(i) xk)

)
ρ

pk ≥ ε
 ∈ I.

Since M is non-decreasing and convex, it follows that

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)xk)

)
2ρ

pk

=

∞∑
k=1

ank

Mk

q
(
tm,k(Bp−1(i) xk+1 −Bp−1(i) xk)

)
2ρ

pk

≤ D
∞∑
k=1

1

2
Mk

q
(
tm,k(Bp−1(i) xk+1)

)
ρ

pk
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+D

∞∑
k=1

ank

1

2
Mk

q
(
tm,k(Bp−1(i) xk)

)
ρ

pk

≤ DH
∞∑
k=1

ank

Mk

q
(
tm,k(Bp−1(i) xk+1)

)
ρ

pk

+DH

∞∑
k=1

ank

Mk

q
(
tm,k(Bp−1(i) xk)

)
ρ

pk ,
where H = max{1, ( 1

2 )G}. Thus we haven ∈ N :

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)xk)

)
2ρ

pk ≥ ε


⊆

n ∈ N : DH

∞∑
k=1

ank

Mk

q
(
tm,k(Bp−1(i) xk+1)

)
ρ

pk ≥ ε

2


∪

n ∈ N : DH

∞∑
k=1

ank

Mk

q
(
tm,k(Bp−1(i) xk)

)
ρ

pk ≥ ε

2

 (3.2)

Since both the sets in the right side of (3.2) belongs to I, we getn ∈ N :

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)xk)

)
2ρ

pk ≥ ε
 ∈ I.

�

If follow from the following example that the inclusion is strict.

Example 3.1. Let A = (C, 1), Mk(x) = x, for all x ∈ [0,∞), uk = 1 for all

k ∈ N and r = 1, s = −1. Consider a sequence x = (xk) = (kp). Then x = (xk)

belongs to wI0(A,Bp(i),M, u, q) but does not belong to wI0(A,Bp−1(i) ,M, u, q), be-

cause Bp(i)xk = 0 and Bp−1(i) xk = (−1)p−1(p− 1)!.

Theorem 3.6. (a) Let 0 < inf uk ≤ uk ≤ 1, then ŵI(A,Bp(i),M, u, q) ⊂
ŵI(A,Bp(i),M, q); ŵI0(A,Bp(i),M, u, q) ⊂ ŵI0(A,Bp(i),M, q).

(b) If 1 < uk ≤ supuk < ∞, then ŵI(A,Bp(i),M, q) ⊂ ŵI(A,Bp(i),M, u, q);

ŵI0(A,Bp(i),M, q) ⊂ ŵI0(A,Bp(i),M, u, q).
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Proof. (a) Let x = (xk) ∈ ŵI(A,Bp(i),M, u, q). Since 0 < inf uk ≤ uk ≤ 1, we

have

∞∑
k=1

ank

Mk

q
(
tm,k(B

p
(i)xk)− `

)
ρ

 ≤
∞∑
k=1

ank

Mk

q
(
tmk(B

p
(i)xk)− `

)
ρ

pk
and thereforen ∈ N :

∞∑
k=1

ank

Mk

q
(
tmk(Bp(i)xk)− `

)
ρ

 ≥ ε


⊆

n ∈ N :

∞∑
k=1

ank

M
q

(
tmk(Bp(i)xk)− `

)
ρ

pk ≥ ε
 ∈ I.

(b) Let 1 < uk ≤ supuk < ∞ and let x = (xk) ∈ ŵI(A,Bp(i),M, q). Then for

each 0 < ε < 1 there exists a positive integer N such that

∞∑
k=1

ank

Mk

q
(
tmk(Bp(i)xk)− `

)
ρ

 ≤ ε < 1

for all n ≥ N. This implies that

∞∑
k=1

ank

Mk

q
(
tmk(B

p
(i)xk)− `

)
ρ

pk ≤
∞∑
k=1

ank

Mk

q
(
tmk(B

p
(i)xk)− `

)
ρ

 .
Thus we haven ∈ N :

∞∑
k=1

ank

Mk

q
(
tmk(Bp(i)xk)− `

)
ρ

pk ≥ ε


⊆

n ∈ N :
∞∑
k=1

ank

Mk

q
(
tmk(Bp(i)xk)− `

)
ρ

 ≥ ε
 ∈ I.

This completes the proof. �

Corollary 3.7. Let A = (C, 1) Cesáro matrix and let M be an Orlicz

function.

(a) If 0 < inf uk ≤ uk ≤ 1, then

(i) ŵI(Bp(i),M, u, q) ⊂ ŵI(Bp(i),M, q);

(ii) ŵI0(Bp(i),M, u, q) ⊂ ŵI0(Bp(i),M, q).

(b) If 1 < uk ≤ supuk <∞, then

(i) ŵI(Bp(i),M, q) ⊂ ŵI(Bp(i),M, u, q);

(ii) ŵI0(Bp(i),M, q) ⊂ ŵI0(Bp(i),M, u, q).
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Theorem 3.8. Let 0 < uk ≤ vk for all k ∈ N and
(
vk
uk

)
is bounded, then

ŵI(A,Bp(i),M, v, q) ⊆ ŵI(A,Bp(i),M, u, q).

Proof. The proof of the theorem is straightforward, so it is omitted. �

Theorem 3.9. If limk uk > 0 and x = (xk) → x0(ŵI(A,Bp(i),M, u, q)),

then x0 is unique.

Proof. Let limk uk = u0 > 0. Suppose that (xk)→ x0(ŵI(A,Bp(i),M, u, q)) and

(xk)→ y0(ŵI(A,Bp(i),M, u, q)).

Then there exist ρ1, ρ2 > 0 such that for all m ∈ N

B1 =

n ∈ N :

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(x))− x0

)
ρ1

uk

≥ ε

2

 ∈ I (3.3)

and

B2 =

n ∈ N :

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(x))− y0

)
ρ1

uk

≥ ε

2

 ∈ I. (3.4)

Let ρ = max{2ρ1, 2ρ2}. Then we have

∞∑
k=1

ank

[
Mk

(
q (x0 − y0)

ρ

)]uk

≤

D

∞∑
k=1

ank

Mk

 q
(
tm,k(Bp

(i)
(x)) − x0

)
ρ1

uk

+D

∞∑
k=1

ank

Mk

 q
(
tm,k(Bp

(i)
(x)) − y0

)
ρ1

uk

.

Thus from (3.3) and (3.4) we have for all m ∈ N{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
q (x0 − y0)

ρ

)]uk

≥ ε

}

⊆

n ∈ N : D

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(x))− x0

)
ρ1

uk

≥ ε

2


∪

n ∈ N : D

∞∑
k=1

ank

Mk

q
(
tm,k(Bp(i)(x))− y0

)
ρ1

uk

≥ ε

2

 ⊆ B1∪B2 ∈ I.

Also we have[
Mk

(
q (x0 − y0)

ρ

)]uk

→
[
Mk

(
q (x0 − y0)

ρ

)]u0

as k →∞.
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Therefore we have[
Mk

(
q (x0 − y0)

ρ

)]uk

→
[
Mk

(
q (x0 − y0)

ρ

)]u0

= 0.

Hence x0 = y0. �

Theorem 3.10. The sequence spaces ŵI0(A,Bp(i),M, u, q) and ŵI∞(A,Bp(i),

M, u, q) are normal as well as monotone.

Proof. We give the proof for only ŵI0(A,Bp(i),M, u, q). Let x = (xk) ∈ ŵI0(A,Bp(i),

M, u, q) and α = (αk) be be a sequence of scalars such that |αk| ≤ 1 for all

k ∈ N. Then for given ε > 0, for all m ∈ N we haven ∈ N :

∞∑
k=1

ank

Mk

q
(
tmk(Bp(i)(αkxk))

)
ρ

uk

≥ ε


⊆

n ∈ N : E

∞∑
k=1

ank

Mk

q
(
tmk(Bp(i)xk)

)
ρ

uk

≥ ε

 ∈ I,
where E = max{1, |αk|G}.

Hence (αkxk) ∈ ŵI0(A,Bp(i),M, u, q). Thus the space ŵI0(A,Bp(i),M, u, q). is

normal. Also from Lemma 1.1, it follows that ŵI0(A,Bp(i),M, u, q) is monotone.

�

Theorem 3.11. Let M = (Mk) be a Musielak-Orlicz function. Then the

following statements are equivalent:

(i) ŵI∞(A,Bp(i), u, q) ⊆ ŵ
I
∞(A,Bp(i),M, u, q)

(ii) ŵI0(A,Bp(i), u, q) ⊆ ŵ
I
∞(A,Bp(i),M, u, q)

(iii) supn
∑n
k=1 ank

[
Mk

(
t
ρ

)]uk

<∞ (t, ρ > 0).

Proof. (i)⇒(ii) is obvious, because ŵI0(A,Bp(i), u, q) ⊆ ŵ
I
∞(A,Bp(i), u, q).

(ii)⇒(iii). Suppose ŵI0(A,Bp(i), u, q) ⊆ ŵ
I
∞(A,Bp(i),M, u, q). We assume that

(iii) is not satisfied. Then for some t, ρ > 0

sup
n

n∑
k=1

ank

[
Mk

(
t

ρ

)]uk

=∞,

and therefore there exists a sequence (nj) of positive integers such that

nj∑
k=1

anjk

[
Mk

(
j−1

ρ

)]uk

> j, j = 1, 2, 3, .... (3.5)
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Define a sequence x = (xk) by

Bp(i)xk =

{
1
j , if 1 ≤ k ≤ nj , j = 1, 2, 3, ...;

0, if k > nj

Then x = (xk) ∈ ŵI0(A,Bp(i), u, q) but by equation (3.5) we have x = (xk) /∈
ŵI∞(A,Bp(i),M, u, q) which contradicts (ii). Hence (iii) must hold.

(iii)⇒(i) Suppose (iii) is satisfied and x ∈ ŵI∞(A,Bp(i), u, q). Suppose that

x /∈ ŵI∞(A,Bp(i),M, u, q). Then

sup
n

n∑
k=1

ank

Mk

q
(
tmk(Bp(i)xk)

)
ρ

uk

=∞, for all m ∈ N. (3.6)

Put t = q
(
tmk(Bp(i)xk)

)
for all k,m ∈ N. Then by the equation (3.6) we have

sup
n

n∑
k=1

ank

[
Mk

(
t

ρ

)]uk

=∞

which contradicts (iii). Hence (i) must hold. �

Theorem 3.12. Let M = (Mk) be a Musielak-Orlicz function. Let 1 ≤
uk ≤ supkuk <∞. Then the following statements are equivalent:

(i) ŵI0(A,Bp(i),M, q) ⊆ ŵI0(A,Bp(i), u, q)

(ii) ŵI0(A,Bp(i),M, u, q) ⊆ ŵI∞(A,Bp(i), u, q)

(iii) infn
∑n
k=1 ank

[
Mk

(
t
ρ

)]uk

> 0 (t, ρ > 0).

Proof. (i)⇒(ii) is obvious.

(ii)⇒(iii). Suppose ŵI0(A,Bp(i),M, u, q) ⊆ ŵI∞(A,Bp(i), u, q). We assume that

(iii) does not hold. Then for some t, ρ > 0

inf
n

n∑
k=1

ank

[
Mk

(
t

ρ

)]uk

= 0.

We can choose an index sequence (nj) of positive integers such that

nj∑
k=1

anjk

[
Mk

(
i

ρ

)]uk

>
1

j
, j = 1, 2, 3, .... (3.7)

Define a sequence x = (xk) by

Bp(i)xk =

{
j, if 1 ≤ k ≤ nj , j = 1, 2, 3, ...;

0, if k > nj
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Then by equation (3.7) we have x = (xk) ∈ ŵI0(A,Bp(i),M, u, q) but x = (xk) /∈
ŵI∞(A,Bp(i), u, q) which contradicts (ii). Hence (iii) must hold.

(iii)⇒(i) Let (iii) hold and x ∈ ŵI0(A,Bp(i),M, u, q). Then for every ε > 0,

for all m ∈ N we haven ∈ N :

n∑
k=1

ank

Mk

q
(
tmk(Bp(i)xk)

)
ρ

uk

≥ ε

 ∈ I. (3.8)

Suppose that x /∈ ŵI0(A,Bp(i), u, q). Then for some integer ε0 > 0 for all m ∈ N
we have {

n ∈ N :

n∑
k=1

ank

[
q
(
tmk(Bp(i)xk)

)]uk

≥ ε0

}
/∈ I.

Therefore we have[
Mk

(
ε0
ρ

)]uk

≤

Mk

q
(
tmk(Bp(i)xk)

)
ρ

uk

and consequently by the relation (3.8) we have

inf
n

n∑
k=1

ank

[
Mk

(
ε0
ρ

)]uk

= 0

which contradicts (iii). Hence ŵI0(A,Bp(i),M, q) ⊆ ŵI0(A,Bp(i), u, q). �
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