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Abstract. The number of subgroups, normal subgroups and charac-
teristic subgroups of a finite group G are denoted by Sub(G), NSub(G)

and CSub(G), respectively. The main goal of this paper is to present a
matrix model for computing these positive integers for dicyclic groups,
semi-dihedral groups, and three sequences U6n, V8n and H(n) of groups
that can be presented as follows:

U6n = 〈a, b | a2n = b3 = e, bab = a〉,

V8n = 〈a, b | a2n = b4 = e, aba = b−1, ab−1a = b〉,

H(n) = 〈a, b, c | a2
n−2

= b2 = c2 = e, [a, b] = [b, c] = e, ac = ab〉.

For each group, a matrix model containing all information is given.
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1. Introduction

Throughout this paper all groups are assumed to be finite. The number of
subgroups, normal subgroups and characteristic subgroups in a finite group G

are denoted by Sub(G), NSub(G) and CSub(G), respectively. The dihedral
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group D2n can be presented as D2n = 〈a, b | an = b2 = e, b−1ab = a−1〉.
Suppose τ(n) and σ(n) denote the number and the sum of positive divisors of
n, respectively. Then it is well-known that Sub(D2n) = τ(n) + σ(n). For a
proof of this known result we refer to [2, Example 1]. The aim of this paper is
to extend this result to some other classes of finite groups. Our motivation is
to ask whether, if we cannot list all subgroups of a given group, we can at least
count how many subgroups, normal subgroups and characteristic subgroups
there are. We solve this problem for the semi-dihedral group SD2n , dicyclic
group T4n and the groups U6n, V8n and H(n). These groups have the following
presentations:

T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉,
U6n = 〈a, b | a2n = b3 = e, bab = a〉,
V8n = 〈a, b | a2n = b4 = e, aba = b−1, ab−1a = b〉,

SD2n = 〈a, b | a2
n−1

= b2 = e, b−1ab = a−1+2n−2

〉,

H(n) = 〈a, b, c | a2
n−2

= b2 = c2 = e, [a, b] = [b, c] = e, ac = ab〉.

The number of subgroups of a finite group G is the order of the subgroup
lattice L(G) and by [4, Theorem 2] the number of normal subgroup of a finite
group G is the same as the number of all topologies on G which makes G a
topological group. So, the number of subgroups and normal subgroups of a
given finite group G are important in some other branches of mathematics.
Calhoun [2], generalized the formula of the number of subgroups in a dihedral
group to the class of groups which can be formed as cyclic extensions of cyclic
groups. The dihedral groups and the abelian groups of the form Zm × Zn

are examples of this class of finite groups. Tărnăuceanu [9], presented an
arithmetic method for determining the number of some types of subgroups
of finite abelian groups. Tărnăuceanu and Tóth [10] studied the number of
subgroups of a given exponent in a finite abelian group and obtained formulas
for the number of subgroups of rank two and three.

Throughout this paper our notations are standard and our main references
are the books of James and Liebeck [6] and Tărnăuceanu [11]. We refer the
interested readers to [6], for the main properties of the groups T4n, U6n and
V8m, where n is arbitrary positive integer m is an odd positive integer. For the
groups V8m, m is even, the group H(n) and the semi-dihedral group SD2n , we
refer to the papers [3], [1] and [5], respectively. Our calculations are done with
the aid of GAP [12]. This work is a continuation of our last work in [7, 8].

2. Main Results

Suppose G is one of the groups introduced in Section 1. The aim of this
section is to find exact formulas for Sub(G), NSub(G) and CSub(G), whereG ∈
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{T4n, U6n, V8n, SD2n ,H(n)}. To do this, we first define a table OT (G) = [aij ],
the order table of G, which is crucial in our calculations. The columns of this
table are labeled by the powers of 2 and its rows by the odd divisors of |G|.
This model is suitable for groups of even orders. Suppose |G| = 2r ·m, where
m is odd and c0 = 1 < c1 < c2 < · · · < ct are all the odd divisors of |G|. Then

aij =

{
2j−1 i = 1

2j−1ci−1 i 6= 1
.

The order table of G is given in Table 1.
It is easy to see that this table has exactly τ( n

2r ) rows and r+1 columns and
so this matrix has (r + 1)τ( n

2r ) entries. Suppose x = pa1
1 pa2

2 ...pas
s is the prime

factorization of positive integer x. Then it is well-known that

τ(x) = (a1 + 1)(a2 + 1)...(as + 1) and σ(x) =
pa1+1
1 − 1

p1 − 1
. . .

pas+1
s − 1

ps − 1
.

Table 1. Orders of subgroups of G, when |G| = n = 2rpa1
1 pa2

2 . . . pas
s .

j 1 2 3 . . . r+1
i 1 2 4 . . . 2r

1 1 1 2 4 . . . 2r

2 c1 c1 2c1 4c1 . . . 2rc1
...

...
...

...
...

...
...

i+ 1 ci ci 2ci 4ci . . . 2rci
...

...
...

...
...

...
...

t+ 1 ct ct 2ct 4ct . . . 2rct

2.1. Dihedral Group D2n. In this subsection we will compute the number
of normal and characteristic subgroups of dihedral group D2n. It is worth
mentioning here that Tărnăuceanu [9] computed these numbers, but we reprove
his results to explain our method for dihedral groups. Define D2n = 〈a, b|an =

b2 = e, bab = a−1〉. Note that an arbitrary subgroup of D2n has one of the
following forms:

(1) A subgroup of 〈ai〉 i|n ;
(2) A subgroup of 〈ai, ajb〉, where i|n and 1 ≤ j ≤ i.
Since ab = ba−1, (aib) has order two. It is possible to conclude from this

conclusion that the number order subgroups of the dihedral group D2n can be
computed by the following formula:

bij(D2n) =


1 j = 1

n
2j−2ci−1

+ 1 2 ≤ j ≤ r + 1
n

2j−2ci−1
j = r + 2

.
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Table 2. The number of subgroups of each order for D2n.

j 1 2 · · · r + 1 r + 2

i 1 2 · · · 2r 2r+1

1 1 1 n+ 1 · · · n
2r−1 + 1 n

2r

2 c1 1 n
c1

+ 1 · · · n
2r−1c1

+ 1 n
2rc1

...
...

...
...

...
...

...
t ct−1 1 n

ct−1
+ 1 · · · n

2r−1ct−1
+ 1 n

2rct−1

t+ 1 ct 1 2r + 1 · · · 2 + 1 1

Now we compute the number of normal subgroups in D2n.

nij(D2n) =


0 1 ≤ j ≤ r + 2, 1 ≤ i ≤ t

1 1 ≤ j ≤ r, i = t+ 1 or j = r + 2, i = t+ 1

3 j = r + 1, i = t+ 1

.

Table 3. The number of normal subgroups of each order for D2n.

j 1 2 · · · r + 1 r + 2

i 1 2 · · · 2r 2r+1

1 1 1 1 · · · 1 0
2 c1 1 1 · · · 1 0
...

...
...

...
...

...
...

t ct−1 1 1 · · · 1 0
t+ 1 ct 1 1 · · · 3 1

The number of characterstic subgroups of the group D2n can be computed
as follows:

cij(D2n) =

{
0 j = r + 2, 1 ≤ i ≤ t

1 1 ≤ j ≤ r + 1, 1 ≤ i ≤ t+ 1 or j = r + 2, i = t+ 1
.

Table 4. The number of characterstic subgroups of D2n.

j 1 2 · · · r + 1 r + 2

i 1 2 · · · 2r 2r+1

1 1 1 1 · · · 1 0
2 c1 1 1 · · · 1 0
...

...
...

...
...

...
...

t ct−1 1 1 · · · 1 0
t+ 1 ct 1 1 · · · 1 1

We record our calculations in the following theorem:
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Theorem 2.1. Suppose n is a given positive integer. Then the number of
all subgroups, normal subgroups and characteristic subgroups of D2n can be
computed by the following formulas:

• Sub(D2n) = τ(n) + σ(n).

• NSub(D2n) =

{
τ(n) + 3 2 | n
τ(n) + 1 2 - n

.

• CSub(D2n) = τ(n) + 1.

2.2. Dicyclic groups T4n. The aim of this subsection is to compute the num-
ber of subgroups, normal subgroups and characteristic subgroups of the dicyclic
group T4n. By our assumption, |G| = 2r+2pa1

1 .pa2
2 . . . pas

s . Note that an arbi-
trary subgroup of T4n has one of the following forms:

(1) A subgroup of 〈ai〉, i|2n;
(2) A subgroup of 〈ai, ajb〉, where i|n and 1 ≤ j ≤ i.
Since a cyclic group of order m has exactly τ(m) subgroups, there are τ(2n)

subgroups of the first type. On the other hand, by the structure of our second
type subgroups, T4n has exactly

∑
i|n i = σ(n) subgroups of the second type.

Hence Sub (T4n) = τ(2n) + σ(n).

We are now ready to present a matrix form for our calculations on subgroup
lattice of dicyclic groups. To do this, we first define:

bij(T4n) =


1 j = 1, 2

n
2j−3ci−1

+ 1 3 ≤ j ≤ r + 2
n

2j−3ci−1
j = r + 3

.

If B = [bij ] then the matrix B gives Table 5, for the number of subgroups
of each order in the dicyclic group T4n.

Table 5. The number of subgroups of each order in T4n.

j 1 2 3 · · · r + 2 r + 3

i 1 2 4 · · · 2r+1 2r+2

1 1 1 1 n+ 1 · · · n
2r−1 + 1 n

2r

2 c1 1 1 n
c1

+ 1 · · · n
2r−1c1

+ 1 n
2rc1

...
...

...
...

...
...

...
...

t ct−1 1 1 n
ct−1

+ 1 · · · n
2r−1ct−1

+ 1 n
2rct−1

t+ 1 ct 1 1 2r + 1 · · · 2 + 1 1

We are now ready to compute the number of normal subgroups of T4n. By
above discussions, all subgroups of the first type are normal in T4n and among
all subgroups of the second type, only T4n, 〈a2, ab〉 and 〈a2, a2b〉 are normal in
T4n. Therefore, NSub(T4n) = τ(2n) + 3.
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To present a matrix form for the number of normal subgroups in the group
T4n, we define:

nij(T4n) =


0 1 ≤ i ≤ t, 1 ≤ j ≤ r + 3

1 i = t+ 1, 1 ≤ j ≤ r + 1 or i = t+ 1, j = r + 3

3 i = t, j = r + 2

.

If C = [nij ] then the entries of the matrix C can be computed by Table 6
and the number of normal subgroups of T4n is as follows:

Table 6. The number of normal subgroups of each order in T4n.

j 1 2 3 · · · r + 2 r + 3

i 1 2 4 · · · 2r+1 2r+2

1 1 1 1 1 · · · 1 0
...

...
...

...
... · · ·

...
...

t ct−1 1 1 1 · · · 1 0
t+ 1 ct 1 1 1 · · · 3 1

Our calculations given above give the following theorem:

Theorem 2.2. Suppose n is a given positive integer. Then the number of
all subgroups, normal subgroups and characteristic subgroups of T4n can be
computed by the following formulas:

• Sub (T4n) = τ(2n) + σ(n).

• NSub(T4n) =

{
τ(2n) + 3 2 | n
τ(2n) + 1 2 - n

.

• CSub(T4n) = τ(2n) + 1.

2.3. Group U6n. In this subsection, we compute the number of subgroups,
normal subgroups and characteristic subgroups of the group U6n of order 6n,
where n = 2r3kpα1

1 . . . pαs
s . The presentation of this group were given in Section

1. This group has four types of subgroups as follows:

• A subgroup of G1 = 〈ai〉, where i|2n;
• A subgroup of G2 = 〈ai, b〉, where i|2n;
• A subgroup of G3 = 〈aib〉, where i|2n and 2 · 3k - i.
• A subgroup of G4 = 〈aib2〉, where i|2n and 2 · 3k - i.

Suppose n = 2r3kpα1
1 . . . pαs

s and define:
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bij(U6n) =


1 3 - c(i−1) and 1 ≤ j ≤ r + 1, or 3k+1|c(i−1)

3 3 - c(i−1) and j = r + 2

4 3|c(i−1) and 3k+1 - c(i−1)

.

There are bij subgroups of order aij and Table 7 gives the number of sub-
groups of each order in the group U6n. We are now counting the number of
normal subgroups in U6n. In Table 8, we record the number of normal sub-
groups of each order. By this table, one can see that the number of all normal
subgroups of order aij can be computed by the following:

nij(U6n) =


0 3 - c(i−1) and (j = r + 2 or 1 ≤ j ≤ r + 1),

1 3k+1|c(i−1), 1 ≤ j ≤ r + 2, or 3 | c(i−1), j = r + 2

2 3|c(i−1), 1 ≤ j ≤ r + 1, 3k+1 - c(i−1)

.

Table 7. The number of subgroups of each order in the group U6n.

j 1 2 3 · · · r + 1 r + 2

i 1 2 4 · · · 2r 2r+1

1 1 1 1 1 · · · 1 3
2 c1 4 4 4 · · · 4 4
...

...
...

...
... · · ·

...
...

i+ 1 ci 1 1 1 · · · 1 3
...

...
...

...
... · · ·

...
...

t+ 1 ct 1 1 1 · · · 1 1

Table 8. The number of normal subgroups of each order in the group U6n.

j 1 2 · · · r + 1 r + 2

i 1 2 · · · 2r 2r+1

1 1 1 1 · · · 1 0
2 c1 2 2 · · · 2 1
...

...
...

... · · ·
...

...
i+ 1 ci 1 1 · · · 1 1
...

...
...

... · · ·
...

...
t+ 1 ct 1 1 · · · 1 1

On the other hand, each normal subgroup of U6n is characteristics and we
have proved the following result:
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Theorem 2.3. Suppose n = 2r3km, 6 - m, is a given positive integer. Then
the number of all subgroups, normal subgroups and characteristic subgroups of
U6n can be computed by the following formulas:

• Sub(U6n) = 4τ(2n)− 2τ( n
3k
) = 2[τ(2n) + τ(n3 ) + τ( n

2r )]. Here, if 3 - n
then we define τ(n3 ) = 0.

• NSub(U6n) = CSub(U6n) = τ(
n

2r
)(2r + 3) = 2τ(n) + τ( n

2r ).

Proof. To prove Sub(U6n) = 4τ(2n) − 2τ( n
3k
) = 2(τ(2n) + τ(n3 ) + τ( n

2r )), we
first note that 〈a〉 has exactly τ(2n) subgroups. On the other hand, for each
divisor i of 2n we have τ(2n) subgroups 〈ai, b〉. To complete the proof, we
have to count the number of subgroups of the forms 〈aib〉 and 〈aib2〉 which are
different from each other and the subgroups presented above.

Suppose n = 2r3kpα1
1 . . . pαs

s and i = 2f3jpα1
1 . . . pαs

s , where 1 ≤ f ≤ r+1 and
1 ≤ j ≤ k. Then one can easily seen that 〈ai, b〉 = 〈aibt〉, where t = 1, 2. Note
that in such a case, i is even and that 3 - 2n

i which means that 3k | i. Hence,
there are τ(2n) subgroups of the first type and τ(2n) subgroups of the second
type. Moreover, the number of subgroups of the forms 〈aib〉 and 〈aib2〉, 6|i, are
2τ( n

3k
) and so we have 2(τ(2n)− τ( n

3k
)) subgroups of the third and fourth type

together. Therefore, Sub(U6n) = 4τ(2n)− 2τ( n
3k
) = 2[τ(2n) + τ(n3 ) + τ( n

2r )].
Furthermore, a subgroup of the form 〈ai〉, i|2n, is normal in U6n if and

only if i is even. All subgroups of the form 〈ai, b〉 are normal in U6n and
all subgroups of the third and fourth types are not normal. Therefore, the
number of all normal subgroups are τ(2n) + τ(n). Since all normal subgroups
are characteristic, NSub(G) = CSub(G) = τ(2n) + τ(n). This completes our
argument. �

2.4. Group V8n. In this subsection, we compute the number of subgroups,
normal subgroups and characteristic subgroups of the group V8n. Suppose n

= 2rpa1
1 pa2

2 . . . pas
s . Then clearly |V8n| = 2r+3pa1

1 pa2
2 . . . pas

s . There are nine
different types for the subgroups of V8n. In what follows, these types together
with the number of subgroups in each type are given.

(1) The cyclic subgroups G1(i) = 〈ai〉, where i | 2n. For each divisor i

of 2n, there exists exactly one subgroup of this type and so we obtain
τ(2n) cyclic subgroups contained in 〈a〉.

(2) The cyclic subgroups G2(i) = 〈aib2〉, i|n. All subgroups in this form
are different from those are given in part (1). On the other hand, for
each divisor i of n we will have a unique cyclic subgroup of this form.
Thus, we find exactly τ(n) subgroups in the form of G2(i).

(3) The subgroups G3(i) = 〈ai, b2〉 ' C 2n
i
×C2, where i|2n. A similar argu-

ment as Part (1) shows that there are τ(2n) subgroups in this form and
all such subgroups are different from those are given in Parts (1) and
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(2). Thus there are 2τ(2n) + τ(n) subgroups of the form G1(i), G2(i)

and G3(i).
(4) The subgroups G4(i, j) = 〈ai, ajb〉, i|2n, 1 ≤ j ≤ i, i is even and j is

odd. In this case, it is easy to see that 〈ai, ajb〉 = 〈au, avb〉 if and only
if i = u and j = v. Since i is even, all divisors of 2n are 2n, 2n

2 , . . . , 2
and since j is odd there are

∑
d|n d = σ(n) subgroups in this form.

(5) The subgroups G5(i, j) = 〈ai, ajb3〉, i|2n, 1 ≤ j ≤ i, i is even and j is
odd. It is easy to see that 〈ai, ajb3〉 = 〈au, avb3〉 if and only if i = u

and j = v. Since i is even, all such divisors of 2n are 2n, 2n
2 , . . . , 2 and

since i is odd there are
∑

d|n d = σ(n) subgroups in this form.
(6) The subgroups G6(i, j) = 〈aib2, ajb〉, i|n, 1 ≤ j ≤ i and i is even. It is

easy to see that n+ n
2 + · · ·+2 = 2[n2 + n

4 + · · ·+1] = 2σ(n2 ). So, there
are 2σ(n2 ) subgroups in the form of G6(i, j).

(7) The subgroups G7(i, j) = 〈ai, b2, ajb〉, i|2n, 1 ≤ j ≤ i and i, j are
even. The number of these subgroups are the same as the number of
subgroups in Part 4.

(8) The subgroups G8(i, j) = 〈ai, b2, ajb〉, i|2n, 1 ≤ j ≤ i, i is even and j

is odd. Then there are the same number of subgroups as in the Part
7, i.e. there are σ(n) subgroups in the form of G8(i, j).

(9) The subgroups G9(i, j) = 〈ai, b2, ajb〉, i|2n, 1 ≤ j ≤ i and i is odd.
In this case, 2n = 2r+1pα1

1 · · · pαs
s and so n

2r is odd. So, there are∑
d|( n

2r ) d = σ( n
2r ) subgroups in this form.

The summation of these numbers are as follows:

Sub(V8n) = τ(n) + 2τ(2n) + 4σ(n) + 2σ(
n

2
) + σ(

n

2r
)

= τ(n) + 2τ(2n) + 4σ(n) + 2σ(2r−1)σ(
n

2r
) + σ(

n

2r
)

= τ(n) + 2τ(2n) + 4σ(n) + σ(
n

2r
)[2σ(2r−1) + 1]

= τ(n) + 2τ(2n) + 4σ(n) + σ(
n

2r
)[2r + 2r−1 + 2r−2 + · · ·+ 22 + 2 + 1]

= τ(n) + 2τ(2n) + 4σ(n) + σ(
n

2r
)σ(2r)

= τ(n) + 2τ(2n) + 5σ(n).

In Table 9, the number of subgroups of each order for the group V8n are
given.
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Table 9. The number subgroups of each order in the group V8n.

j 1 2 3 4 · · · r + 2 r + 3 r + 4

i 1 2 22 23 · · · 2r+1 2r+2 2r+3

1 1 1 23n

22
+ 3

23n

21
+ 3

23n

22
+ 3 · · · 23n

2r
+ 3

23n

2r+2
+ 1

23n

2r+3

2 c1 1 23n

22c1
+ 3

23n

21c1
+ 3

23n

22c1
+ 3 · · · 23n

2rc1
+ 3

23n

2r+2c1
+ 1

23n

2r+3c1
...

...
...

...
... · · ·

...
...

...

t+ 1 ct 1 23n

22ct
+ 3

23n

21ct
+ 3

23n

22ct
+ 3 · · · 23n

2rct
+ 3

23n

2r+2ct
+ 1

23n

2r+3ct

Similar to other groups, we assume that bij denotes the number of subgroups
of order aij in V8n. From Table 9, one can see that the 2−dimensional sequence
bij can be computed by the following formula:

bij(V8n) =



1 j = 1, 1 ≤ i ≤ t+ 1
23n

22ci−1
+ 3 j = 2, 1 ≤ i ≤ t+ 1

23n
2kci−1

+ 3 3 ≤ j ≤ r + 2, 1 ≤ i ≤ t+ 1, k = j − 2
23n

2r+2ci−1
+ 1 j = r + 3, 1 ≤ i ≤ t+ 1

23n
2r+3ci−1

+ 3 j = r + 4, 1 ≤ i ≤ t+ 1

.

It is easy to see that all normal subgroups of V8n have types (1−3), i is
even, and types (4,5), i = 1, 2 and j = 1. In Table 10, the number of normal
subgroups of a given order in V8n are computed. In what follows the number
of normal subgroups of V8n in all cases are computed.

(1) The number of normal subgroups of types (1), (2) and (3), i is even,
are τ(2n)−τ( n

2r ) = τ(n), τ(n)−τ( n
2r ) = rτ(x) and τ(2n), respectively.

(2) There are two normal subgroups of type (6), one normal subgroup of
type (7) and one normal subgroup of type (8).

(3) The trivial normal subgroups {e} and V8n.
The summation of these numbers give the formula NSup(V8n) = 3τ(n) + 5

for the number of normal subgroups.

Table 10. The number normal subgroups of each order in the group V8n.

j 1 2 3 · · · r + 1 r + 2 r + 3 r + 4

i * 1 2 4 · · · 2r 2r+1 2r+2 2r+3

1 1 1 3 3 · · · 3 1 1 0
...

...
...

...
... · · ·

...
...

...
...

t ct−1 1 3 3 · · · 3 1 1 0
t+ 1 ct 1 3 3 · · · 3 3 3 1
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The number nij of normal subgroups of order aij in V8n can be computed
as follows:

nij(V8n) =


0 1 ≤ i ≤ t, j = r + 4 or 1 ≤ i ≤ t+ 1, j = 1,

1 1 ≤ i ≤ t, j = r + 2, r + 3 or i = t+ 1, j = r + 4

3 1 ≤ i ≤ t+ 1, 2 ≤ j ≤ r + 1 or i = t+ 1, j = r + 2, r + 3.

In Table 11, the number of characteristic subgroups of each order in the
group V8n are given.

Table 11. The number characteristic subgroups of each order in the group V8n.

j 1 2 3 · · · r + 1 r + 2 r + 3 r + 4

i * 1 2 4 · · · 2r 2r+1 2r+2 2r+3

1 1 1 3 3 · · · 3 1 1 0
...

...
...

...
... · · ·

...
...

...
...

t ct−1 1 3 3 · · · 3 1 1 0
t+ 1 ct 1 3 3 · · · 3 1 3 1

Based on our calculations in Table 11, we compute the function cij for the
number of characteristic subgroups of order aij as follows:

cij(V8n) =


0 1 ≤ i ≤ t, j = r + 4 or 1 ≤ i ≤ t+ 1, j = 1, r + 2,

1 1 ≤ i ≤ t, j = r + 3 or i = t+ 1, j = r + 4,

3 1 ≤ i ≤ t+ 1, 2 ≤ j ≤ r + 1 or i = t+ 1, j = r + 3.

Hence, there are 3τ(2n) + 3 characteristic subgroup in V8n. Therefore, we
proved the following theorem:

Theorem 2.4. Suppose n is a given positive integer. Then the number of
subgroups, normal subgroup and characteristic subgroups of the group V8n is
computed as follows:

• Sub (V8n) = τ(n) + 2τ(2n) + 5σ(n).
• NSup (V8n) = 3τ(n) + 5.
• CSup (V8n) = 3τ(n) + 3.

2.5. The Semi-dihedral group SD2n . The semi-dihedral group SD8n can
be presented as SD2n = 〈a, b|a2n−1

= b2 = e, b−1ab = a−1+2n−2〉, where n ≥ 4.
The number of subgroups and normal subgroups of this group was given by
Tărnăuceanu [11]. In this section, we reprove the results of Tărnăuceanu.
Furthermore, details of all types of the subgroups of this group are given. At
first, we note that this group has two types of subgroups as follows:
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(1) The subgroups G1(i) = 〈ai〉, i|2n−1. In this case, for each i there exists
exactly one subgroup of the given form and so we obtain τ(2n−1) = n

subgroups.
(2) The subgroups G2(i, j) = 〈ai, ajb〉, where i|2n−1 and 1 ≤ j ≤ i. In this

case, there are σ(n) subgroups of the form G2.

In Table 12, we used above information to compute the number of subgroups
of each order in SD2n .

Table 12. The number subgroups of each order in the group SD2n .

j 1 2 3 4 · · · n n+ 1

a1j(SD2n) 1 2 22 23 · · · 2n−1 2n

b1j(SD2n) 1 2n−2 + 1 2n−2 + 1 2n−3 + 1 · · · 2n−n+1 + 1 2n−n

Note that there are 2n−2 subgroups of order 2, 2n−3 subgroups of order 4,
2n−4 subgroups of order 8 and so on. Therefore, Sub(SD2n) = 2 + 2(2n−2 +

1) +
∑n−1

i=3 (2
n−i + 1) = n+ 3.2n−2 − 1. In Table 13, we record the number of

normal and characteristic subgroups of a given order in this group.

Table 13. The number of normal and characteristic subgroups in the group SD2n .

j 1 2 3 · · · n− 1 n n+ 1

a1j(SD2n) 1 2 22 · · · 2n−2 2n−1 2n

c1j = n1j(SD2n) 1 1 1 · · · 1 3 1

Therefore, we have proved the following theorem:

Theorem 2.5. Suppose n is a given positive integer. The number of subgroups,
normal subgroup and characteristic subgroups of the group SD2n are computed
as follows:

• Sub(SD2n) = 3.2n−2 + n− 1.
• CSup = NSup(SD2n) = n+ 3.

2.6. The Group Hn. We recall that this group can be presented as G =

〈a, b, c|a2n−2

= b2 = c2 = [a, b] = [b, c] = e, ac = ab〉, where n ≥ 4. This group
has eleven types of subgroups as follows:

(1) Subgroups G1(i) = 〈ai〉, i|2n−2.
(2) Subgroups G2(i) = 〈ai, b〉, i|2n−2.
(3) Subgroups G3(i) = 〈ai, c〉, i|2n−2.
(4) Subgroups G4(i) = 〈ai, bc〉, i|2n−2.
(5) Subgroups G5(i) = 〈aib〉, i|2n−3.
(6) Subgroups G6(i) = 〈aic〉, i|2n−3.
(7) Subgroups G7(i) = 〈aibc〉, i|2n−3.
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(8) Subgroups G8(i) = 〈aib, aic〉, i|2n−3.
(9) Subgroups G9(i) = 〈aib, aibc〉, i|2n−3.
(10) Subgroups G10(i) = 〈aic, aibc〉, i|2n−3.
(11) Subgroups G11(i) = 〈ai, b, c〉, i|2n−2.
A similar calculations as other groups shows that the number of subgroups

of a given order in H(n) satisfies all information given Table 14.

Table 14. The number of subgroups of a given order in the group Hn.
j 1 2 3 4 … n− 1 n n+ 1

a1j(Hn) 1 2 22 23 … 2n−2 2n−1 2n

b1j(Hn) 1 7 11 11 … 11 3 1
The form of subgroups can be obtained in Table 15.

Table 15. The form of subgroups of a given order in the group Hn.

Order 1 2 22 23 … 2n−2 2n−1

e 〈a2n−3 〉 〈a2n−4 〉 〈a2n−5 〉 … 〈a〉 〈a, b〉
〈b〉 〈a2n−3

, b〉 〈a2n−4
, b〉 … 〈a2, b〉 〈a, c〉

〈c〉 〈a2n−3
, c〉 〈a2n−4

, c〉 … 〈a2, b, c〉 〈a2, b, c〉
〈bc〉 〈a2n−3

, bc〉 〈a2n−4
, bc〉 … 〈a2, bc〉

〈a2n−3
b〉 〈a2n−4

b〉 〈a2n−5
b〉 … 〈ab〉

〈a2n−3
c〉 〈a2n−4

c〉 〈a2n−5
c〉 … 〈ac〉

〈a2n−3
bc〉 〈a2n−4

bc〉 〈a2n−5
bc〉 … 〈abc〉

〈a2n−3
c, a2

n−3
b〉 〈a2n−4

c, a2
n−4

b〉 … 〈a2c, a2b〉
〈a2n−3

bc, a2
n−3

b 〈a2n−4
bc, a2

n−4
b〉 … 〈a2bc, a2b〉

〈a2n−3
bc, a2

n−3
c〉 〈a2n−4

bc, a2
n−4

c〉 … 〈a2bc, a2c〉
〈b, c〉 〈a2n−3

, b, c〉 … 〈a22 , b, c〉
sum 1 7 11 11 … 11 3

Table 16. The number of normal subgroups of a given order in the group Hn, n ≥ 5.

j 1 2 3 4 .... n− 2 n− 1 n n+ 1

a1j(Hn) 1 2 22 23 .... 2n−3 2n−2 2n−1 2n

n1j(Hn) 1 3 5 5 ...... 5 3 3 1
A similar calculation as other groups shows that

b1j =


1 j = 1, n+ 1

3 j = n

7 j = 2

11 3 ≤ j ≤ n− 1

.

Thus Sub(Hn) = 12 + 11(n − 3). The number of normal subgroups of this
group are recorded in Table 16. By information given this table, one can see
that NSub(Hn) = 11 + 5(n − 4). The structure of normal subgroups are as
Table 17.
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Table 17. The normal subgroups of a given order in the group Hn, n ≥ 6.

order 1 2 22 23 · · · 2n−2 2n−1

e 〈a2n−3 〉 〈a2n−4 〉 〈a2n−5 〉 · · · 〈a2, b〉 〈a, b〉
- 〈b〉 〈a2n−4

b〉 〈a2n−5
b〉 · · · 〈a2c, a2bc〉 〈a, bc〉

- 〈a2n−3
b〉 〈a2n−3

, b〉 〈a2n−4
, b〉 · · · 〈a4, b, c〉 〈a2, b, c〉

- - 〈a2n−3
c, a2

n−3
bc〉 〈a2n−4

c, a2
n−4

bc〉 · · · - -
- - 〈b, c〉 〈a2n−3

, b, c〉 · · · - -
sum 1 3 5 5 · · · 3 3

If n ≥ 6 then the number of characteristic subgroups and their structures
are recorded in Tables 18 and 19, respectively.

Table 18. The number characterstic subgroups of a given order in the group Hn.

j 1 2 3 4 .... n− 3 n− 2 n− 1 n n+ 1

a1j(Hn) 1 2 22 23 · · · 2n−4 2n−3 2n−2 2n−1 2n

c1j(Hn) 1 3 3 5 · · · 5 3 3 1 1

Table 19. The characterstic subgroups of a given order in the group Hn.

Order 1 2 22 23 · · · 2n−4

e 〈a2n−3〉 〈a2n−4〉 〈a2n−5〉 · · · 〈a22〉
- 〈a2n−3

b〉 〈a2n−4

b〉 〈a2n−5

b〉 · · · 〈a22b〉
- 〈b〉 〈a2n−3

, b〉 〈a2n−4

, b〉 · · · 〈a23 , b〉
- - - 〈a2n−4

c, a2
n−4

bc〉 · · · 〈a23c, a23bc〉
- - - 〈a2n−3

, b, c〉 · · · 〈a24 , b, c〉
sum 1 3 3 5 · · · 5

Table 19. Continued.
Order 2n−3 2n−2 2n−1 2n

〈a22 , b〉 〈a2, b〉 〈a2, b, c〉 G
〈a22c, a22bc〉 〈a2c, a2bc〉 - -
〈a23 , b, c〉 〈a22 , b, c〉 - -

- - - -
- - - -

sum 3 3 1 1

Therefore, we have proved the following theorem:

Theorem 2.6. Suppose n is a given positive integer. Then the number of
subgroups, normal subgroups and characteristic subgroups of the group Hn is
computed as follows:

• Sub(Hn) = 12 + 11(n− 3).
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• NSup(Hn) = 11 + 5(n− 4), n ≥ 5.
• CSup(Hn) = 5 + 5(n− 4), n ≥ 6.

3. Concluding Remarks

In this paper the number of subgroups, normal subgroups and characteristic
subgroups of some classes of finite groups are computed. We present a matrix
model for description of subgroup lattices of these groups. We checked our
results by computer algebra system GAP.
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