On Generalized Coprime Graphs

\author{
S. Mutharasu ${ }^{a, *}$, N. Mohamed Rilwan ${ }^{b}$, M. K. Angel Jebitha ${ }^{c}$, T. Tamizh Chelvam ${ }^{b}$
 ${ }^{a}$ Department of Mathematics, CBM college, Coimbatore-641 042, Tamil nadu, India
 ${ }^{b}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627 012, Tamil nadu, India
 ${ }^{c}$ Department of Mathematics, Loyola Institute of Technology and Science, Thovalai-629 302, Tamil nadu, India
 ```
E-mail: skannanmunna@yahoo.com
 E-mail: rilwan2020@gmail.com
 E-mail: jebidom@gmail.com
 E-mail: tamche59@gmail.com

```
}

Abstract. Paul Erdos defined the concept of coprime graph and studied about cycles in coprime graphs. In this paper this concept is generalized and a new graph called Generalized coprime graph is introduced. Having observed certain basic properties of the new graph it is proved that the chromatic number and the clique number of some generalized coprime graphs are equal.

Keywords: Coprime graph, Semi-perfect, Clique number, Chromatic number.

2000 Mathematics subject classification: 05C 17.

\section*{1. Introduction}

In 1996, Paul Erdos and Gabor N. Sarkozy [4] have introduced the coprime graph of integers and studied about cycles in coprime graph of integers.

\footnotetext{
* Corresponding Author

Received 10 June 2012; Accepted 02 March 2013 (C)2014 Academic Center for Education, Culture and Research TMU
}

Further Gabor N. Sarkozy [3] has studied about the complete tripartite subgraphs in the coprime graph of integers. The coprime graph on the integer set \(X=\{1,2, \ldots, n\}(n\) is a positive integer \()\) is \(G=(V, E)\) where \(V=X\) and \(E=\{(x, y): x, y \in X\) and \(\operatorname{gcd}(x, y)=1\}\). Note that coprime graphs are different from prime graphs [2]. Here, we generalize this definition of coprime graph and define generalized coprime graph on a positive integer \(n\) and \(A \subseteq X\) as follows: Let \(n \geq 2, X=\{1,2, \ldots, n\}\) and \(A \subseteq X\). Then the generalized coprime graph on \(n\) and \(A\), denoted by \(C P(n, A)=(V, E)\), where \(V=X\) and \(E=\{(x, y): x, y \in X\) and \(\operatorname{gcd}(x, y) \in A\}\). Note that coprime graph need not be a subgraph of a generalized coprime graph. Let \(G\) be a graph. The girth of \(G\), denoted by \(g(G)\), is the length of a shortest cycle in \(G\). The circumference \(c(G)\) of \(G\) is the length of a cycle of maximum length in \(G\). The chromatic number \(\chi(G)\) of \(G\) is defined to be the minimum number of colours requires to colour the vertices of \(G\) in such a way that no two adjacent vertices have the same colour. The clique number \(\omega(G)\) of \(G\) is the order of the maximum complete subgraph of \(G\). A graph \(G\) is said to be perfect if the chromatic number and the clique number are same for every induced subgraph of \(G\). In generalization of this, a graph \(G\) is said to be semi-perfect if the chromatic number and the clique number of \(G\) are same. For basic definitions in graph theory, we follow [1].

Throughout this paper we have follow the following notations:
Let \(X=\{1,2, \ldots, n\}\). For any \(k\) with \(1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\), let \(C P\left(n, A^{(k)}\right)\) be the generalized coprime graph corresponding to \(A^{(k)}=\{1,2, \ldots, k\}\) and \(C P\left(n, B^{(k)}\right)\) be the generalized coprime graph corresponding to \(B^{(k)}=\{x k \in X: x \in \mathbb{N}\) and \(\left.x k \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}\). Let \(S\) be the set of all primes in \(X\) and \(S_{1}=\left\{p \in S: p^{2} \leq n\right\}\). Without loss of generality we can assume that \(S_{1}=\left\{p_{1}, p_{2}, \ldots, p_{g}\right\}\) with \(1<p_{1}<p_{2}<\ldots<p_{g}\). For \(1 \leq k \leq g\), let \(C^{(k)}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \cup\{1\}\) and \(C P\left(n, C^{(k)}\right)\) be the generalized coprime graph corresponding to \(C^{(k)}\) for \(1 \leq k \leq g\). Note that coprime graph is a subgraph of \(C P\left(n, A^{(k)}\right), C P\left(n, B^{(k)}\right)\) and \(C P\left(n, C^{(k)}\right)\), special classes of generalized coprime graphs. We use the following result in sequel.

Theorem 1.1. [1] For every graph \(G\) of order \(n, \chi(G) \geq \omega(G)\) and \(\chi(G) \geq\) \(\frac{n}{\beta(G)}\).

\section*{2. Properties of Generalized Coprime graphs}

In this section, certain basic properties of generalized coprime graphs are obtained. Since \(K_{3}\) is a subgraph of \(C P\left(n, A^{(k)}\right)\) for all \(k \geq 3\), we have the following.
Lemma 2.1. Let \(n \geq 3\) be an integer. Then \(g\left(C P\left(n, A^{(k)}\right)\right)\) is 3 for all \(k \geq 3\).
Since \(\operatorname{gcd}(x, x+1)=1\) for all \(x \in X-\{n\}\) and \(\operatorname{gcd}(1, n)=1\), one can prove the following.

Lemma 2.2. Let \(n \geq 3\) be an integer. For all \(k, C P\left(n, A^{(k)}\right)\) is Hamiltonian.
Lemma 2.3. Let \(n\) and \(k\) be integers such that \(1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\). Then \(C P\left(n, A^{(k)}\right)\) is bipartite if and only if \(n=2\).

Proof. Suppose \(C P\left(n, A^{(k)}\right)\) is bipartite graph and \(n \geq 3\), then by Lemma 2.1, \(C P\left(n, A^{(k)}\right)\) contains an odd cycle \(C_{3}\) which is a contradiction to \(C P\left(n, A^{(k)}\right)\) is bipartite. Hence \(n=2\). Converse is trivial.

From the definition of generalized coprime graph, one can observe the following:

Lemma 2.4. If \(A \subseteq B\), then \(C P(n, A)\) is a subgraph of \(C P(n, B)\).
Lemma 2.5. Let \(n \geq 2\) be an integer. Then \(C P\left(n, A^{(k)}\right)\) is complete if and only if \(k=\left\lfloor\frac{n}{2}\right\rfloor\).

Proof. Suppose \(C P\left(n, A^{(k)}\right)\) is complete and \(k<\left\lfloor\frac{n}{2}\right\rfloor\). Take \(x=\left\lfloor\frac{n}{2}\right\rfloor\). Then \(x, 2 x \in X\) and \(\operatorname{gcd}(x, 2 x)=x=\left\lfloor\frac{n}{2}\right\rfloor \notin A^{(k)}\). Therefore \(x\) and \(2 x\) are nonadjacent in \(C P\left(n, A^{(k)}\right)\), a contradiction to \(C P\left(n, A^{(k)}\right)\) is complete. Conversely, assume that \(k=\left\lfloor\frac{n}{2}\right\rfloor\). Since \(\operatorname{gcd}(a, b) \leq\left\lfloor\frac{n}{2}\right\rfloor\) for all \(a, b \in X\), one can conclude that \(C P\left(n, A^{(k)}\right)\) is complete.

In the following theorem we prove that \(K_{n}\), the complete graph on \(n\) vertices is the union of generalized coprime graphs.

Lemma 2.6. Let \(n \geq 3\) and \(S=\left\{k: k\right.\) is prime and \(\left.k \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}\). Then \(K_{n}=H \cup C P\left(n, A^{(1)}\right)\) where \(H=\bigcup_{k \in S} C P\left(n, B^{(k)}\right)\).

Proof. Obviously \(K_{n} \supseteq H \cup G^{(1)}\). Let \(x, y \in X\) and \(\operatorname{gcd}(x, y)=d\).
Case(i): Suppose \(d=1\). Then \(x\) and \(y\) are adjacent in \(C P\left(n, A^{(1)}\right)\).
Case(ii): Suppose \(d\) is a prime. Then \(d \in S\) and hence \(x\) and \(y\) are adjacent in \(C P\left(n, B^{(d)}\right) \subseteq H\).
Case (iii): Suppose \(d=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}\) where \(p_{i}^{\prime} s\) are primes and \(\alpha_{i} \geq 1\). Then \(d=p_{1} . s\) where \(s=p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}\). Hence \(d \in B^{\left(p_{1}\right)}, p_{1} \in S\) and so \(x\) and \(y\) are adjacent in \(C P\left(n, B^{\left(p_{1}\right)}\right) \subseteq H\). Hence \(K_{n} \subseteq H \cup C P\left(n, A^{(1)}\right)\).

\section*{3. Semi-Perfect Graphs}

In this section, we find the clique number and the chromatic number for \(C P\left(n, A^{(1)}\right), C P\left(n, A^{(2)}\right)\) and \(C P\left(n, C^{(k)}\right)\). We also prove that \(C P\left(n, A^{(1)}\right)\), \(C P\left(n, A^{(2)}\right)\) and \(C P\left(n, C^{(k)}\right)\) are semi-perfect.

Theorem 3.1. Let \(n \geq 2\) be a positive integer. Then \(\omega\left(C P\left(n, A^{(1)}\right)\right)=|S|+1\) where \(S=\{x \in X: x\) is prime \(\}\).
Proof. Let \(S_{1}=S \cup\{1\}\). Since \(\operatorname{gcd}(p, q)=1\) for all \(p, q \in S_{1},<S_{1}>\) is a complete subgraph of \(G^{(1)}\) with \(|S|+1\) vertices.
Suppose there exists a maximal complete subgraph \(<S_{2}>\) of \(C P\left(n, A^{(1)}\right)\) such
that \(\left|S_{2}\right|>\left|S_{1}\right|\). Then \(S_{2}\) must contains at least one composite number \(v\) such that \(v=v_{1}^{a_{1}} v_{2}^{a_{2}} \ldots v_{r}^{a_{r}}, v_{i}^{\prime} s\) are prime and \(v_{i} \geq 1\). Let \(Y\) be the set of all proper divisors of \(v\). Suppose \(x \in Y \cap S_{2}\). Then \(\operatorname{gcd}(x, v)=x>1\) and so \(x\) and \(v\) are not adjacent in \(<S_{2}>\), a contradiction to the fact that \(<S_{2}>\) is complete. Hence \(Y \cap S_{2}=\emptyset\). Therefore \(\operatorname{gcd}\left(v_{i}, y\right)=1\) for all \(y \in S_{2}\). In particular, \(\operatorname{gcd}\left(v_{1}, y\right)=1\) for all \(y \in S_{2}\). Thus \(<S_{2} \cup\left\{v_{1}\right\}>\) is a complete subgraph of \(C P\left(n, A^{(1)}\right)\), which properly contains \(S_{2}\), a contradiction to the maximality of \(S_{2}\). Hence \(\omega\left(C P\left(n, A^{(1)}\right)\right)=|S|+1\).

Theorem 3.2. Let \(n \geq 2\) be a positive integer. Then \(\chi\left(C P\left(n, A^{(1)}\right)\right)=|S|+1\) where \(S=\{x \in X: x\) is prime \(\}\) and hence \(C P\left(n, A^{(1)}\right)\) is semi perfcet.

Proof. By Theorem 1.1 and Theorem 3.1, \(\chi\left(C P\left(n, A^{(1)}\right)\right) \geq \omega\left(C P\left(n, A^{(1)}\right)\right)=\) \(|S|+1\). Let \(S_{1}=S \cup\{1\}\). Colour each vertex of \(S_{1}\) by a different colour. Let \(m \in X-S_{1}\) and \(p\) be the least prime divisor of \(m\). Now colour the vertex \(m\) by \(\operatorname{col}(p)\).
Let \(a, b \in X\) be two adjacent vertices in \(C P\left(n, A^{(1)}\right)\). Since \(\operatorname{gcd}(a, b)=1\), the prime factorization for \(a\) and \(b\) will contain disjoint set of primes and so \(\operatorname{col}(a) \neq \operatorname{col}(b)\). Hence \(\chi\left(C P\left(n, A^{(1)}\right)\right) \leq\left|S_{1}\right|=|S|+1\) and so \(\chi\left(C P\left(n, A^{(1)}\right)\right)=\) \(|S|+1\).

Theorem 3.3. Let \(n \geq 2\) be a positive integer. Then \(\omega\left(C P\left(n, A^{(2)}\right)\right)=|S|+2\) where \(S=\{x \in X: x\) is prime \(\}\).

Proof. Let \(S_{1}=S \cup\{1,4\}\). Since \(\operatorname{gcd}(p, q) \leq 2\) for all \(p, q \in S_{1},<S_{1}>\) is a complete subgraph of \(C P\left(n, A^{(2)}\right)\). Suppose there exists a maximal complete subgraph \(<S_{2}>\) such that \(\left|S_{2}\right|>\left|S_{1}\right|\). Then there exists a composite number \(v \in S_{2}\).
Case(i): Suppose \(S_{2}\) contains composite numbers only of the form \(x=2^{a}, a \geq\) 2. Then \(v=2^{\alpha}\) for some \(\alpha \geq 2\). Since \(\left|S_{2}\right|>\left|S_{1}\right|\) and by the definition of \(S_{1}\), \(S_{2}\) contains another composite number \(w\) such that \(w=2^{\beta}\) such that \(\beta \geq 2\) and \(\alpha \neq \beta\). Now \(\operatorname{gcd}(v, w) \geq 4\), a contradiction to \(S_{2}\) is complete.
Case(ii): Suppose \(v=v_{1}^{a_{1}} v_{2}^{a_{2}} \ldots v_{r}^{a_{r}}, v_{i}^{\prime} s\) are prime such that \(v_{1} \neq 2\) and \(a_{i} \geq 1\). Let \(Y=\left\{v_{1}^{b_{1}} v_{2}^{b_{2}} \ldots v_{r}^{b_{r}}: v_{i} \neq 2,1 \leq b_{i} \leq a_{i}\right.\) and \(\left.1 \leq i \leq r\right\}-\{v\}\).
Suppose \(x \in Y \cap S_{2}\). Then \(\operatorname{gcd}(x, v)=x>2\), a contradiction to the fact that \(<S_{2}>\) is complete. Hence \(Y \cap S_{2}=\emptyset\). Therefore \(\operatorname{gcd}\left(v_{i}, y\right)=1\) for all \(y \in S_{2}\). In particular, \(\operatorname{gcd}\left(v_{1}, y\right)=1\) for all \(y \in S_{2}\). Thus \(<S_{2} \cup\left\{v_{1}\right\}>\) is a complete subgraph of \(C P\left(n, A^{(2)}\right)\), which properly contains \(S_{2}\), a contradiction to the maximality of \(S_{2}\). Hence \(\omega\left(C P\left(n, A^{(2)}\right)\right)=|S|+2\).

Theorem 3.4. Let \(n \geq 2\) be a positive integer. Then \(\chi\left(C P\left(n, A^{(2)}\right)\right)=|S|+2\) where \(S=\{x \in X: x\) is prime \(\}\) and hence \(C P\left(n, A^{(2)}\right)\) is semi perfect.

Proof. By Theorem 1.1 and Theorem 3.3, \(\chi\left(C P\left(n, A^{(2)}\right)\right) \geq \omega\left(C P\left(n, A^{(2)}\right)\right)=\) \(|S|+2\). Let \(S_{1}=S \cup\{1,4\}\). Colour each vertex of \(S_{1}\) by a different colour. Let
\(m \in X-S_{1}\). If \(m=2^{\alpha}, \alpha \geq 3\), then colour the vertex \(m\) by \(\operatorname{col}(4)\). Otherwise, let \(p \neq 2\) be the least prime divisor of \(m\) and colour the vertex \(m\) by \(\operatorname{col}(p)\). Let \(a, b \in X\) be two adjacent vertices in \(C P\left(n, A^{(2)}\right)\). Then \(\operatorname{gcd}(a, b)=1\) or 2 . Case(i): If \(\operatorname{gcd}(a, b)=1\), then \(a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}\) and \(b=q_{1}^{b_{1}} q_{2}^{b_{2}} \ldots q_{t}^{b_{t}}\) such that \(p_{i}^{\prime} s\) and \(q_{j}^{\prime} s\) are primes, \(p_{i} \neq q_{j}\).
Subcase(i): Suppose \(a=2^{\alpha}, \alpha \geq 2\). Then 2 is not the least prime divisor of \(b\) and \(\operatorname{col}(a)=\operatorname{col}(4)\). Hence \(\operatorname{col}(a) \neq \operatorname{col}(b)\).
Subcase(ii): Suppose \(b=2^{\alpha}, \alpha \geq 2\). Then 2 is not the least prime divisor of \(a\) and \(\operatorname{col}(b)=\operatorname{col}(4)\). Hence \(\operatorname{col}(a) \neq \operatorname{col}(b)\).
Subcase(iii): Suppose \(a \neq 2^{\alpha}\) and \(b \neq 2^{\beta}\) where \(\alpha, \beta \geq 2\) and \(\alpha \neq \beta\). Then the least prime divisors of \(a\) and \(b\) are different and hence \(a\) and \(b\) have different colours.
Case(ii): If \(\operatorname{gcd}(a, b)=2\), then \(a=2\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}\right)\) and \(b=2\left(q_{1}^{b_{1}} q_{2}^{b_{2}} \ldots q_{t}^{b_{t}}\right)\) such that \(p_{i}^{\prime} s\) and \(q_{j}^{\prime} s\) are primes, \(p_{i} \neq q_{j}\).
Subcase(i): Suppose \(a=2^{\alpha}, \alpha \geq 2\). Then \(\operatorname{col}(b) \neq \operatorname{col}(4)\) and \(\operatorname{col}(a)=\operatorname{col}(4)\). Hence \(\operatorname{col}(a) \neq \operatorname{col}(b)\).
Subcase(ii): Suppose \(b=2^{\alpha}, \alpha \geq 2\). Then \(\operatorname{col}(a) \neq \operatorname{col}(4)\) and \(\operatorname{col}(b)=\) \(\operatorname{col}(4)\). Hence \(\operatorname{col}(a) \neq \operatorname{col}(b)\).
Subcase(iii): Suppose \(a \neq 2^{\alpha}\) and \(b \neq 2^{\beta}, \alpha, \beta \geq 2\) and \(\alpha \neq \beta\). Then the least prime divisor (greater than 2) of \(a\) and \(b\) are different and hence \(a\) and \(b\) have different colours.
Hence \(\chi\left(C P\left(n, A^{(2)}\right)\right) \leq\left|S_{1}\right|=|S|+2\) and so \(\chi\left(C P\left(n, A^{(2)}\right)\right)=|S|+2\).
Now we obtain a class of graphs which are semi-perfect.
Theorem 3.5. Let \(g\) be the number of primes \(p\) such that \(1 \leq p \leq n\) and \(p^{2} \leq n\). For \(1 \leq k \leq g, C P\left(n, C^{(k)}\right)\) is semi-perfect.

Proof. Define \(S^{(1)}=S \cup\{1\}\) and \(S^{(i)}=S^{(i-1)} \cup\left\{p_{1} \cdot p_{i-1}, p_{2} \cdot p_{i-1}, \ldots\right.\), \(\left.p_{i-1} . p_{i-1}\right\}\) for \(2 \leq i \leq k\).
Claim 1: \(\chi\left(C P\left(n, C^{(k)}\right)\right) \leq\left|S^{(k)}\right|\). Initially color all the vertices of \(S^{(k)}\) by \(\left|S^{(k)}\right|\) different colors. Let \(v \in X-S^{(k)}\).
Case A: If \(v\) has at least one divisor of the form \(p_{i}^{2}\), for some \(p_{i} \in C^{(k)}\) and \(v\) has no prime divisor outside \(C^{(k)}\). Choose the least among such divisors and let it be \(p_{i}\). Now assign for \(v\) the color \(\operatorname{col}\left(p_{i}^{2}\right)\).
Case B: If \(v\) has at least two distinct prime divisors in \(C^{(k)}\) and \(v\) has no prime divisor outside \(C^{(k)}\). Let \(p_{i}, p_{j}\) be the least prime divisors of \(v\) such that \(p_{i}, p_{j} \in C^{(k)}\). Now assign the color \(\operatorname{col}\left(p_{i} . p_{j}\right)\) for \(v\).
Case C: If \(v\) has one prime divisor which is not in \(C^{(k)}\). Let \(q_{i}\) be the least prime divisor of \(v\) such that \(q_{i} \notin C^{(k)}\). Take \(\operatorname{col}(v)\) as \(\operatorname{col}\left(q_{i}\right)\). Let \((a, b) \in E(G)\). Then \(\operatorname{gcd}(a, b)=1\) or \(p_{i}\) for some \(p_{i} \in C^{(k)}\).
Case(i): If \(a\) and \(b\) are of different types, then it is easy to verify that \(\operatorname{col}(a) \neq \operatorname{col}(b)\).
Case(ii): If \(a\) and \(b\) are of Case A. Let \(p_{i}\) be the least divisor of \(a\) such that
\(p_{i} \in C^{(k)}\) and \(p_{i}^{2}\) divides \(a\). Then \(\operatorname{col}(a)=\operatorname{col}\left(p_{i}^{2}\right)\). Similarly for \(b\) also there exists a least divisor \(p_{j}\), for some \(1 \leq j \leq k\) such that \(p_{j} \in C^{(k)}\) and \(p_{j}^{2}\) divides \(b\). Then \(\operatorname{col}(b)=\operatorname{col}\left(p_{j}^{2}\right)\). Since \(\operatorname{gcd}(a, b)=1\) or \(p_{i}\) for some \(p_{i} \in C^{(k)}\), we have \(p_{i} \neq p_{j}\). Hence \(\operatorname{col}(a) \neq \operatorname{col}(b)\).
Case(iii): If \(a\) and \(b\) are of Case B. Let \(p_{a}, p_{b}\) be the least prime divisors of \(a\) such that \(p_{a}, p_{b} \in C^{(k)}\) and let \(p_{c}, p_{d}\) be the least prime divisors of \(b\) such that \(p_{c}, p_{d} \in C^{(k)}\). Then \(\operatorname{col}(a)=\operatorname{col}\left(p_{a} . p_{b}\right)\) and \(\operatorname{col}(b)=\operatorname{col}\left(p_{c} \cdot p_{d}\right)\). Since \(\operatorname{gcd}(a, b)=1\) or \(p_{i}\) for some \(p_{i} \in C^{(k)}\), we have \(p_{a} . p_{b} \neq p_{c} . p_{d}\). Hence \(\operatorname{col}(a) \neq \operatorname{col}(b)\).
Case(iv): If \(a\) and \(b\) are of Case C. Let \(q_{i}, q_{j}\) be the least prime divisor of \(a\) and \(b\) respectively such that \(q_{i}, q_{j} \notin C^{(k)}\). Then \(\operatorname{col}(a)=\operatorname{col}\left(q_{i}\right)\) and \(\operatorname{col}(b)=\operatorname{col}\left(q_{j}\right)\). Since \(\operatorname{gcd}(a, b)=1\) or \(p_{i}\) for some \(p_{i} \in C^{(k)}\), we have \(q_{i} \neq q_{j}\). Hence \(\operatorname{col}(a) \neq \operatorname{col}(b)\).
Claim 2: Now we claim that \(\omega\left(C P\left(n, C^{(k)}\right)\right) \geq\left|S^{(k)}\right|\). For this we prove that any two vertices of \(S^{(k)}\) are adjacent. Let \(a, b \in S^{(k)}\) with \(a \neq b\). The set \(S^{(k)}\) can be written as \(S^{(k)}=S \cup\{1\} \cup B\) where \(B=\left\{p_{i} . p_{j}: p_{i}, p_{j} \in C^{(k)} \cap S\right\}\).
Case(i): Suppose \(a=1\) or \(b=1\). Then \(\operatorname{gcd}(a, b)=1\) and hence \(a\) and \(b\) are adjacent.
Case(ii): If \(a, b \in S\), then \(\operatorname{gcd}(a, b)=1\) and hence \(a\) and \(b\) are adjacent.
Case(iii): If \(a, b \in B\). Then \(a=q_{1} \times q_{2}\) and \(b=q_{3} \times q_{4}\), where \(q_{1}, q_{2}, q_{3}, q_{4} \in\) \(C^{(k)} \cap S\). since \(a \neq b\), we have \(q_{1} \times q_{2} \neq q_{3} \times q_{4}\) and so \(g c d(a, b)=q_{1}\) or \(q_{2}\) or \(q_{3}\) or \(q_{4}\) or 1 . This means that \(\operatorname{gcd}(a, b) \in C^{(k)}\) and so \(a\) and \(b\) are adjacent.
Case(iv): If \(a \in S, b \in B\). Then \(a=p, p \in S\) and \(b=q_{1} \times q_{2}\) where \(q_{1}, q_{2} \in C^{(k)} \cap S\). Then \(\operatorname{gcd}(a, b)=1\) or \(q_{1}\) or \(q_{2}\) where \(q_{1}, q_{2} \in C^{(k)}\). Hence \(a\) and \(b\) are adjacent.
Then by Theorem 1.1, we have \(\left|S^{(k)}\right| \leq \omega\left(H^{(k)}\right) \leq \chi\left(H^{(k)}\right) \leq\left|S^{(k)}\right|\).
\(\chi\left(H^{(k)}\right)=\omega\left(H^{(k)}\right)=\left|S^{(k)}\right|\).

\section*{Acknowledgments}

The second, third and fourth authors thank the University Grants Commission, Government of India for the financial assistance provided through UGC-SAP(DRS-I) programme of Department of Mathematics, Manonmaniam Sundaranar University.

\section*{References}
1. G. Chartrand, Ping Zhang, Introduction to Graph Theorey, Tata McGraw-Hill, 2005.
2. M. Foroudi Ghasemabadi, N. Ahanjideh, Characterizations of the simple group \(D_{n}(3)\) by prime graph and spectrum, Iranian Journal of Mathematical Sciences and Informatics, 7(1), (2012), 91-106.
3. G. N. Sarkozy, Complete tripartite subgraphs in the coprime graph of integers, Discrete Math., 202, (1999), 227-238
4. P. Erdos, G. N. Sarkozy, On Cycles in the Coprime graph of integers, Electron. J. Combin., 4 (2), (1997), \#R8.```

