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1. Introduction

For a finite group G, we denote by π(G) the set of all prime divisors of |G|
and the spectrum ω(G) of G is the set of element orders of G. The prime graph

(or Gruenberg-Kegel graph ) GK(G) of G is an undirected and simple graph

with vertex set π(G) where two distinct vertices p and q are adjacent by an edge

(briefly, adjacent) if pq ∈ ω(G), in which case, we write (p, q) ∈ GK(G). The

concept of prime graph arose during the investigation of certain cohomological

questions associated with integral representations of finite groups. It has been

proved that for every finite group G the number of connected components of
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GK(G) is at most 6 [15, 20].

The group G is said to be characterizable by spectrum, if for every finite group

H , the equality ω(G) = ω(H) implies the group isomorphism G ∼= H . Since

the knowledge of ω(G) determines GK(G), alongside the above definition, in

[10] the same concept related to the prime graph has been introduced. A finite

group G is called characterizable by prime graph if H ∼= G for every finite group

H with GK(H) = GK(G). In these both characterizations, when the number

of connected components of prime graph increases, dealing with the groups gets

much easier. So, the recognition problem by prime graph has been considered

for many simple groups with more than two prime graph components (for a

survey see the references of [5]). In [21], as the first example of finite groups

with two prime graph components, Zavarnitsine proved that G2(7) is charac-

terizable by its prime graph. Moreover, by mentioning that it is not easy to

find examples of groups which are characterizable by prime graph and their

prime graphs are connected, he put forward the following open problem:

Open problem. Is there a finite group characterizable by its prime graph

whose prime graph is connected?

The simple group L16(2) is the first positive answer to this problem [12, 22].

Except G2(7), the groups Bp(3) and Cp(3), where p > 3 is an odd prime [17],

and 2Dn(3), where n ≥ 5 is an odd number and n = 2m + 1 is a non-prime or

n �= 2m + 1 is a prime number [6], are the only groups with two prime graph

components, which their recognizability by prime graph have been solved thor-

oughly. Also, except L16(2), the group 2Dn(3), where n ≥ 5 and n �= 2m + 1

is an odd non-prime [6], is the only positive answer to Zavarnitsine’s problem,

thus far. In this paper, we will consider the characterizability of finite simple

group Dn(3) by prime graph. Since GK(Dn(3)), where n is even, has at most

two connected components, we actually find another infinite series of charac-

terizable finite simple groups by prime graph which either are a positive answer

to Zavarnitsine’s problem or have two prime graph components. In fact, we

prove the following main theorem:

Main theorem. Let n ≥ 6 be an even number. The simple group Dn(3) is

characterizable by prime graph. Moreoever, ifG is a finite group withGK(G) =

GK(D4(3)), then G ∼= D4(3), B3(3), C3(3) or G/O2(G) ∼= Aut(2B2(8)).

In [9], the recognition problem of the group Dn(3) by its spectrum, where

its prime graph is disconnected, has been considered. As the first consequence

of the main theorem, the characterizability of the group Dn(3) by spectrum,

where n ≥ 6 is an even number, is obtained. It is worth to mention that our
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proof for the special case n− 1 is a prime number, is different from [9].

The non-commuting graph of a nonabelian group G, denoted by ΓG is the

graph with vertex set G \ Z(G), where two distinct vertices x and y are ad-

jacent by an edge if xy �= yx. Problem 16.1 in the Kourovka notebook [13] is

AAM’s conjecture, which says simple groups are determined uniquely by the

non-commuting graph. This conjecture is valid for all non-abelian finite simple

groups with disconnected prime graph (for examples see paper by Darafsheh

[4] and references quoted in that paper), while this conjecture is open yet for

finite simple groups with connected prime graph. As a prominent corollary of

the main theorem, the validity of the AAM’s conjecture can be obtained for

the groups under study, as well.

2. Notation and preliminary results

Throughout this paper, we use the following notation: By [x] we denote the

integer part of x and by gcd(m,n) we denote the greatest common divisor of m

and n. The notation for groups of Lie type is according to [3] and sometimes

for abbreviation, we write Aε
n(q) and Dε

n(q), where ε ∈ {+,−}, and A+
n (q) =

An(q), A
−
n (q) =

2An(q), D
+
n (q) = Dn(q), D

−
n (q) =

2Dn(q).

Also, we use the following definitions and notation related to GK(G): A set

of vertices of a graph is called a coclique (or independent), if its elements are

pairwise nonadjacent. We denote by ρ(G) and ρ(r,G) a coclique of maximal size

in GK(G) and a coclique of maximal size, containing r, in GK(G), respectively.

We put t(G) = |ρ(G)| and t(r,G) = |ρ(r,G)|. Also, for an integer n, by ν(n)

and η(n) we denote the following functions:

ν(n) =

⎧⎨
⎩

n if n ≡ 0 (mod 4);
n
2 if n ≡ 2 (mod 4);

2n if n ≡ 1 (mod 2).

, η(n) =

{
n if n is odd;
n
2 otherwise.

All further unexplained notation are standard and refer to [3], for example.

For a finite group G, with t(G) ≥ 3 and t(2, G) ≥ 2, Vasil’ev and Gorshkov

have proved the following theorem:

Lemma 2.1. [18, Theorem 1] Let G be a finite group with t(G) ≥ 3 and

t(2, G) ≥ 2. Then the following hold:

(1) There exists a finite nonabelian simple group S such that S ≤ Ḡ =

G/K ≤ Aut(S) for the maximal normal soluble subgroup K of G.

(2) For every independent subset ρ of π(G) with |ρ| ≥ 3 at most one prime

in ρ divides the product |K|.|Ḡ/S|. In particular, t(S) ≥ t(G)− 1.

(3) One of the following holds:
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(a) every prime r ∈ π(G) nonadjacent to 2 in GK(G) does not divide

the product |K|.|Ḡ/S|; in particular, t(2, S) ≥ t(2, G);

(b) there exists a prime r ∈ π(K) nonadjacent to 2 in GK(G); in

which case t(G) = 3, t(2, G) = 2, and S ∼= A7 or A1(q) for some

odd q.

Let s be a prime and let m be a natural number. The s-part of m is denoted

by ms, i.e., ms = st if st | m and st+1 � m. If q is a natural number, r is an odd

prime and gcd(r, q) = 1, then by e(r, q) we denote the smallest natural number

m such that qm ≡ 1 (mod r). Obviously if qn ≡ 1 (mod r), then e(r, q) | n.
Also, by Fermat’s little theorem it follows that e(r, q) | (r − 1). If q is odd, we

put e(2, q) = 1 if q ≡ 1 (mod 4), and e(2, q) = 2 otherwise. The prime r with

e(r, q) = m is called a primitive prime divisor of qm − 1. It is obvious that

qm − 1 can have more than one primitive prime divisor. We denote by rm(q)

some primitive prime divisor of qm − 1. If there is no ambiguous, we write rm
instead of rm(q).

The following easy lemma will be used in the proof of the main theorem:

Lemma 2.2. Let G be a finite group. If H is a subgroup of G and N is a

normal subgroup of G, then:

(1) If (p, q) ∈ GK(H), then (p, q) ∈ GK(G).

(2) If (p, q) ∈ GK(G/N), then (p, q) ∈ GK(G).

(3) If (p, q) ∈ GK(G) and {p, q} ∩ π(N) = ∅, then (p, q) ∈ GK(G/N).

(4) If G/N is a p-group and x ∈ G−N , then p | O(x).

3. Proof of the main theorem

If n ≥ 8 is an even number, then by Tables 6 and 8 in [19], we have

t(2, Dn(3)) = 2, ρ(2, Dn(3)) = {2, rn−1(3)} and t(Dn(3)) = [ 3n+1
4 ]. Hence,

if G is a finite group with GK(G) = GK(Dn(3)), then Lemma 2.1 implies

that G has a unique nonabelian composition factor S, in which case S ≤ Ḡ =

G/K ≤ Aut(S), t(S) ≥ t(Dn(3)) − 1, t(2, S) ≥ 2 and rn−1(3) ∈ π(S). One

should remark that rm(q) stands for any primitive prime divisor of qm − 1.

3.1. The group S is isomorphic to the group Dn(3). Since S is a finite

nonabelian simple group, it follows by the classification of the finite simple

groups that S is a sporadic simple group, an alternating group or a simple

group of Lie type. We will prove that S ∼= Dn(3), by a sequence of lemmas.

Lemma 3.1. S cannot be isomorphic to a sporadic simple group.

Proof. If n ≥ 18, then by Lemma 2.1(2), t(S) ≥ t(Dn(3)) − 1 ≥ 12 and

hence, the conclusion immediately holds by Table 2 in [19]. Otherwise, we

have n ∈ {8, 10, 12, 14, 16} and since rn−1(3) ∈ π(S), thus one of the numbers
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r7(3) = 1093, r9(3) = 757, r11(3) = 3851, r13(3) = 797161 or r15(3) = 4561

divides |S|. But, according to the orders of sporadic simple groups, we can

easily get a contradiction.�

Lemma 3.2. S cannot be isomorphic to an alternating group.

Proof. If S ∼= Am, where m ≥ 5, then by considering the cases n ≥ 18 and

8 ≤ n ≤ 16 separately, we get a contradiction.

Case 1. n ≥ 18. Then t(S) ≥ 12 and hence, |π(Am)| ≥ 12. Thus according

to the set π(Am), we can assume that m ≥ 37 and it implies that 19 ∈ π(S).

First, we find an upper bound for t(19, Am). If x ∈ ρ(19, Am) \ {19}, then
by Proposition 1.1 in [19], x �= 2 and x + 19 > m. Also, since x ∈ π(Am),

we conclude that x ∈ {s | s is a prime, m − 18 ≤ s ≤ m}. By an easy

computation, we can see that there are at most six integers coprime to 30

between m − 18 and m, where m ≥ 37 and hence, there exist at most six

choices for x. Thus t(19, Am) ≤ 7. Since S ≤ G/K and π(G) = π(Dn(3)), we

have π(S) ⊆ π(Dn(3)) and hence, 19 ∈ π(Dn(3)). Now we find a lower bound

for t(19, Dn(3)). Since e(19, 3) = 18, n is an even number and n ≥ 18, we can

use the set

τ = {19, rn−1, r2(n−2), rn−3, r2(n−4), rn−5, r2(n−6), rn−7, r2(n−8)}
which is a coclique of GK(Dn(3)), according to Proposition 2.4 in [19] and

hence, t(19, Dn(3)) ≥ 9. By Lemma 2.1(2) for the set ρ(19, Dn(3)), we have

|ρ(19, Dn(3))
⋂
π(Am)| ≥ t(19, Dn(3)) − 1 ≥ 8. On the other hand, since S ≤

G/K, it follows by Lemma 2.2(1,2) that |ρ(19, Dn(3))
⋂
π(Am)| ≤ t(19, Am)

and hence, 8 ≤ t(19, Am) ≤ 7, which is impossible.

Case 2. 8 ≤ n ≤ 16. We know that rn−1(3) ∈ π(Am). Thus according to

the numbers r7(3), r9(3), r11(3), r13(3) and r15(3) obtained in Lemma 3.1,

we conclude that 53 ∈ π(Am) and hence, since π(Am) ⊆ π(Dn(3)), we have

53 ∈ π(Dn(3)). But, e(53, 3) = 52. This is a contradiction, considering the

prime divisors of |Dn(3)|, where n ≤ 16.�

Lemma 3.3. S cannot be isomorphic to a finite simple group of Lie type in

characteristic different from 3.

Proof. Assume that S is isomorphic to a finite simple group of Lie type in

characteristic s, where s �= 3. We get a contradiction considering three parts

A, B and C.

Part A. n ≥ 20. In this part, since t(S) ≥ 14, by Table 9 in [19], we conclude

that S cannot be an exceptional group of Lie type. Thus S is one of the

classical groups Aε
m−1(q), D

ε
m(q), Cm(q) or Bm(q), where q = sα. We get a

contradiction case by case:
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Case 1. S ∼= Am−1(q). Set t = e(s, 3). If t is an odd number except 1,3, set

ρ = {s, r2(n−1), r2(n−2), r2(n−3), r2(n−4)}.
Since GK(G) = GK(Dn(3)), by Proposition 2.4 in [19], we can see that ρ is

a coclique of GK(G), containing s and hence, by Lemmas 2.1(2) and 2.2(1,2),

we conclude that t(s, S) ≥ |ρ| − 1. On the other hand, since t(S) ≥ 14, by

Table 8 in [19], we can assume that m ≥ 27 and hence, Table 4 in [19] implies

that t(s, S) = 3. Thus 3 ≥ |ρ| − 1 = 4, which is impossible. Also, if t is an

even number except 2,6, where t
2 is odd, then it is enough to replace ρ with the

coclique {s, rn−1, r2(n−2), rn−3, r2(n−4)} of GK(Dn(3)) and get a contradiction.

If t and t
2 are even numbers and t �= 4, then by replacing ρ with the coclique

{s, rn−1, r2(n−1), rn−3, r2(n−3)} of GK(Dn(3)) in the previous argument, we

can get a contradiction. Therefore, we should only consider different cases

for t, where t ∈ {1, 2, 3, 4, 6}. Since t = e(s, 3), by Lemma 1.4 in [19], we

can see that s ∈ {2, 5, 7, 13}. Since m ≥ 27, according to |Am−1(q)|, we

have r7(q) ∈ π(S) and if q �= 2, then r1(q) ∈ π(S). For considering the

remaining cases, first we find an upper bound for t(r1(q), S) and t(r7(q), S).

If r1(q) ∈ π(S), then Proposition 4.1 in [19] implies that t(r1(q), S) ≤ 3. We

claim that t(r7(q), S) = 7:

By Propositions 3.1(1) and 4.1 in [19], we can see that

(2, r7(q)), (r1(q), r7(q)), (s, r7(q)) ∈ GK(S).

Thus if x ∈ ρ(r7(q), S) \ {r7(q)}, then x �∈ {2, s, r1} and if e(x, sα) = l, then by

Proposition 2.1 in [19] we conclude that l + 7 > m and 7 � l. Also, according

to |S|, we have l ≤ m and hence, l ∈ {m − 6,m − 5, · · · ,m} and 7 � l. Since

m − 6,m − 5, · · · ,m are seven consecutive numbers, so 7 divides exactly one

of them and we have exactly six choices for l and hence, t(r7(q), S) = 7. If

s = 2, then since r7(2) = 127, we have 127 ∈ {r1(2α), r7(2α)} ⊆ π(S) and by

the above statements we conclude that t(127, S) ≤ 7. On the other hand, since

π(S) ⊆ π(Dn(3)), we have 127 ∈ π(Dn(3)). Also, we know that e(127, 3) = 126

and hence, according to |Dn(3)|, we conclude that n ≥ 64. Moreover, since n

is an even number, it follows by Proposition 2.4 in [19] that the set τ
⋃{127}

is a coclique of GK(Dn(3)), where τ = {ri(3) | n − 15 ≤ i ≤ n − 1, i ≡ 1

(mod 2)}⋃{r2i(3) | n − 16 ≤ i ≤ n − 2, i ≡ 0 (mod 2)}. Since e(127, 3) =

126 = 2 × 63, according to the choice of τ , we have 127 �∈ τ and hence,

t(127, Dn(3)) ≥ 17. Also, since S ≤ G/K, it follows by Lemma 2.2(1,2) that

|ρ(127, Dn(3))
⋂
π(S)| ≤ t(127, S). By Lemma 2.1(2) for ρ(127, Dn(3)), we

have 7 ≥ t(127, S) ≥ t(127, Dn(3)) − 1 ≥ 16, which is impossible. It easy to

check that r7(5) = 19531 and r7(13) = 5229043 and also, e(19531, 3) = 6510

and e(5229043, 3) = 249002. Thus Proposition 2.4 in [19] implies that the

set τ
⋃{r7(s)} is a coclique of GK(Dn(3)) and hence, t(r7(s), Dn(3)) ≥ 17,

where s ∈ {5, 13} and as in the previous argument we can get a contradiction.
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If s = 7, then r7(7) = 4733 and as in the case s = 2, we conclude that

t(4733, S) ≤ 7 and 4733 ∈ π(Dn(3)). Also, since e(4733, 3) = 676, Proposition

2.4 in [19] implies that the set τ ′
⋃{4733}, where τ ′ = {ri(3), r2i(3) | n− 15 ≤

i ≤ n − 1, i ≡ 1 (mod 2)} is a coclique of GK(Dn(3)). Moreover, since

e(4733, 3) = 676 = 2 × 338, according to the choice of τ ′, it is obvious that

4733 �∈ τ ′ and hence, t(4733, Dn(3)) ≥ 17. Now as in the previous arguments,

we can get a contradiction.

Case 2. S ∼= 2Am−1(q). Since t(S) ≥ 14, by Table 8 in [19] we can see that

m ≥ 27 and hence, t(s, S) = 3, by Table 4 in [19]. Thus as in Case 1, it is

enough to consider s ∈ {2, 5, 7, 13}. Since m ≥ 27, according to |2Am−1(q)|, we
have r7(q) ∈ π(S) and if q �= 2, then r1(q) ∈ π(S). We want to find an upper

bound for t(r7(q), S). Since m ≥ 27, by Propositions 3.1(2) and 4.2 in [19], we

have

(2, r7(q)), (r2(q), r7(q)), (s, r7(q)) ∈ GK(S).

Thus if x ∈ ρ(r7(q), S) \ {r7(q)}, then x �∈ {2, s, r2(q)} and if e(x, sα) = l, then

by Proposition 2.2 in [19], we have ν(l) + 14 > m and 14 � ν(l). Furthermore,

by |2Am−1(q)|, we can see that ν(l) ≤ m. Thus ν(l) ∈ {m−13,m−12, · · · ,m}
and 14 � ν(l). Since m − 13,m− 12, · · · ,m are fourteen consecutive numbers,

so 14 divides exactly one of them and hence, we have thirteen choices for l.

Also, r7(q) �= ri(q), where m − 13 ≤ i ≤ m, because m ≥ 27. Therefore,

t(r7(q), S) = 14. If r1(q) ∈ π(S), by the same procedure, we can show that

t(r1(q), S) ≤ 2. Hence, since r7(s) ∈ {r1(sα), r7(sα)}, we have t(r7(s), S) ≤ 14.

Now we can apply all the statements in the Case 1 to get a contradiction.

Case 3. S is isomorphic to one of the groups Bm(q), Cm(q) or Dm(q). Since

t(S) ≥ 14, by Table 8 in [19], we can see that m ≥ 17 and hence, t(s, S) ≤ 3,

by Table 4 in [19]. Thus as in Case 1, it is enough to consider s ∈ {2, 5, 7, 13}.
If S ∼= Bm(q) or Cm(q), then since m ≥ 17, according to |S|, we can see that

r7(q) ∈ π(S) and if q �= 2, then r1(q) ∈ π(S). By Propositions 3.1(3,4) and 4.3

in [19], we have (2, r7(q)), (s, r7(q)) ∈ GK(S). Thus if x ∈ ρ(r7(q), S)\{r7(q)},
then x �∈ {2, s} and if e(x, q) = l, then by Proposition 2.3 in [19], we have

η(l) + 7 > m. Furthermore, according to the order of Bm(q) and Cm(q),

we can see that η(l) ≤ m. Thus η(l) ∈ {m − 6,m − 5, · · · ,m} and by the

definition of η(l), there are at most eleven choices for l. Therefore, t(r7(q), S) ≤
12. Also, if r1(q) ∈ π(S), then by the same argument, we can show that

t(r1(q), S) ≤ 3. If S ∼= Dm(q), then by Propositions 2.4, 3.1(5), 4.4 in [19] and

the previous argument, we conclude that t(r7(q), S) ≤ 13 and if r1(q) ∈ π(S),

then t(r1(q), S) ≤ 4. Now we can use all the statements in Case 1, part A to

get a contradiction.

Case 4. S ∼= 2Dm(q). Since t(S) ≥ 14, by Table 8 in [19] we can see that

m ≥ 18 and hence, t(s, S) ≤ 4, according to Table 4 in [19]. By similar

argument in Case 1, if t = e(s, 3) and t is an odd number except 1,3, it is

enough to replace ρ with the coclique ρ
⋃{r2(n−5)} of GK(Dn(3)), and if t is
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an even number except 2,6 where t
2 is odd, we replace ρ with the coclique

{s, rn−1, r2(n−2), rn−3, r2(n−4), rn−5}
of GK(Dn(3)) and if t �∈ {4, 8} and t and t

2 are even numbers, we replace ρ

with the coclique {s, rn−1, r2(n−1), rn−3, r2(n−3), rn−5} of GK(Dn(3)). Thus in

this case, s ∈ {2, 5, 7, 13, 41}. By the same procedure in Case 3 for S ∼= Dm(q),

we can prove that t(r7(q), S) ≤ 12 and if r1(q) ∈ π(S), then t(r1(q), S) ≤ 4. If

s ∈ {2, 3, 7, 13}, then using all the statements in Case 1, part A leads us to a

contradiction. Since r7(41) = 113229229 and e(113229229, 3) = 56614614, we

use the coclique τ
⋃{113229229} of GK(Dn(3)). Hence, as in Case 1, part A,

we can get a contradiction.

Part B. 10 ≤ n ≤ 18. In this part, since t(S) ≥ t(Dn(3))− 1 and

(n, t(Dn(3))) ∈ {(10, 7), (12, 9), (14, 10), (16, 12), (18, 13)},
Tables 8 and 9 in [19], imply that in addition to classical groups of Lie type, S

can be isomorphic to exceptional groups of Lie type E7(q) and E8(q). Moreover,

by Tables 4 and 5 in [19], we conclude that t(s, S) ≤ 5. If t = e(s, 3), then since

π(S) ⊆ π(Dn(3)) and according to |Dn(3)|, we conclude that t ≤ 34. Thus by

considering the cases ”t is odd” and ”t is even” separately and according to

the coclique ρ(Dn(3)), it is easy to check that if t �∈ {1, 2, 3, 4, 6, 8}, then we

can find some coclique, containing s with seven elements in GK(Dn(3)) and

conclude that t(s,Dn(3)) ≥ 7. We omit the details for convenience. Hence, as

in Case 1, Part A, by Lemmas 2.1(2) and 2.2(1,2), we can get a contradiction. If

t ∈ {1, 2, 3, 4, 6, 8}, then since t = e(s, 3), by Lemma 1.4 in [19], we can see that

s ∈ {2, 5, 7, 13, 41}. For s ∈ {5, 7, 13, 41}, according to t(S) ≥ t(Dn(3))−1 = 6,

by checking |S| in different cases, we conclude that {r1(sα), r5(sα)} ⊆ π(S) and

hence, r5(s) ∈ π(S) ⊆ π(Dn(3)). Also, it is easy to check that e(r5(s), 3) >

34. On the other hand, according to |Dn(3)|, if x ∈ π(Dn(3)) \ {3}, then

e(x, 3) ≤ 2(n − 1). Thus we get a contradiction, because n ≤ 18. If s = 2,

then by checking |S| in different cases, we can see that if S �∼= 2Am−1(2
α) and

S �∼= 2Dm(2α), then r7(2
α) ∈ π(S), and if α �= 1, then r1(2

α) ∈ π(S). Since

r7(2) = 127, thus 127 ∈ {r1(2α), r7(2α)} ⊆ π(S) ⊆ π(Dn(3)), but e(127, 3) =

126 > 34 and as in the previous argument, we can get a contradiction. If

S ∼= 2Am−1(2
α) or S ∼= 2Dm(2α), then since t(S) ≥ 6, by Table 8 in [19], we can

see that m ≥ 11 or m ≥ 7 respectively and hence, {r2(2α), r14(2α)} ⊆ π(S). If

α is an odd number, then 43 = r14(2) ∈ {r2(2α), r14(2α)} ⊆ π(S) ⊆ π(Dn(3)),

but e(43, 3) = 42 > 34, which is impossible. Otherwise, there exists a natural

number β such that q = 4β and since r8(4) = 257 and according to |2Am−1(4
β)|

and 2Dm(2α), we have 257 ∈ {r1(q), r2(q), r4(q), r8(q)} ⊆ π(S) ⊆ π(Dn(3)),

but e(257, 3) = 256 > 34, which is impossible.

Part C. n = 8. Since π(D8(3)) = {2, 3, 5, 7, 11, 13, 41, 61, 73, 547, 1093}, and
5 = t(D8(3)) − 1 ≤ t(S) ≤ |π(D8(3))| = 11, according to Tables 8 and 9 in
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[19], and |S| in different cases, we can see that, if S �∼= 2F4(2
2m+1) then we can

conclude that s8 − 1 | |S| and hence,

π(S)
⋂

{17, 113, 137, 313, 1201, 7321, 14281,
6922921, 14199121, 17404710161} �= ∅

which is a contradiction. If S ∼= 2F4(2
2m+1), then since r7(3) = 1093 ∈ π(S)

and (2, 1093) �∈ GK(S), by Proposition 3.3(3) in [19], we conclude that 1093 |
212(2m+1) − 1 and hence, 364 = e(1093, 2) | 12(2m + 1), which implies that

91 | 2m + 1. On the other hand, since 22m+1 − 1 | |S|, we can conclude that

r91(2) = 911 ∈ π(S) ⊆ π(D8(3)), which is a contradiction. Thus S cannot be

a group of Lie type in characteristic different from 3.�

Lemma 3.4. Let n ≥ 8 be an even number. If S is isomorphic to a finite

simple group of Lie type in characteristic 3, then S ∼= Dn(3).

Proof. If S is isomorphic to a finite simple group of Lie type over a field of order

3α, then by Lemma 2.1(3-a), we have rn−1(3) ∈ π(S). Put en = e(rn−1(3), 3
α).

Since rn−1(3) divides 3αen − 1, we have n − 1 divides αen. Suppose that

αen > n − 1. Then a prime r with e(r, 3) = αen divides the order of S

and hence, r divides the order of Dn(3) and by |Dn(3)|, we conclude that

αen ≤ 2(n − 1). Consequently, αen ∈ {n − 1, 2(n− 1)}. Now for proving the

lemma, we consider classical and exceptional groups of Lie type separately:

Part A. If S is a classical group of Lie type in characteristic 3, then S is

isomorphic to one of the groups Aε
m−1(3

α), Dε
m(3α), Cm(3α) or Bm(3α). Now

with a case by case analysis, we prove that S ∼= Dn(3):

Case 1. S ∼= Am−1(3
α). Since (rn−1(3), 2) �∈ GK(S) and en = e(rn−1(3), 3

α),

it follows by Proposition 4.1 in [19] that en ∈ {m,m − 1}. Moreover, since

αen ∈ {n − 1, 2(n − 1)}, thus we are supposed to consider the cases αm =

i(n− 1), α(m− 1) = i(n− 1), where i ∈ {1, 2}.
If α ≥ i, then we easily conclude that n ≥ m. On the other hand, since

t(S) ≥ t(G) − 1 = t(Dn(3)) − 1 and n ≥ 8, by Table 8 in [19], we have

[m+1
2 ] ≥ [ 3(n−1)

4 ] and m ≥ 9 which imply that 3(n − 1) < 2(m + 1) or

3(n − 1) − 2(m + 1) < 4. Now, by a simple computation, we can easily get

a contradiction. Thus α < i. Since i ∈ {1, 2} and α ∈ N, we conclude that

α = 1 and i = 2. So, we should only consider the cases (m − 1) = 2(n − 1)

and m = 2(n − 1). If m = 2(n − 1), then by considering |S|, we have

rm−1(3) = r2(n−1)−1(3) ∈ π(S) ⊆ π(Dn(3)). But 2(n − 1) − 1 is odd and we

thus get r2(2(n−1)−1)(3) ∈ π(Dn(3)), which is impossible according to |Dn(3)|.
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Also, if m− 1 = 2(n− 1), then rm−2(3) ∈ π(S) ⊆ π(Dn(3)) and similar argu-

ment leads us to a contradiction.

Case 2. S ∼= 2Am−1(3
α). Since (rn−1(3), 2) �∈ GK(S) and en = e(rn−1(3), 3

α),

by Proposition 4.2 in [19] and the definition of ν(m), we have en ∈ {m, 2m, 2(m−
1), m2 } and since αen ∈ {n − 1, 2(n − 1)} and n is even, we have four cases

αm = n − 1, α(m − 1) = n − 1, αm = 2(n − 1) and αm = 4(n − 1). Also,

since t(S) ≥ t(G) − 1 and n ≥ 8, by Table 8 in [19], we have [m+1
2 ] ≥ [ 3(n−1)

4 ]

and hence, we can get a contradiction using the same argument in the Case 1

for all these cases except αm = 4(n− 1). If αm = 4(n− 1), then according to

|2Am−1(3
α)|, we conclude that {r4(n−1)(3), r8(n−1)(3)}

⋂
π(S) �= ∅ and hence,

{r4(n−1)(3), r8(n−1)(3)}
⋂
π(Dn(3)) �= ∅, which is impossible according to the

prime divisors of |Dn(3)|.
Case 3. S ∼= Bm(3α) or S ∼= Cm(3α). Since (rn−1(3), 2) �∈ GK(S) and

en = e(rn−1(3), 3
α), by Proposition 4.3 in [19], we have en ∈ {m, 2m}. More-

over, we know that αen ∈ {n− 1, 2(n− 1)} and n is even and hence, there are

the following two subcases:

Subcase a. αm = 2(n−1). In this case, since n ≥ 8 is even and t(S) ≥ t(G)−1,

according to Table 8 in [19], we have [ 3m+5
4 ] ≥ [ 3(n−1)

4 ] and m ≥ 5. Thus

by the same method in Case 1, we can assume that α ∈ {1, 2}. Also, since

r2m(3α) ∈ π(S), we have r4(n−1)(3) ∈ π(S) ⊆ π(Dn(3)), which is a contradic-

tion, according to |Dn(3)|.
Subcase b. αm = n − 1. As in the previous case, according to Table 8 in

[19], we have [ 3m+5
4 ] ≥ [ 3(n−1)

4 ] and m ≥ 5. Thus by the same method in Case

1, we can assume that α = 1 and hence, S ∼= Bn−1(3) or S ∼= Cn−1(3). Since

S ≤ G/K, we first claim that K = 1:

• Suppose that K �= 1. We are going to reach a contradiction under this

assumption. Let K1 be a maximal element of the following set:

Σ = {M ≤ G | M �G, M < K}.
Replacing K by K/K1 allows us to assume that K is an elementary abelian

p-group and S acts on K faithfully and irreducibly. If p = 3, then by The-

orem 1.3 in [8] each element of S centralizes some nontrivial element of K

and hence, (3, r2(n−1)(3)) ∈ GK(G) = GK(Dn(3)), which is impossible ac-

cording to Proposition 3.1(5) in [19]. Thus we can assume that p �= 3 and

l = e(p, 3). According to Lemma 3.1 in [7], S contains Frobenius subgroups

of the forms U : Zrn−1(3) and T : Zrn−3(3), where U and T are non-trivial 3-

groups. Since (|T |, p) = (|U |, p) = 1, we can apply Lemma 1 in [16] to conclude

that (p, rn−1(3)) and (p, rn−3(3)) ∈ GK(Dn(3)). Thus Proposition 4.4 in [19]

shows that p �= 2 and hence, l ≥ 3, which implies that 2(n − 1) + 2η(l) >

2n− (1 − (−1)n−1+l). Thus Proposition 2.4 in [19] guarantees that n−1
l is an

odd number and hence, l is odd, l | n− 1 and also, l ≥ 3 which forces l not to

divide n− 3. Thus since (p, rn−3(3)) ∈ GK(Dn(3)), by Proposition 2.4 in [19],
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we conclude that 2(n− 3)+2η(l) = 2(n− 3)+2l ≤ 2n− (1− (−1)n−1+l) = 2n.

This shows that l ≤ 3 and hence, l = 3. This allows us to conclude that p = 13

and l = 3 | n − 1. Thus K is a 13-group. Also, Proposition 2.4 in [19] forces

(rn−2(3), rn+2(3)) ∈ GK(Dn(3)) = GK(G), so G contains an element g of

order rn−2(3)rn+2(3). Since K is a 13-group, S ≤ Ḡ = G/K ≤ Aut(S) and

[Aut(S) : S] = 2, we can deduce that gK ∈ S and O(gK) = rn−2(3)rn+2(3).

Thus (rn−2(3), rn+2(3)) ∈ GK(S) = GK(Bn−1(3)) = GK(Cn−1(3)), which is

a contradiction with Proposition 2.4 in [19].

Therefore, K = 1 and S ≤ G ≤ Aut(S). If G/S �= 1, then the proof of the

main theorem in [7] implies that (2, rn−1) ∈ GK(G/S), so (2, rn−1) ∈ GK(G),

which is a contradiction. Thus G = S ∼= Bn−1(3) or Cn−1(3), which is a

contradiction with the main theorem in [7].

Case 4. S ∼= 2Dm(3α). Since

(rn−1(3), 2) �∈ GK(S) and en = e(rn−1(3), 3
α),

by Proposition 4.4 in [19], we have en ∈ {2m, 2(m− 1)}. Moreover, we know

that αen ∈ {n− 1, 2(n− 1)} and n is even and hence, there are the following

two subcases:

Subcase a. αm = n − 1. Since n ≥ 8 and t(S) ≥ t(G) − 1 = t(Dn(3)) − 1,

by Table 8 in [19], we have [ 3m+4
4 ] ≥ [ 3(n−1)

4 ] and m ≥ 6 and hence, by the

same argument in Case 1, we can assume that α = 1, which implies that

S ∼= 2Dn−1(3). Since n is even, according to |Dn(3)| and |2Dn−1(3)|, we can

see that rn−1 ∈ π(Dn(3)) \ π(2Dn−1(3)). Also, since S ≤ Ḡ = G/K ≤ Aut(S)

and Out(2Dn−1(3)) is a 2-group, we conclude that rn−1 ∈ π(K). Hence, using

the cocliques ρ = {rn−1, r2(n−5), r12} and τ = {rn−1, r2(n−3), r8} of GK(Dn(3))

in Lemma 2.1(2), implies that {r8, r2(n−5)}
⋂
π(K) = ∅. By Proposition 2.4 in

[19], we can see that (r8, r2(n−5)) ∈ GK(Dn(3)). Therefore, by Lemma 2.2(3),

we conclude that Ḡ has an element g of order r8.r2(n−5). On the other hand,

since Ḡ/S ≤ Out(S) and Out(2Dn−1(3)) is a 2-group, we can assume that

g ∈ S and hence, (r8, r2(n−5)) ∈ GK(2Dn−1(3)), which is impossible according

to Proposition 2.4 in [19].

Subcase b. α(m − 1) = n − 1. Since n is even, we can assume that α is

odd. If α ≥ 3, then by the relation t(S) ≥ t(G) − 1 and the same argument

in the previous subcase, we can easily get a contradiction. Thus α = 1 and

S ∼= 2Dn(3). But r2n(3) ∈ π(2Dn(3)) \ π(Dn(3)) and this is a contradiction.

Case 5. S ∼= Dm(3α). In this case, we are supposed to show that m = n

and α = 1. As in the previous case, Proposition 4.4 in [19] imposes some re-

strictions on en and we have en ∈ {2(m− 1),m− 1,m}. Also, since n is even

and αen ∈ {n− 1, 2(n− 1)}, we have four cases αm = n− 1, αm = 2(n− 1),

α(m − 1) = 2(n − 1) and α(m − 1) = n − 1. Moreover, since n ≥ 8 and

t(S) ≥ t(G) − 1, by Table 8 in [19], we have t(Dm(3α)) ∈ { 3m+3
4 , [ 3m+1

4 ]} and
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m ≥ 6. Since the method for considering the case t(S) = 3m+3
4 is similar to the

case t(S) = [ 3m+1
4 ], we just deal with the case t(S) = [ 3m+1

4 ] in the following

four subcases:

Subcase a. αm = n − 1. Since t(S) ≥ t(G) − 1 and n is even, simi-

lar argument in Case 1 concludes that α = 1 and hence, m = n − 1 and

S ∼= Dn−1(3). According to |Dn(3)| and |Dn−1(3)|, we can see that r2(n−1)(3) ∈
π(Dn(3))\π(Dn−1(3)). Also, since S ≤ Ḡ = G/K ≤ Aut(S) and Out(Dn−1(3))

is a 2-group, we conclude that r2(n−1) ∈ π(K). Hence, using the cocliques

ρ = {r2(n−1), rn−3, r8} and τ = {r2(n−1), rn−1, r4} of GK(Dn(3)) in Lemma

2.1(2), implies that {r4, rn−3}
⋂
π(K) = ∅. By Proposition 2.4 in [19], we can

see that (r4, rn−3) ∈ GK(Dn(3)) and (r4, rn−3) �∈ GK(Dn−1(3)), which is im-

possible according to Lemma 2.2(3).

Subcase b. αm = 2(n − 1). According to t(S) ≥ t(G) − 1 and by a sim-

ilar argument in Case 1, we can assume that α ∈ {1, 2} and hence, S ∼=
D2(n−1)(3) or Dn−1(3

2). But since q2(m−1) − 1 | |Dm(q)|, we conclude that

{r2(2(n−1)−1)(3), r4(n−2)(3)}
⋂
π(Dn(3)) �= ∅, which is impossible.

Subcase c. α(m− 1) = 2(n− 1). Since t(S) ≥ t(G)− 1 and by a similar argu-

ment in Case 1, we can assume that α ∈ {1, 2} and hence, S ∼= D2(n−1)+1(3) or

Dn(3
2). But according to the order S and Dn(3), we can see that r4(n−1)(3) ∈

π(S) \ π(Dn(3)), which is a contradiction.

Subcase d. α(m− 1) = n− 1. According to t(S) ≥ t(G)− 1 = [ 3(n−1)
4 ], as in

the previous subcase, we can see that α = 1 and hence, S ∼= Dn(3).

Thus if S is a classical group of Lie type in characteristic 3, then S ∼= Dn(3).

Part B. If S is isomorphic to a finite simple exceptional group of Lie type in

characteristic 3, then by Table 9 in [19], we can see that t(S) ≤ 12. Since

t(S) ≥ t(Dn(3)) − 1 = [ 3(n−1)
4 ], n ≥ 8 and n is even, we conclude that

n ∈ {8, 10, 12, 14, 16, 18} and t(S) ≥ 5. In the following, we will get a con-

tradiction for the cases n ≥ 10 and n = 8, separately:

Case 1. If n ≥ 10, then according to Table 9 in [19], S ∼= E7(3
α) or S ∼= E8(3

α).

• S ∼= E7(3
α). Since (rn−1(3), 2) �∈ GK(S) and en = e(rn−1(3), 3

α), by

Proposition 4.5(5) in [19], we have en ∈ {7, 9} or en ∈ {14, 18}. Also, since

n ∈ {10, 12, 14, 16, 18} and αen ∈ {n − 1, 2(n − 1)}, by checking all differ-

ent cases, we conclude that n = 10 and α ∈ {1, 2}. Thus S ∼= E7(3) or

S ∼= E7(3
2), when GK(G) = GK(D10(3)). If S ∼= E7(3

2), then by check-

ing |E7(3
2)|, we can see that r18(3

2) = r36(3) ∈ π(S) ⊆ π(D10(3)), which

is impossible. If S ∼= E7(3), then according to |D10(3)| and |E7(3)|, we can

see that r16(3) ∈ π(D10(3)) \ π(E7(3)). Also, since S ≤ Ḡ ≤ Aut(S) and

Out(E7(3)) is a 2-group, we conclude that r16(3) ∈ π(K). Hence, using the

cocliques ρ = {r3, r16, r18} and τ = {r7, r10, r16} of GK(D10(3)) in Lemma

2.1(2), implies that {r3, r7}
⋂
π(K) = ∅. Also, by Propositions 2.4 and 2.5(5)

in [19], we can see that (r3, r7) ∈ GK(D10(3)) and (r3, r7) �∈ GK(S), which is

a contradiction according to Lemma 2.2(3).
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• If S ∼= E8(3
α), then since (rn−1(3), 2) �∈ GK(S) and en = e(rn−1(3), 3

α),

by Proposition 4.5(6) in [19], we have en ∈ {15, 20, 24, 30} and by checking

all different cases, we conclude that n = 16 and α ∈ {1, 2}. Thus S ∼= E8(3)

or S ∼= E8(3
2), when GK(G) = GK(D16(3)). If S ∼= E8(3

2), then by check-

ing |E8(3
2)|, we can see that r18(3

2) = r36(3) ∈ π(S) ⊆ π(D16(3)), which

is impossible. If S ∼= E8(3), then according to |D16(3)| and |E8(3)|, we can

see that r22(3) ∈ π(D16(3)) \ π(E8(3)). Also, since S ≤ Ḡ ≤ Aut(S) and

|Out(E8(3))| = 1, we conclude that r22(3) ∈ π(K). Hence, using the cocliques

ρ = {r12, r15, r22} and τ = {r7, r22, r28} of GK(D16(3)) in Lemma 2.1(2), im-

plies that {r7, r12}
⋂
π(K) = ∅. Also, by Propositions 2.4 and 2.5(6) in [19],

we can see that (r7, r12) ∈ GK(D16(3)) and (r7, r12) �∈ GK(S), which is a

contradiction according to Lemma 2.2(3).

Case 2. If n = 8, then according to Table 9 in [19], S can be isomorphic to

one of the simple group

E8(3
α), E7(3

α), F4(3
α), E6(3

α), 2E6(3
α) or 2G2(3

2m+1).

Since (r7(3), 2) �∈ GK(S), en = e(r7(3), 3
α) and αen ∈ {7, 14}, by Proposi-

tion 4.5(2-6,8) in [19], we can conclude that S ∼= E7(3
α) and α ∈ {1, 2} or

S ∼= 2G2(3
2m+1) and r7(3) | 36(2m+1) − 1. If the first case occurs, then by

|E7(q)|, we can conclude that r18(3) ∈ π(S) \ π(D8(3)), which is a contradic-

tion. Otherwise, since r7(3) | 36(2m+1) − 1, there exists an integer k such that

2m + 1 = 7k. On the other hand, since 33(2m+1) + 1 | |2G2(3
2m+1)| and k is

odd, we have r42(3) ∈ π(S) ⊆ π(D8(3)) and this is impossible, according to

|D8(3)|.�

Now, Lemmas 3.1, 3.2, 3.3 and 3.4 show that S ∼= Dn(3).

3.2. The group G is isomorphic to Dn(3). According to the previous sec-

tion, we have proved the following statement:

If n ≥ 8 is an even number and G is a finite group with the same prime

graph as the simple group Dn(3), then

Dn(3) ≤ G/K ≤ Aut(Dn(3)),

where K is the maximal normal solvable subgroup of G.

So, in this section, we are supposed to complete the proof of character-

izability of the group Dn(3), by showing K = 1 and G = Dn(3). Since

Bn−1(3) ↪→ Dn(3), Ω
−
2(n−1)(3) ↪→ Dn(3) and n ≥ 8 is an even number, by

Lemmas 3.1 in [7] and 3.5 in [6] and the same procedure which has been used

in Lemma 3.4, part A, Case 3, subcase b, we can see that K = 1, we omit the
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details for the sake of convenience. Thus we just need to prove the following

lemma:

Lemma 3.5. Let n ≥ 8 be an even number. If Dn(3) ≤ G ≤ Aut(Dn(3)) and

GK(Dn(3)) = GK(G), then G = Dn(3).

Proof. Let Jn =

(
J1 0

0 Jn−1

)
, where Jn−1 =

(
0 In−1

In−1 0

)
and J1 =

(
0 1

1 0

)
. We have

GO+
2n(q) = {X ∈ GL2n(q) | XtJnX = Jn}

and

GO+
2(n−1)(q) = {X ∈ GL2(n−1)(q) | XtJn−1X = Jn−1}.

Fix N = Dn(3). Let bd(C1, C2, ..., Cm) denote a block-diagonal matrix with

square blocksC1, C2, ..., Cm. By Propositions 2.5.13 and 2.7.3 in [14], Out(N) ∼=
D8 and Aut(N) = 〈N, ᾱ, β̄, γ̄〉, where

α = bd(−J1, I2(n−1)), β = bd(J1, I2(n−1)), γ = bd(−1, 1,−In−1, In−1)

and x̄ is the image of an element x of GL2n(3) in GL2n(3)/{±I2n}. We claim

that G = N . If not, then there exists an element δ̄ ∈ G − N , so without loss

of generality we can assume that δ̄ ∈ 〈ᾱ, β̄, γ̄〉. Thus δ̄ = ᾱiβ̄j γ̄k, so an easy

computation shows that

{bd(I2, w, (w−1)t) | w ∈ GLn−1(3)} ≤ CSO+
2n(3)(δ)

and hence, bd(I2, y, (y
−1)t) ∈ CΩ+

2n(3)(δ), where y is an element of order rn−1(3)

in SLn−1(3). On the other hand, since δ̄N ∈ D8, we have 2 | O(δ̄), by Lemma

2.2(4). Thus (2, rn−1(3)) ∈ GK(G) = GK(Dn(3)), which is a contradiction, as

required. This shows that G = Dn(3).�

Thus according to the subsections 3.1 and 3.2, the main theorem is obtained

for the case n ≥ 8, where n is even. Also, if n = 6, then Theorem 3.2 in [11]

implies that D6(3) is characterizable by prime graph. Moreover, if n = 4, then

the main theorem in [17] completes the proof of the main theorem.

We have the following remark, when n is odd:

Remark 3.6. If n ≥ 5 is an odd number, then by Tables 6 and 8 in [19], we

have t(2, Dn(3)) = 2, ρ(2, Dn(3)) = {2, rn(3)} and t(Dn(3)) ∈ {[ 3n+1
4 ], 3n+4

4 }.
Hence, if G is a finite group with GK(G) = GK(Dn(3)), then Lemma 2.1

implies that G has a unique nonabelian composition factor S, in which case S ≤
Ḡ = G/K ≤ Aut(S), t(S) ≥ t(Dn(3))− 1, t(2, S) ≥ 2 and rn(3) ∈ π(S). Now,

by the same method which is used in subsection 3.1 and considering appropriate

cocliques in GK(Dn(3)), we can conclude that S ∼= Dn(3). But it is worth to
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mention that the method which is used in subsection 3.2 cannot complete the

characterization of Dn(3).

4. Corollaries

In this section, we will consider some significant corollaries of the main

theorem. If G is a finite group, by M(G) we denote the set of orders of maximal

abelian subgroups of G and a group G is said to be characterizable by the set of

orders of its maximal abelian subgroups, if G is uniquely determined by M(G).

Lemma 4.1. [2, Lemma 2] Let G and H be finite groups. If M(G) = M(H),

then GK(G) = GK(H).

Lemma 4.2. [1, Corpllary 2.6.] Let P be a finite nonabelian simple group and

G is a group such that ΓG
∼= ΓP , then GK(G) = GK(P ) and M(G) = M(P ).

Corollary 4.3. If n ≥ 6 is an even number, then

(i) the simple group Dn(3) is characterizable by spectrum;

(ii) the simple group Dn(3) is characterizable by its set of orders of maximal

abelian subgroups;

(iii) the AAM’s Conjecture is true for the groups under study.

Proof. Let G be a finite group with ω(G) = ω(Dn(3)). Therefore, GK(G) =

GK(Dn(3)) and hence, the main theorem completes the proof of (i). From

Lemmas 4.1, 4.2 and the main theorem, we get (ii) and (iii).� Acknowledg-
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