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Abstract. Paul Erdos defined the concept of coprime graph and studied

about cycles in coprime graphs. In this paper this concept is generalized

and a new graph called Generalized coprime graph is introduced. Having

observed certain basic properties of the new graph it is proved that the

chromatic number and the clique number of some generalized coprime

graphs are equal.
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1. Introduction

In 1996, Paul Erdos and Gabor N. Sarkozy [4] have introduced the co-

prime graph of integers and studied about cycles in coprime graph of integers.
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Further Gabor N. Sarkozy [3] has studied about the complete tripartite sub-

graphs in the coprime graph of integers. The coprime graph on the integer

set X = {1, 2, . . . , n}(n is a positive integer) is G = (V,E) where V = X and

E = {(x, y) : x, y ∈ X and gcd(x, y) = 1}. Note that coprime graphs are

different from prime graphs [2]. Here, we generalize this definition of coprime

graph and define generalized coprime graph on a positive integer n and A ⊆ X
as follows: Let n ≥ 2, X = {1, 2, . . . , n} and A ⊆ X. Then the generalized

coprime graph on n and A, denoted by CP (n,A) = (V,E), where V = X and

E = {(x, y) : x, y ∈ X and gcd(x, y) ∈ A}. Note that coprime graph need not

be a subgraph of a generalized coprime graph. Let G be a graph. The girth

of G, denoted by g(G), is the length of a shortest cycle in G. The circumfer-

ence c(G) of G is the length of a cycle of maximum length in G. The chromatic

number χ(G) of G is defined to be the minimum number of colours requires

to colour the vertices of G in such a way that no two adjacent vertices have

the same colour. The clique number ω(G) of G is the order of the maximum

complete subgraph of G. A graph G is said to be perfect if the chromatic

number and the clique number are same for every induced subgraph of G. In

generalization of this, a graph G is said to be semi-perfect if the chromatic

number and the clique number of G are same. For basic definitions in graph

theory, we follow [1].

Throughout this paper we have follow the following notations:

Let X = {1, 2, . . . , n}. For any k with 1 ≤ k ≤ bn2 c, let CP (n,A(k)) be the gen-

eralized coprime graph corresponding to A(k) = {1, 2, . . . , k} and CP (n,B(k))

be the generalized coprime graph corresponding to B(k) = {xk ∈ X : x ∈ N
and xk ≤ bn2 c}. Let S be the set of all primes in X and S1 = {p ∈ S : p2 ≤ n}.
Without loss of generality we can assume that S1 = {p1, p2, . . . , pg} with

1 < p1 < p2 < . . . < pg. For 1 ≤ k ≤ g, let C(k) = {p1, p2, . . . , pk} ∪ {1}
and CP (n,C(k)) be the generalized coprime graph corresponding to C(k) for

1 ≤ k ≤ g. Note that coprime graph is a subgraph of CP (n,A(k)), CP (n,B(k))

and CP (n,C(k)), special classes of generalized coprime graphs. We use the

following result in sequel.

Theorem 1.1. [1] For every graph G of order n, χ(G) ≥ ω(G) and χ(G) ≥
n

β(G) .

2. Properties of Generalized Coprime graphs

In this section, certain basic properties of generalized coprime graphs are

obtained. Since K3 is a subgraph of CP (n,A(k)) for all k ≥ 3, we have the

following.

Lemma 2.1. Let n ≥ 3 be an integer. Then g(CP (n,A(k))) is 3 for all k ≥ 3.

Since gcd(x, x+ 1) = 1 for all x ∈ X −{n} and gcd(1, n) = 1, one can prove

the following.
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Lemma 2.2. Let n ≥ 3 be an integer. For all k, CP (n,A(k)) is Hamiltonian.

Lemma 2.3. Let n and k be integers such that 1 ≤ k ≤ bn2 c. Then CP (n,A(k))

is bipartite if and only if n = 2.

Proof. Suppose CP (n,A(k)) is bipartite graph and n ≥ 3, then by Lemma 2.1,

CP (n,A(k)) contains an odd cycle C3 which is a contradiction to CP (n,A(k))

is bipartite. Hence n = 2. Converse is trivial. �

From the definition of generalized coprime graph, one can observe the fol-

lowing:

Lemma 2.4. If A ⊆ B, then CP (n,A) is a subgraph of CP (n,B).

Lemma 2.5. Let n ≥ 2 be an integer. Then CP (n,A(k)) is complete if and

only if k = bn2 c.

Proof. Suppose CP (n,A(k)) is complete and k < bn2 c. Take x = bn2 c. Then

x, 2x ∈ X and gcd(x, 2x) = x = bn2 c /∈ A(k). Therefore x and 2x are non-

adjacent in CP (n,A(k)), a contradiction to CP (n,A(k)) is complete. Con-

versely, assume that k = bn2 c. Since gcd(a, b) ≤ bn2 c for all a, b ∈ X, one can

conclude that CP (n,A(k)) is complete. �

In the following theorem we prove that Kn, the complete graph on n vertices

is the union of generalized coprime graphs.

Lemma 2.6. Let n ≥ 3 and S = {k : k is prime and k ≤ bn2 c}. Then

Kn = H ∪ CP (n,A(1)) where H =
⋃
k∈S CP (n,B(k)).

Proof. Obviously Kn ⊇ H ∪G(1). Let x, y ∈ X and gcd(x, y) = d.

Case(i): Suppose d = 1. Then x and y are adjacent in CP (n,A(1)).

Case(ii): Suppose d is a prime. Then d ∈ S and hence x and y are adjacent

in CP (n,B(d)) ⊆ H.

Case (iii): Suppose d = pα1
1 pα2

2 . . . pαr
r where p′is are primes and αi ≥ 1. Then

d = p1.s where s = pα1−1
1 pα2

2 . . . pαr
r . Hence d ∈ B(p1), p1 ∈ S and so x and y

are adjacent in CP (n,B(p1)) ⊆ H. Hence Kn ⊆ H ∪ CP (n,A(1)). �

3. Semi-Perfect Graphs

In this section, we find the clique number and the chromatic number for

CP (n,A(1)), CP (n,A(2)) and CP (n,C(k)). We also prove that CP (n,A(1)),

CP (n,A(2)) and CP (n,C(k)) are semi-perfect.

Theorem 3.1. Let n ≥ 2 be a positive integer. Then ω(CP (n,A(1))) = |S|+1

where S = {x ∈ X : x is prime}.

Proof. Let S1 = S ∪ {1}. Since gcd(p, q) = 1 for all p, q ∈ S1, < S1 > is a

complete subgraph of G(1) with |S|+ 1 vertices.

Suppose there exists a maximal complete subgraph < S2 > of CP (n,A(1)) such
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that |S2| > |S1|. Then S2 must contains at least one composite number v such

that v = va11 va22 . . . varr , v′is are prime and vi ≥ 1. Let Y be the set of all proper

divisors of v. Suppose x ∈ Y ∩ S2. Then gcd(x, v) = x > 1 and so x and v are

not adjacent in < S2 >, a contradiction to the fact that < S2 > is complete.

Hence Y ∩ S2 = ∅. Therefore gcd(vi, y) = 1 for all y ∈ S2. In particular,

gcd(v1, y) = 1 for all y ∈ S2. Thus < S2 ∪ {v1} > is a complete subgraph of

CP (n,A(1)), which properly contains S2, a contradiction to the maximality of

S2. Hence ω(CP (n,A(1))) = |S|+ 1. �

Theorem 3.2. Let n ≥ 2 be a positive integer. Then χ(CP (n,A(1))) = |S|+ 1

where S = {x ∈ X : x is prime} and hence CP (n,A(1)) is semi perfcet.

Proof. By Theorem 1.1 and Theorem 3.1, χ(CP (n,A(1))) ≥ ω(CP (n,A(1))) =

|S|+ 1. Let S1 = S ∪ {1}. Colour each vertex of S1 by a different colour. Let

m ∈ X − S1 and p be the least prime divisor of m. Now colour the vertex m

by col(p).

Let a, b ∈ X be two adjacent vertices in CP (n,A(1)). Since gcd(a, b) = 1,

the prime factorization for a and b will contain disjoint set of primes and so

col(a) 6= col(b). Hence χ(CP (n,A(1))) ≤ |S1| = |S|+1 and so χ(CP (n,A(1))) =

|S|+ 1. �

Theorem 3.3. Let n ≥ 2 be a positive integer. Then ω(CP (n,A(2))) = |S|+2

where S = {x ∈ X : x is prime}.

Proof. Let S1 = S ∪ {1, 4}. Since gcd(p, q) ≤ 2 for all p, q ∈ S1, < S1 > is a

complete subgraph of CP (n,A(2)). Suppose there exists a maximal complete

subgraph < S2 > such that |S2| > |S1|. Then there exists a composite number

v ∈ S2.

Case(i): Suppose S2 contains composite numbers only of the form x = 2a, a ≥
2. Then v = 2α for some α ≥ 2. Since |S2| > |S1| and by the definition of S1,

S2 contains another composite number w such that w = 2β such that β ≥ 2

and α 6= β. Now gcd(v, w) ≥ 4, a contradiction to S2 is complete.

Case(ii): Suppose v = va11 va22 . . . varr , v′is are prime such that v1 6= 2 and

ai ≥ 1. Let Y = {vb11 v
b2
2 . . . vbrr : vi 6= 2, 1 ≤ bi ≤ ai and 1 ≤ i ≤ r} − {v}.

Suppose x ∈ Y ∩ S2. Then gcd(x, v) = x > 2, a contradiction to the fact that

< S2 > is complete. Hence Y ∩ S2 = ∅. Therefore gcd(vi, y) = 1 for all y ∈ S2.

In particular, gcd(v1, y) = 1 for all y ∈ S2. Thus < S2 ∪ {v1} > is a complete

subgraph of CP (n,A(2)), which properly contains S2, a contradiction to the

maximality of S2. Hence ω(CP (n,A(2))) = |S|+ 2. �

Theorem 3.4. Let n ≥ 2 be a positive integer. Then χ(CP (n,A(2))) = |S|+ 2

where S = {x ∈ X : x is prime} and hence CP (n,A(2)) is semi perfect.

Proof. By Theorem 1.1 and Theorem 3.3, χ(CP (n,A(2))) ≥ ω(CP (n,A(2))) =

|S|+2. Let S1 = S∪{1, 4}. Colour each vertex of S1 by a different colour. Let
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m ∈ X − S1. If m = 2α, α ≥ 3, then colour the vertex m by col(4). Otherwise,

let p 6= 2 be the least prime divisor of m and colour the vertex m by col(p).

Let a, b ∈ X be two adjacent vertices in CP (n,A(2)). Then gcd(a, b) = 1 or 2.

Case(i): If gcd(a, b) = 1, then a = pa11 p
a2
2 . . . parr and b = qb11 q

b2
2 . . . qbtt such

that p′is and q′js are primes, pi 6= qj .

Subcase(i): Suppose a = 2α, α ≥ 2. Then 2 is not the least prime divisor of

b and col(a) = col(4). Hence col(a) 6= col(b).

Subcase(ii): Suppose b = 2α, α ≥ 2. Then 2 is not the least prime divisor of

a and col(b) = col(4). Hence col(a) 6= col(b).

Subcase(iii): Suppose a 6= 2α and b 6= 2β where α, β ≥ 2 and α 6= β. Then

the least prime divisors of a and b are different and hence a and b have different

colours.

Case(ii): If gcd(a, b) = 2, then a = 2(pa11 p
a2
2 . . . parr ) and b = 2(qb11 q

b2
2 . . . qbtt )

such that p′is and q′js are primes, pi 6= qj .

Subcase(i): Suppose a = 2α, α ≥ 2. Then col(b) 6= col(4) and col(a) = col(4).

Hence col(a) 6= col(b).

Subcase(ii): Suppose b = 2α, α ≥ 2. Then col(a) 6= col(4) and col(b) =

col(4). Hence col(a) 6= col(b).

Subcase(iii): Suppose a 6= 2α and b 6= 2β , α, β ≥ 2 and α 6= β. Then the

least prime divisor (greater than 2) of a and b are different and hence a and b

have different colours.

Hence χ(CP (n,A(2))) ≤ |S1| = |S|+ 2 and so χ(CP (n,A(2))) = |S|+ 2. �

Now we obtain a class of graphs which are semi-perfect.

Theorem 3.5. Let g be the number of primes p such that 1 ≤ p ≤ n and

p2 ≤ n. For 1 ≤ k ≤ g, CP (n,C(k)) is semi-perfect.

Proof. Define S(1) = S ∪ {1} and S(i) = S(i−1) ∪ {p1.pi−1, p2.pi−1, . . . ,
pi−1.pi−1} for 2 ≤ i ≤ k.

Claim 1: χ(CP (n,C(k))) ≤ |S(k)|. Initially color all the vertices of S(k) by

|S(k)| different colors. Let v ∈ X − S(k).

Case A: If v has at least one divisor of the form p2i , for some pi ∈ C(k) and

v has no prime divisor outside C(k). Choose the least among such divisors and

let it be pi. Now assign for v the color col(p2i ).

Case B: If v has at least two distinct prime divisors in C(k) and v has no

prime divisor outside C(k). Let pi, pj be the least prime divisors of v such that

pi, pj ∈ C(k). Now assign the color col(pi.pj) for v.

Case C: If v has one prime divisor which is not in C(k). Let qi be the least

prime divisor of v such that qi /∈ C(k). Take col(v) as col(qi). Let (a, b) ∈ E(G).

Then gcd(a, b) = 1 or pi for some pi ∈ C(k).

Case(i): If a and b are of different types, then it is easy to verify that

col(a) 6= col(b).

Case(ii): If a and b are of Case A. Let pi be the least divisor of a such that
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pi ∈ C(k) and p2i divides a. Then col(a) = col(p2i ). Similarly for b also there

exists a least divisor pj , for some 1 ≤ j ≤ k such that pj ∈ C(k) and p2j divides

b. Then col(b) = col(p2j ). Since gcd(a, b) = 1 or pi for some pi ∈ C(k), we have

pi 6= pj . Hence col(a) 6= col(b).

Case(iii): If a and b are of Case B. Let pa, pb be the least prime divisors

of a such that pa, pb ∈ C(k) and let pc, pd be the least prime divisors of b

such that pc, pd ∈ C(k). Then col(a) = col(pa.pb) and col(b) = col(pc.pd).

Since gcd(a, b) = 1 or pi for some pi ∈ C(k), we have pa.pb 6= pc.pd. Hence

col(a) 6= col(b).

Case(iv): If a and b are of Case C. Let qi, qj be the least prime divisor

of a and b respectively such that qi, qj /∈ C(k). Then col(a) = col(qi) and

col(b) = col(qj). Since gcd(a, b) = 1 or pi for some pi ∈ C(k), we have qi 6= qj .

Hence col(a) 6= col(b).

Claim 2: Now we claim that ω(CP (n,C(k))) ≥ |S(k)|. For this we prove that

any two vertices of S(k) are adjacent. Let a, b ∈ S(k) with a 6= b. The set S(k)

can be written as S(k) = S ∪ {1} ∪B where B = {pi.pj : pi, pj ∈ C(k) ∩ S}.
Case(i): Suppose a = 1 or b = 1. Then gcd(a, b) = 1 and hence a and b are

adjacent.

Case(ii): If a, b ∈ S, then gcd(a, b) = 1 and hence a and b are adjacent.

Case(iii): If a, b ∈ B. Then a = q1 × q2 and b = q3 × q4, where q1, q2, q3, q4 ∈
C(k) ∩ S. since a 6= b, we have q1 × q2 6= q3 × q4 and so gcd(a, b) = q1 or q2 or

q3 or q4 or 1. This means that gcd(a, b) ∈ C(k) and so a and b are adjacent.

Case(iv): If a ∈ S, b ∈ B. Then a = p, p ∈ S and b = q1 × q2 where

q1, q2 ∈ C(k) ∩ S. Then gcd(a, b) = 1 or q1 or q2 where q1, q2 ∈ C(k). Hence a

and b are adjacent.

Then by Theorem 1.1, we have |S(k)| ≤ ω(H(k)) ≤ χ(H(k)) ≤ |S(k)|.
χ(H(k)) = ω(H(k)) = |S(k)|. �
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