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Abstract. In this paper, we consider the fundamental relation 8~
as the smallest equivalence relation on a polygroup P such that the
quotient P/3*, the set of all equivalence classes, is a group. The quo-
tient P/B is called the fundamental group. We give some interesting
results about the fundamental groups.

1 Introduction

This paper deals with certain algebraic system called a polygroup. Since
Marty [14] had introduced the concept of hypergroups, several authors have
studied about them. Application of hypergroups have mainly appeared in
special subclasses. For example, polygroups which are certain subclasses of
hypergroups are studied in [12] by Ioulidis and are used to study color algebra
[2],[4]. Quasi-canonical hypergroups (called “polygroups” by Comer) were
introduced in [1], as a generalization of canonical hypergroups, introduced in
[15]. Some algebraic and combinatorial properties were developed in [3] by
Comer. Davvaz and Poursalavati in [8] introduced matrix representations of
polygroups over hyperrings and they introduced the notion of a polygroup
hyperring generalizing the notion of a group ring. Davvaz in [10], using the
concept of generalized permutation defined permutation polygroup and some
concepts related to it. The reader will find in [2-6, 8-12] a deep disscussion of
polygroup theory.

2 Basic definitions

A hypergroup is a non-empty set H equipped with an associative hyperoper-
ation - from H x H into the family of non-empty subsets of H which satisfies
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the property a-H = H-a = H forallain H. If A, B C H then A- B is given
by A-B=U{a-b|a€ A, be B}. z-Ais used for {}-A and A -z for
A-{z}. A polygroup is a special case of a hypergroup. We recall the following
definition from [2].

A polygroup is a system P =< P, .,e,”! >, where e € P, is a unitary
operation on P, - maps P x P into the non-empty subsets of P, and the
following axioms hold for all z, y, z in P: i) (z-y)-z = z-(y-2);ii) e-x = z-e = x;
iii) z € y-2 implies y € x-27! and z € y ! - 2. The following elementary facts
about polygroups follow easily from the axioms: e € z -z ' Nz~ -2, e7! =
e, (™)' =z, and (z-y)~! =y~ - 27! where A~ = {a7!| a € A}. We
write ab instead of a - b. Examples of polygroups are given in [2-6, 8, 16, 17]
to indicate how these systems occur naturally in various context. There are
examples to the following subjects: double coset algebra, Prenowitz algebra,
regular graph, conjugate class polygroups, character polygroups, algebraic
logic, relation algebra and etc.. Also an extension of polygroups by polygroups
has been introduced in [4].

If N is a normal subpolygroup of P (i.e., a™'!Na C N for all a € P),
then we define the relation * = y(modN) if and only if zy~' N N # 0.
This relation is denoted by x Npy. Clearly, Np is an equivalence relation. Let
Np(z) be the equivalence class of the element 2z € P. On P/N, the set of
all equivalence classes, we consider the hyperoperation * defined as follows:
Np(z) ® Np(y) = {Np(2) | 2 € Np(z)Np(y)}. Then < P/N,*, Np(e),”! >
is a polygroup, where Np(a)~! = Np(a™!).
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Let < Pp,-,e;,”' > and < Py,*,e5,”7 > be polygroups. A mapping ¢
from P, into P, is said to be a strong homomorphism if for all a,b € Py,
p(ab) = p(a) x ¢(b) and p(e1) = es.

3 Fundamental groups

Let P be a polygroup. We define the relation §* as the smallest equivalence
relation on P such that the quotient P/3*, the set of all equivalence classes,
is a group. In this case * is called the fundamental equivalence relation on
P and P/f* is called the fundamental group. The equivalence relation 3*
was introduced by Koskas [13] and studied mainly by Corsini [7] concerning
hypergroups and Vougiouklis [18] concerning H,-groups. The product ® in
P/j* is defined as follows: f*(z)® 8*(y) = 8*(z) for all z € 8*(z)5*(y). Let
Up be the set of all finite products of elements of P. We define the relation 3
as follows: z8y if and only if {z,y} C u for some u € Up. Since polygroups
are certain subclasses of hypergroups, we have * =  (Theorem 81, [7]). The
kernel of the canonical map ¢ : P — P/f* is called the core of P and is
denoted by wp. Here we also denote by wp the unit of P/3*. It is easy to
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prove that the following statements: wp = *(e) and B*(z) ! = g*(z 1) for
all z € P. Now, we give the main results about fundamental groups.

Theorem 3.1. Let 87,085 and B* be fundamental equivalence relations on
polygroups Py, P> and P, x P respectively, then

(Pr x Py)/B" = P1/B x Pa/f5.

Proof. First we define the relation B on P, x P as follows:

(w1,91)B(22,y2) <= 216722, Y1 5592.

E is an equivalence relation. We define ® on (P; x P2)/ E as follows:
B(mlayl) © 3(30272/2) = :g(aab)a

for all a € B (a1) - B (22) and b € B3 (y1) - B3 (42)-

Since P; and P, are associative, we see that is @ associative and conse-
quently (P; x Pg)/ﬁ is a group.

Now let 6 be an equivalence relation on P; x P; such that (P, x P)/0
is a group. Let 8(z1,y1) be the class of (z1,y1). Then 8(z1,y1) © 8(z2,y2) is
singleton, i.e., 8(x1,y1) © 0(z2,y2) = 0(a,b),¥(a,b) € 8(z1,y1).0(x2,y2). But
also for every (z1,y1), (z2,y2) € Py X P> and A C 8(z1,y1), B C 0(x2,y2) we
have 0(z1,y1) © 8(z2,y2) = 0((z1,y1) - 0(x2,y2)) = O(AB), so this relation is
valid for all finite products which means that the equality 6(z,y) = 6(u,v)
for every (u,v) € Up,xp, and & € u,y € v holds.

Now, if (z,y) € E(a, b), then zf7a and yB5b. We have
xzfia if and only if Jzq,- -, Tpmy1 with 1 = 2, g1 = a and ug, -+, up, €
Up, such that

{zi,zi+1} Cu;, i=1,---,m, and

yBsbif and only if Jy1, - -+, Y1 With y1 =y, ynt1 =band vy,---,v, € Up,
such that

{vjyjt1} Covj J=1,-+,m.
Therefore
(zi,9;) € (i, ), (Tiv1,Yj11) € (wirvj), i=1,---,m, j=1,---,n.
And so
0(zi,y;) = 0(us,v5),0(xit1,yj+1) = 0(us,v5), i=1,---,m, j=1,---,n

which implies that 6(z;,y;) = 6(zi+1,Yj+1), ¢=1,---,m, j=1,---,n.
Therefore 6(z,y) = 0(a,b) or (z,y) € (a,b). So we get
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(.y)B(a,b) = (z,y) € b(a,b).

Thus, the relation 5 is the smallest equivalence relation on P; x P such
that (P x PQ)//B is a group, i.e., ﬂ *. Now, we consider the map

[ P/Bf x Pa/By — (P1 x P2)/B*

with f(87(x),B5(y)) = B*(z,y). It is easy to see that f is an isomorphism. O

Corollary 3.2. If N1, N> are normal subpolygroups of Py, P> respectively,
and B, 05 and B* fundamental equivalence relations on Py /Ny, P>/N> and
(Py x P2)/(Ny x N3) respectively, then

((P1 x Py)/(N1 x N2))/B* = (P1/N1)/B7 x (P2/N2)/55.

Lemma 3.3. Let f be a strong homomorphism from Py into P> and let
B85, B3 be fundamental equivalence relations on Pi, Py respectively, we de-
fine kerf = {Bi(z) | = € Py, B3(f(2)) = wp,}. Then kerf is a normal
subgroup of the fundamental group Py /f5.

Proof. Assume that 87 (z), 37 (y) € kerf then for every 2z € zy~' we have
Bi(z) = Bi(z) @ Bf(y~'). On the other hand, we have

B3(£(2) = B3 (f(@)fly™)) = B3(f(2)) @ B3 (f(y ™)) = wp, ® wp, = wp,.

Therefore B5(z) € kerf. Now, let 87 (a) € P1/pf and f7(x) € kerf then for
every z € ara ! we have (}(z) = B7(a) ® Bi(z) ® Bf(a~!). On the other
hand, we have

B3(f(2)) = B3 (f(a)f(z) f(a™"))
= B3(f(a)) ® B3 (f(x)) ® B3 (f(a™"))
=ﬁ§(f(a))®wP2 g5 (f (a )
= B3(f(aa™)) = B3 (f(e1)) = B3 (e2) = wp,-

Hence we get B7(z) € kerf. This complete the proof. O

Theorem 3.4. Let P be a polygroup, M, N two normal subpolygroups of
P with N C M and ¢ : PIN — P/M canonical map. Suppose (i, Bn
be the fundamental equivalence relations on P/M, P/N respectively then

((P/N)/BN)/ker¢ = (P/M) /B3
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Proof. We define the map ¢ : (P/N)/Bx — (P/M) /B3, by ¢ : fan(Nzx) —>
Br(Mz) (for all x € P). We must check that 1 is well-defined, that is,
that if z,y € P and B3y (Nz) = 3 (Ny) then f3,(Mz) = B3,(My). Now
Brn(Nz) = Brn(Ny) if and only if {Nz, Ny} C u for some u € Up/y.

n
We have u = N2y @ Nzo ® ... ® Nz, = {Nz | z € Hm,} Therefore
i=1
for some z; € Hxi, 29 € Hm, we have Nz = Nz; and Ny = Nzs. So
i=1 =1
there exist a € xzfl NN and b € yz;l N N, then = € az; and y € bzs.
Hence Mz € Ma® Mz, and My € Mb® Mzs. Since a,b € N C M, then
Ma=M, Mb= M. Since M ® Mz = Mz, and M ® Mz, = Mz5, we have

n
Mz = Mz and My = Mz,. From {Mz,Mz} C {Mz | z € Hml}, we
i=1

n
get {Mz, My} C{Mz|z¢€ HZUZ} =Mz @ M2 ® ... Mz,. Therefore

i=1
B (Mz) = B3,(My). This follows that ¢ is well-defined. Moreover ¢ is a
strong homomorphism, for if z,y € P; then

By (Nz) © B (Ny)) = »(By (Nay)) = B3 (Mzy)
= By (Mz) @ By (My)
= Y(By (Nx)) @ (B3, (My)),

and Y(wp/n) = Y(BN(N)) = B3 (M) = wpjnr. Clearly, ¢ is onto. Now, we
show that keriy = ker¢. We have

|
={fy(Nz) | B3y (Mz) = wp/n}
:{5_1*\,(]\733) | B (#(Nz)) = wp/n}
= ker¢

Theorem 3.5. Let P, and Py be two polygroups and B* be the fundamental
equivalence relation on Ps. According to [19], we consider the group AutP
and the fundamental group Ps/B*, let

Py B — AutP;

B*(b) = B*(b) =b
be a homomorphism of groups. Then on Py x Py we define a hyperproduct
as follows: (ay,b1) o (az,b2) = {(z,y) | © € a1 - bi(az), y € by - b2} and we
call this the semi-direct hyperproduct of polygroups Py and P,. Then Py x P
equipped with the semi-direct hyperproduct is a polygroup.
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Proof. Similar to the theorem 2.4.1 of [10], associativity is valid. Since a =
a-g(el),a =e;-€é3(a) and b= b*es = ey b, we have (a,b)o(er,es) = (a,b) =
(e1,e2)o(a,b), i.e., (e1,e2) is the identity element in P; X P>, and we can check
that (b= (a~'),b") is the inverse of (a,b) in P, x Ps.
Now, we show that

(21,22) € (x1,22)0(y1,92) = (21,22) € (21,22)0(y1,y2) " and (y1,92) €
(21, 22) Lo(21, 22).

We have (21,22) € (21,22)0(y1,y2) = {(a,b)la € z1 - Z3(y1),b € 22 * Yo}
which implies z; € 21 - Z3(y1) and 29 € xg * Y. Since 21 € 21.75(y1) we get

1 €21 -Ta(y1) Lorz €2 -@(yfl). Since z9 € T5 * yo then 5 € 29 *y;l.

—

Therefore *(xs) = 6*(22)9\[?*(31;1) and so B*(z2) = B*(22) © B*(y5 ') =

B*(22) - B*(y5 ") or T3 = yy; . Therefore we get 21 € 21 - 5 (7). Now,
we have (z1,72) € {(a,b)|a € 21 - Sy, '(y;1),b € 22 xyy '} or (21,29) €
(21,22)0(y1,92) L.
On the other hand, we have
(e1,22) o1, 22) = (5 (), a3 olz1,22)

={(a,b)|a € 2y (2,7) w37 (21), b€ 7y %22}

= {(a,b)|a € x;l(mfl -z1), b€ x;l * 29 }.
Since 21 € x1 - Z2(y1) implies Z5(y;) € xfl - 21, hence y; € x;l(a:f
Therefore (y1,ys) € (1,22) Lo(z1, 22). O

L. 2,’1).
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