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Abstract. In this paper we present a new method to find simple or

multiple roots of functions in a finite interval. In this method using

bisection method we can find an interval such that this function is one

to one on it, thus we can transform problem of finding roots in this

interval into an ordinary differential equation with boundary conditions.

By solving this equation using collocation method we can find a root

for given function in the special interval. We also present convergence

analysis of the new method. Finally some examples are given to show

efficiency of the presented method.
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1. Introduction

Finding roots of functions are one of the oldest problem in mathematics.

In many problems such as digital filtering design, image filtering and etc.

[18, 19, 12, 1, 21, 3, 22] we need to find the roots of special functions, there-

fore presenting new methods for solving the root finding problem has special

importance. For this problem there exists some classical numerical methods
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such as bisection method [4], Newton method [4] and etc. Also some authors

have presented new algorithms for solving this problem [5, 6]. In this paper

we present a new method for finding roots of continuous function on a finite

interval [a, b]. In this section we introduce some preliminaries and definitions.

In Section 2 we present a new method for finding roots of continuous functions

in [a, b]. In this method we transform the problem of finding roots to an ordi-

nary differential equation and solve this equation using the collocation method.

Also in this section we study convergence analysis of the new method. Finally

in Section 3 we give some numerical examples to show the efficiency of the new

method.

Definition 1.1. A root c is a multiple root of f with multiplicity m if f

expressed as

f(x) = (x − c)mr(x), (1.1)

where r is a continuous function and r(c) �= 0.

Theorem 1.2. (Intermediate Value Theorem) Assume that the function f(x)

is continuous for x ∈ [a, b], f(a) �= f(b), and k is between f(a) and f(b). Then

there is a point ζ ∈ (a, b) such that f(ζ) = k. In particular, if f(a)f(b) < 0,

then the equation f(x) = 0 has at least one root in the interval (a, b).

Proof. see [4]. �

1.1. Jacobi polynomials. The Jacobi polynomials P
(α,β)
n (x), are defined as

the orthogonal polynomials with respect to the weight function ω(α,β)(x) =

(x− a)α(b − x)β , (α > −1, β > −1) on [a, b]. The Jacobi polynomials satisfy

[10] the following three term recurrence relation on the interval [a, b]:

P
(α,β)
0 (x) = 1,

P
(α,β)
1 (x) = a(1+β)+b(1+α)

α+β+1 ,

P
(α,β)
i+1 (x) = (x−Ai)P

(α,β)
i (x) −BiP

(α,β)
i−1 (x), i = 1, 2, 3, ...,

where
Ai =

2i(i+1+α+β)(a+b)+(a(β+1)+b(α+1))(α+β)
(2i+α+β)(2i+α+β+2) ,

Bi =
i(i+β)(i+α+β)(b−a)2

(2i+α+β+1)(2i+α+β+2)2(2i+α+β+1)
.

On the other hand the Jacobi polynomials have the following properties [10]:

P (α,β)
n (x) =

n∑
k=0

B
(α,β,n)
k (x− b)k, (1.2)
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where

B
(α,β,n)
k =

(b − a)n−kn!(k + β + 1)n−k

(n− k)!(n+ k + α+ β + 1)n−kk!
, (1.3)

and

(c)0 = 1, (c)k =

k∏
i=0

(c+ i− 1); k = 1, 2, 3, ...,

or

P (α,β)
n (x) =

n∑
k=0

E
(α,β,n)
k (x − a)k, (1.4)

where

E
(α,β,n)
k =

(a− b)n−kn!(k + α+ 1)n−k

(n− k)!(n+ k + α+ β + 1)n−kk!
. (1.5)

1.2. Operational matrix of derivatives for Jacobi polynomials. Sup-

pose :

ϕ = [ϕ0(t), ϕ1(t), ..., ϕn−1(t)]
T , (1.6)

where the elements ϕ0(t), ϕ1(t), ..., ϕn−1(t), are the basis functions on the in-

terval [a, b]. The matrix Dn×n is the operational matrix of derivatives if and

only if

d

dx
ϕ = Dϕ. (1.7)

Suppose in (6) we define ϕi(t) = P
(α,β)
i (t). Using properties of Jacobi polyno-

mials we have:

d

dx
P

(α,β)
i (x) =

i−1∑
j=0

di,jP
(α,β)
j (x), (1.8)

where the coefficients di,j are obtained from the following upper triangular

system [7]:⎡
⎢⎢⎢⎢⎢⎢⎣

B
(α,β,0)
0 · · · B

(α,β,i−3)
0 B

(α,β,i−2)
0 B

(α,β,i−1)
0

0 B
(α,β,1)
1 · · · B

(α,β,i−2)
1 B

(α,β,i−1)
1

...
...

. . .
...

...

0 0 · · · B
(α,β,i−2)
i−2 B

(α,β,i−1)
i−2

0 0 . . . 0 B
(α,β,i−1)
i−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

di,0
di,1
...

di,i−2

di,i−1

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Pi
′(b)/0!

Pi
′′(b)/1!
...

P
(i−1)
i (b)/ (i− 2)!

P i
i (b)/ (i− 1)!

⎤
⎥⎥⎥⎥⎥⎥⎦
, (1.9)
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where P
(α,β)
j (x) = Pj(x) and dk

dxkP
(α,β)
j (x) = P

(k)
j (x), (1 ≤ k ≤ N) and

B
(α,β,j)
k is defined in (1.3). Solving this linear system concludes:

di,i−1 =
P

(i)
i (1)

(i− 1)!B
(α,β,i−1)
i−1

=
α+ β + 2i

2 (α+ β + i)
, (1.10)

and

di,j =

P j+1
i (1)− j!

j+1∑
k=i−1

B
(α,β,k)
j di,k

j!B
(α,β,j)
j

, j = 0, 1, 2, ..., i− 2. (1.11)

Now it can be seen that:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 d1,0 d2,0 · · · dn,0
0 0 d2,1 · · · dn,1
...

...
...

. . .
...

0 0 0 0 dn,n−1

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (1.12)

2. Finding roots of continuous functions

Suppose f : [a, b] −→ R is a continuous function and f(a)f(b) < 0. Therefore

using Theorem 1 we conclude there exists c ∈ (a, b) such that f(c) = 0. In this

section we present a new method for finding c. Suppose c is a simple root of

f on [a, b]. Now we look for an interval [a1, b1] ⊂ [a, b] such that f be one to

one on [a1, b1]. Using bisection method we determine a sequence of intervals

Ik = (ck, ck), k = 1, 2, 3, ..., n such that

(c1, d1) ⊃ (c2, d2) ⊃ (c3, d3) ⊃ ... ⊃ (cn, dn),

where (cj , dj), j = 1, 2, ..., n contain a root of f(x) and f is a one to one func-

tion on (cn, dn). For this purpose we present the following algorithm:

Input. end points a and b.

Step 1. While f is not one to one on [a, b] do steps 3− 6.

Step 3. Set c1 = a,

Step 4. Set p1 = a+ b−a
2 ,

R1 = f(c1),

R2 = f(p1).

Step 5. If R2 = 0,

c = p1
Stop.

Step 6. If R1R2 < 0,

a = c1 and b = p1,

else a = p1.

Step 7. Set a1 = a and b1 = b
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Stop.

Otuput. a1 and b1.

Remark 2.1. Because f has a simple root in [a, b], therefore there exists [a1, b1]

such that f is one to one in this interval. Therefore the above algorithm could

be ended after finite number of iterations.

If we know that multiplicity of f is m then we can use g(x) = f(x)
(x−c)m−1 ,

instead of f(x) in the presented algorithm and if f be a function with mul-

tiplicity m in c where m is unknown, we can use G(x) =

{
f(x)
f ′(x) x �= 0

0 x = 0

instead of f in the presented algorithm [13]. After finding [a1, b1] using the

above algorithm, we look for c ∈ [a1, b1] such that c = f−1(0). Suppose

y(x) = f−1(x), x ∈ [f(a1), f(b1)], (2.1)

therefore we have

f(y(x)) = x, x ∈ [f(a1), f(b1)], (2.2)

and it is easy to see that

y′(x) =
1

f ′(y(x))
, x ∈ [f(a1), f(b1)]. (2.3)

Now we consider the following boundary value problem:

y′(x) = 1
f ′(y(x)) ,

y(f(a1)) = a1,

y(f(b1)) = b1.

(2.4)

We can check that solving (2.4) is equivalent to finding y(x) such that satisfies

in (2.1). Solving this equation and finding y(x), we can determine c.

Lemma 2.2. Suppose S1 and S2 are the sets of the solutions of the following

equations respectively ⎧⎨
⎩

y(x) = f−1(x),

y (f(a1)) = a1,

y (f(b1)) = b1,

(2.5)

and ⎧⎪⎨
⎪⎩

y′(x) = 1
f ′(y(x)) ,

y(f(a1)) = a1,

y(f(b1)) = b1.

(2.6)

Therefore we conclude S1 = S2.
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Proof. Suppose y1(x) ∈ S1, therefore y1 satisfies in (17). It is easy to see that

⎧⎨
⎩

f (y1(x)) = x,

y1 (f(a1)) = a1,

y1 (f(b1)) = b1,

(2.7)

therefore we conclude

⎧⎨
⎩

y′1(x)f ′(y1(x)) = 1

y1 (f(a1)) = a1,

y1 (f(b1)) = b1.

(2.8)

That is y1 satisfy in (18), therefore we conclude S1 ⊂ S2. Now suppose y2(x) ∈
S2 is the solution of (18). Therefore we have

x∫
f(a1)

y′2(t)f
′(y2(t))dt =

x∫
f(a1)

1dt. (2.9)

Using (2.9) yields

x∫
f(a1)

(f(y2(t)))
′
dt = x− f(a1). (2.10)

Finally one can conclude:

⎧⎨
⎩

f (y2(x)) = x,

y2 (f(a1)) = a1,

y2 (f(b1)) = b1,

(2.11)

That is y2 satisfy in (17), therefore we conclude S2 ⊂ S1. �

2.1. The Jacobi Collocation method for solving (2.4). Collocation method

is a powerful tool for solving ordinary differential equations. In this section we

use the Jacobi collocation method for solving (2.4). Suppose

yN (x) =

N∑
i=0

ciP
(α,β)
i (x), (2.12)

where ci is unknown for i = 0, 1, ..., N . Let us define dk

dxkP
(α,β)
i (x) = P

(k)
i (x)

for k = 0, 1, ..., N . Now it is clear that

yN (x) = P (x)CT , (2.13)

y′N (x) = P ′(x)CT , (2.14)

where

P (x) = [P0(x), P1(x), ..., PN (x)], (2.15)

P ′(x) = [P ′
0(x), P

′
1(x), ..., P

′
N (x)], (2.16)

C = [c0, c1, ..., cN ]. (2.17)
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The relation between the matrix P (x) and it’s derivative, P ′(x), is :

P ′(x) = P (x)D, (2.18)

where D is the operational matrix of derivative that is defined in Subsection

1.3. Therefore we can write

y′N (x) = P (x)DCT . (2.19)

Suppose

Z(yN (x)) =
1

f ′(yN (x))
. (2.20)

Using (2.19) we conclude:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P (x)DCT − Z(P (x)CT ) � 0,

P (f(a1))C
T � a1,

P (f(b1))C
T � b1.

(2.21)

Now we use the collocation method for solving (2.21). Suppose {xi}Ni=0 is the

set of (N + 1) Jacobi-Gauss or Jacobi-Gauss-Radau or Jacobi-Gauss-Lobatto

quadrature nodes [2]. We substitute these nodes in (2.21), therefore we have

the following system of nonlinear equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P (f(a1))C
T = a1,

P (xk)DCT − Z(P (xk)C
T ) = 0, k = 1, 2, ..., N − 1,

P (f(b1))C
T = b1.

(2.22)

This system can be solved by Newton’s iterative method [4].

2.1.1. Convergence analysis. In this section we prove the convergence of the

Jacobi collocation method that is presented in Section 2.2. Before proving the

main theorem of this section, we present some preliminaries and notations.

Definition 2.3. Suppose I = (a, b) and L2
ωα,β (I) is the space of square inte-

grable functions in I. Now we can define the following inner product and norm

on L2
ωα,β (I):

(u, v)ωα,β ,I =

b∫
a

ωα,β(x)u(x)v(x)dx, ∀u, v ∈ L2
ωα,β (I),

‖u‖ωα,β ,I =

⎛
⎝ b∫

a

ωα,β(x)(u(x))
2
dx

⎞
⎠

1
2

, ∀u ∈ L2
ωα,β (I).
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For any u, v continuous on [a, b], we set

(u, v)N =

N∑
i=0

u(xi)v(xi)wi,

where xj , (0 ≤ j ≤ N), are the Gauss- Jacobi or Gauss-Radau or Gauss-

Lobatto quadrature nodes and wj , (0 ≤ j ≤ N), are the Gauss- Jacobi or

Gauss-Radau or Gauss- Lobatto quadrature weights. The Gauss integration

formulas imply that:

(u, v)N,ωα,β = (u, v)ωα,β , if uv ∈ P2N+δ,

where δ = 1, 0,−1 for Gauss, Gauss-Radau or Gauss-Lobatto integration rules

respectively.

Definition 2.4. [2] Suppose I = (a, b), therefore we define:

Hk
ωα,β (I) =

{
u| ∂l

xu ∈ L2
ωα,β (I) , 0 ≤ l ≤ k

}
,

where ∂l
xu = ∂lu

∂xl . H
k
ωα,β (I) is a Hilbert space with respect to the inner product

:

(u, v)k,ωα,β ,I =
k∑

m=0

(∂m
x u, ∂m

x v)ωα,β ,I ,

which induces the norm:

‖u‖
k,ωα,β,I

=

⎛
⎝ k∑

j=0

∥∥∂j
xu

∥∥2
ωα,β ,I

⎞
⎠

1
2

,

also it is easy to see that :

‖∂m
x u‖ωα,β ,I ≤ ‖u‖

k,ωα,β,I
, 0 ≤ m ≤ k. (2.23)

Definition 2.5. [20] We define:

Hk
ωα,β ,∗ (I) =

{
u| ∂j

xu ∈ L2
ωα+j,β+j (I) , 0 ≤ j ≤ k, k ∈ N

}
,

where ∂j
xu = ∂ju

∂xj . Hk
ωα,β ,∗ (I) is a Hilbert space with respect to the inner

product

(u, v)k,ωα,β ,∗ =

k∑
j=0

(
∂j
xu, ∂

j
xv

)
ωα+j,β+j ,

which induces the norm:

‖u‖k,ωα,β ,∗ =

⎛
⎝ k∑

j=0

∥∥∂j
xu

∥∥2

ωα+j,β+j

⎞
⎠

1
2

.
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Definition 2.6. [2] Suppose PN is the space of all polynomials of degree at

most N . ΠN,ωα,β : L2
ωα,β (I) → PN is an orthogonal projection if and only if

for any u ∈ L2
ωα,β (I), we have :(
ΠN,ωα,β (u(x))− u(x), v(x)

)
ωα,β ,I

= 0, ∀v ∈ PN . (2.24)

Lemma 2.7. (The Poincare Inequality) Suppose u ∈ H1
ωα,β (I) and there exists

a point x0 ∈ [a, b], u(x0) = 0 therefore we have:

‖u‖ωα,β ,I ≤ C‖∂xu‖ωα,β ,I , (2.25)

where C is a constant.

Proof. See [2]. �

Lemma 2.8. Suppose f ∈ H1
ω0,0(I), therefore we conclude:

ΠN−1,ω0,0

(
d

dx
f

)
=

(
ΠN,ω0,0 (f)

)′
. (2.26)

Proof. See [8]. �

Definition 2.9. [2] Suppose I = (c1, c2), we define Π1,N : H1
ω0,0(I) → PN such

that

Π1,Nu(x) = u(c1) +

x∫
c1

ΠN−1,ω0,0

(
d

dx
u

)
dx, (2.27)

where ΠN,ω0,0 are defined in (2.24). Using (2.26) we conclude:

Π1,Ny(c1) = y(c1),

Π1,Ny(c2) = y(c2).

Lemma 2.10. Suppose y ∈ Hσ
ω0,0(I) , σ ≥ 1, therefore there exists a constant

C independent of N such that:

‖Π1,Ny − y‖l,ω0,0,I ≤ CN l−σ‖y‖σ,ω0,0,I , l = 0, 1. (2.28)

Proof. See [11]. �

Lemma 2.11. Suppose I = (a, b) and xj, (0 ≤ j ≤ N), be the Gauss-Jacobi

or Gauss-Radau or Gauss-Lobatto quadrature nodes and wj , (0 ≤ j ≤ N), be

the Gauss-Jacobi or Gauss-Radau or Gauss-Lobatto quadrature weights. The

Jacobi interpolating polynomial is denoted by Iα,βN (u). For any u ∈ Hk
ωα,β (I),

k ≥ 1, there exists a constant C2 independent of N , such that:∥∥∥u− Iα,βN (u)
∥∥∥
ωα,β

≤ C2N
−k‖u‖k,ωα,β , (2.29)

and for any u ∈ Hm
ωα,β ,∗ (I), m > k, there exist constants C3 and C4 indepen-

dent of N , such that:∥∥∂k
x

(
u−ΠN,ωα,β(u)

)∥∥
ωα+k,β+k ≤ C3N

k−m‖∂m
x u‖ωα+m,β+m , (2.30)
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x

(
u− Iα,βN (u)

)∥∥∥
ωα+k,β+k

≤ C4N
k−m‖∂m

x u‖ωα+m,β+m . (2.31)

Also for any u ∈ Hm
ωα,β (I), 1 ≤ k ≤ m, there exist constants C5 and C6

independent of N , such that:∥∥u−ΠN,ω0,0 (u)
∥∥
k,ω0,0 ≤ C5N

2k− 1
2−m‖u‖m,ω0,0 ,∥∥∥u− I0,0N (u)

∥∥∥
k,ω0,0

≤ C6N
2k− 1

2−m‖u‖m,ω0,0 .

Proof. See [20, 2, 9]. �

Theorem 2.12. Suppose y and yN are the solutions of (2.4) and (2.22) re-

spectively. Assume that y ∈ Hr
ω0,0,I . Also suppose Z ∈ Hr

ω0,0,I,∗ , r > 1 which

is defined in (2.20) satisfy in the following relation:∥∥∥∥ dm

dxm
Z(f1)− dm

dxm
Z(f2)

∥∥∥∥
ωm,m,I

≤ Km‖f1 − f2‖ωm,m,I , ∀f1, f2 ∈ L2
ωm,m(I), m = 0, 1, ..., r,

(2.32)

where km < 1. Suppose {xk}Nk=0 and {ωk}Nk=0 are the Legendre-Gauss-Lobatto

nodes and weights, respectively. Therefore we conclude:

‖y − yN‖ω0,0,I ≤ λ0N
−r‖y‖r,ω0,0,I +

(
λ1N

1−r + λ2N
−2r

) ‖y‖ω0,0,I , (2.33)

where λ0, λ1 and λ2 are constants independent of N .

Proof. Suppose eN(x) = yN (x)−Π1,Ny(x) where Π1,N is defined in (2.27). We

know that yN satisfies in the following equation:

(yN(xi)−Π1,Ny(xi))
′
= ZN (yN (xi)) + (Π1,Ny(xi))

′
, i = 1, 2, ..., N − 1.

(2.34)

It is easy to see that eN (c1) = 0 and eN (c2) = 0 where c1 = f(a1) and

c2 = f(b1). Therefore we can write:

(yN (xi)−Π1,Ny(xi))
′
e′N (xi) = Z(yN (xi))e

′
N (xi)+(Π1,Ny(xi))

′
e′N (xi), i = 0, 1, 2, ..., N.

(2.35)

Multiplying both sides of (2.35), in ωk, 0 ≤ k ≤ N and summing up these

equations we conclude:

(e′N , e′N )N,ω0,0 = (Z(yN ), e′N )N,ω0,0 +
(
(Π1,Ny)′, e′N

)
N,ω0,0. (2.36)

We know that the N -point Legendre-Gauss-Lobato quadrature is exact for all

polynomials of degree at most 2N − 1, therefore we have:

(e′N , e′N )ω0,0,I = (Z(yN ), e′N )N,ω0,0 +
(
(Π1,Ny)

′
, e′N

)
ω0,0,I

. (2.37)

Multiplying both sides of (2.4) in e′N (x)ω0,0(x) and integrating over I we con-

clude:

(y′, e′N )ω0,0,I = (Z(y), e′N )ω0,0,I . (2.38)
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Subtracting (2.38) from (2.37) yields:

(e′N , e′N )ω0,0,I = (Z(Π1,Ny)− Z(yN ), e′N )ω0,0,I +
(
(Π1,Ny)′ − y′, e′N

)
ω0,0,I

+

(Z(y)− Z(Π1,Ny), e′N)ω0,0,I + (Z(yN), , e′N)ω0,0,I − (Z(yN ), , e′N )N,ω0,0.

(2.39)

It is easy to see that:

‖e′N‖2ω0,0,I ≤ ‖Z(yN)− Z(y)‖ω0,0,I‖e′N‖ω0,0,I +
∥∥(Π1,Ny)

′ − y′
∥∥
ω0,0,I

‖e′N‖ω0,0,I+

‖Z(Π1,Ny)− Z(y)‖ω0,0,I‖e′N‖ω0,0,I + ‖IN (Z(yN))− Z(yN )‖ω0,0,I‖e′N‖ω0,0,I .

(2.40)

Therefore we can write:

‖e′N‖ω0,0,I ≤ ‖Z(yN)− Z(Π1,Ny)‖ω0,0,I + ‖Z(Π1,Ny)− Z(y)‖ω0,0,I+

‖IN (Z(yN ))− Z(yN )‖ω0,0,I ++
∥∥(Π1,Ny)

′ − y′
∥∥
ω0,0,I

.

(2.41)

Using (2.32) and Lemma 3 and (2.23) respectively we conclude:

‖Z(yN)− Z(y)‖ω0,0,I ≤ K0‖eN‖ω0,0,I , (2.42)

and

‖Z(Π1,Ny)− Z(y)‖ω0,0,I ≤ K0‖Π1,Ny − y‖ω0,0,I ≤ C1N
−r‖y‖r,ω0,0,I , (2.43)

and∥∥(Π1,Ny)
′ − y′

∥∥
ω0,0,I

≤ ‖Π1,Ny − y‖1,ω0,0,I ≤ C2N
1−r‖y‖1,ω0,0,I . (2.44)

Now for simplicity we use IN (f) instead of I0,0N (f), therefore employing Lemma

4, it can be seen

‖IN (Z(yN ))− Z(yN)‖ω0,0,I ≤ C3N
−r

∥∥ dr

dxrZ(yN)
∥∥
ωr,r,I

≤

C3N
−r

(∥∥ dr

dxrZ(yN )− dr

dxrZ(Π1,Ny)
∥∥
ωr,r,I

+
∥∥ dr

dxrZ(y)
∥∥
ωr,r,I

+

∥∥ dm

dxmZ(y)− dm

dxmZ(Π1,Ny)
∥∥
ωm,m,I

)
.

(2.45)

We know that Z satisfies in (2.32), therefore we conclude:∥∥ dr

dxrZ(yN)− dr

dxrZ(Π1,Ny)
∥∥
ωr,r,I

≤ Lr‖yN −Π1,Ny‖ωr,r,I ≤

C4‖eN‖ω0,0,I .

(2.46)

Also using (2.32) and Lemma 3 yield∥∥ dr

dxrZ(y)− dr

dxrZ(Π1,Ny)
∥∥
ωr,r,I

≤ Lr‖y −Π1,Ny‖ωr,r,I ≤

C5N
−r‖y‖ω0,0,I .

(2.47)
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Therefore substituting (2.46) and (2.47) in (2.45) we have

‖IN (Z(yN ))− Z(yN )‖ω0,0,I ≤ C6N
−r

∥∥ dr

dxrZ(y)
∥∥
ωr,r,I

+

C7N
−r‖eN‖ω0,0,I + C8N

−2r‖y‖ω0,0,I .

(2.48)

Now using Lemma 1 we can write:

‖eN‖ω0,0,I ≤ C9‖e′N‖ω0,0,I . (2.49)

By substituting (2.42), (2.43), (2.44), (2.48) and (2.49) in (2.41) we have:

‖eN‖ω0,0,I ≤ (
C10N

1−r + C11N
−2r

) ‖y‖ω0,0,I . (2.50)

We know that :

‖y − yN‖ω0,0,I = ‖y − yN ±Π1,Ny‖ω0,0,I ≤ ‖y −Π1,Ny‖ω0,0,I+

‖yN −Π1,Ny‖ω0,0,I .

(2.51)

Therefore using Lemma 3 and (2.50) we conclude:

‖y − yN‖ω0,0,I ≤ λ0N
−r‖y‖r,ω0,0,I +

(
λ1N

1−r + λ2N
−2r

) ‖y‖ω0,0,I . (2.52)

�

3. Numerical results

In this section we present some examples and solve them using presented

algorithm.

Example 3.1. We want to find roots of [14]

f(x) =
(
x− π

3
e

π
3 −x

)3

sin2
(x
2
− π

6

)
, x ∈ [0, 2], (3.1)

the root of this function is π
3 of multiplicity m = 5. In Table 1 the numerical

results of finding root of this function using the presented method is shown.

E(α, β) is the absolute error of finding root of f using the method presented in

Section 2 with the parameters (α, β).

Table 1: The absolute error for roots of f in Example 1 using presented method.

Number of iterations E(-0.8,-0.4) E(-0.2,0.8) E(-0.8,0.5) E(0.5,0.5) E(0.5,0.8)

4 1.7400(-1) 5.3163(-2) 9.8963(-2) 8.5130(-2) 9.3013(-2)

6 5.2701(-2) 9.7430(-3) 7.2306(-2) 2.9246(-2) 7.3941(-2)

8 3.2859(-2) 7.3820(-3) 9.173(-3) 9.1403(-3) 1.8316(-2)

10 9.45029(-3) 1.8361(-3) 7.9174(-3) 8.062(-3) 7.9409(-3)

12 6.3051(-3) 9.0418(-4) 8.6290(-4) 6.6273(-4) 2.9163(-3)
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Example 3.2. In this example, we want to find roots of [17]

f(x) = (x − 1)2tan(
πx

4
), 0 < x < 2. (3.2)

The root of this function is x = 1 of multiplicity m = 2. Table 2 shows the

numerical solution of this equation using presented method. E(α, β) is the

absolute error of finding root of f using the method is presented Section 2 with

the parameters (α, β).

Table 2: The absolute error for roots of f in Example 2 using method is presented

in this paper.

Number of iterations E(-0.5,0.5) E(-0.5,0) E(0,0) E(0,0.5) E(0.5,0.5)

5 8.0030(-3) 9.0915(-3) 4.7631(-3) 6.4298(-3) 8.2065(-3)

7 7.6249(-3) 7.4056(-3) 4.6643(-3) 3.2908(-3) 5.3906(-3)

9 3.9501(-3) 3.0351(-3) 8.5920(-4) 1.7928(-3) 6.1649(-3)

11 9.1643(-4) 6.8120(-4) 4.9159(-4) 8.6418(-4) 5.9041(-4)

13 6.2875(-4) 4.8252(-4) 2.9517(-4) 7.1849(-4) 6.0269(-4)

4. Conclusion

In this paper we presented a method for finding roots of continuous func-

tion f . In this method we find an interval [a1, b1], that f is one to one on it.

Therefore we can construct a boundary value equation on [a1, b1], where f−1

is the solution of it. Solving this equation using Jacobi collocation method we

can find roots of function f . We also studied convergence analysis of the new

method. Finally some examples are presented to show the efficiency of the new

method.

Acknowledgments. The authors thank the referees for their helpful sugges-
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