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Abstract. In 2016, the second and third authors introduced the
notion of 2-Engelizer of the element x in a given group G and
denoted the set of all 2-Engelizers in G by E2(G). They also
constructed the possible values of |E2(G)| (Bull. Korean Math.
Soc. 53 No. 3, (2016), 657-665).

In the present paper, we classify all non 2-Engel finite groups
G, when |E2(G)| = 4, 5.

1. Introduction

For an element x of a given group G, we call

E2
G(x) = {y ∈ G : [x, y, y] = 1, [y, x, x] = 1}

to be the set of 2-Engelizer of x in G. The family of all 2-Engelizers
in G is denoted by E2(G) and |E2(G)| denotes the number of distinct
2-Engelizers in G (see [8] for more details).

As an example consider Q16 = ⟨a, b : a8 = 1, a4 = b4, b−1ab = a−1⟩,
the Quaternion group of order 16 and take the element b in Q16. Then
one can easily check that the 2-Engelizer set of b is as follows:

E2
Q16

(b) = {1, a2, a4, a6, b, a2b, a4b, a6b}.

2010 Mathematics Subject Classification. Primary: 20F45; 20B05, Secondary:
20E07; 20F99.
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We remark that for the identity element e of G, we have G = E2
G(e)

and hence G ∈ E2(G). Clearly in general, the 2-Engelizer of each
non-trivial element of a group G does not form a subgroup. (see [8],
Example 2.3 for more information).

In 2016, Moghaddam and Rostamyari [8] gave a condition under
which the 2-Engelizer of each non-trivial element of G forms a sub-
group.

Theorem 1.1. ([8], Theorem 2.5) Let G be an arbitrary group. Then
the set of each 2-Engelizer of a non-trivial element in G forms a sub-
group if and only if the group xE2

G(x) is abelian, for all non-trivial ele-
ment x of G.

They also proved that |E2(G)| ⩾ 4, for any non 2-Engel group G,

with abelian xE2
G(x), for all 1 ̸= x ∈ G.

In the present article, we study the groups with such properties. One
of our goals in this article is to calculate the number of 2-Engelizers of
Dihedral group of order 2n. Also, our main result is a characterization
of finite groups with exactly |E2(G)| = 4, 5.

2. Preliminary Results

An element x of a group G is called a right 2-Engel element, if for every
y ∈ G, [x, 2 y] = [x, y, y] = 1, and the set of all right 2-Engel elements
of G is denoted by R2(G). Many mathematicians have done interesting
researches in this area (see [1, 6, 7, 9] for more information).

The following lemmas show the relationship between 2-Engelizers
and the group G, even if the group is infinite. Also their results play
an important role in finding lower bound for |E2(G)|.
Lemma 2.1. Let G be a group. Then R2(G) is the intersection of all
2-Engelizers in G.

Proof. Clearly, R2(G) ⊆
∩

x∈G E2
G(x). Now, suppose y ∈

∩
x∈G E2

G(x)
then [x, y, y] = [y, x, x] = 1, for all x ∈ G which gives y ∈ R2(G). □
Lemma 2.2. A group G is the union of 2-Engelizers of all elements
in G\R2(G), that is to say G =

∪
x∈G\R2(G) E

2
G(x).

Proof. Clearly,
∪

x∈G\R2(G)E
2
G(x) ⊆ G. By the definition, if g ∈ R2(G)

then g ∈ E2
G(x), for every x ∈ G and hence g ∈

∪
x∈G\R2(G)E

2
G(x). In

case g ∈ G\R2(G), then g ∈ E2
G(g) and so

g ∈
∪

x∈G\R2(G)

E2
G(x).

Therefore G ⊆
∪

x∈G\R2(G) E
2
G(x) and the proof is complete. □



FINITE GROUPS WITH SPECIFIC NUMBER OF 2-ENGELIZERS 3

Lemma 2.3. Let |E2
G/R2(G)(xR2(G))| = p, for some non right 2-Engel

element x of a group G and a prime number p. For all y ∈ G\R2(G),
if E2

G/R2(G)(xR2(G)) = E2
G/R2(G)(yR2(G)), then

E2
G(x) = E2

G(y).

Proof. Clearly,

E2
G(x)/R2(G) ⊆ E2

G/R2(G)(xR2(G)).

Assume that E2
G(x)/R2(G) < E2

G/R2(G)(xR2(G)). As |E2
G/R2(G)(xR2(G))| =

p and |E2
G(x)/R2(G)| divides |E2

G/R2(G)(xR2(G))|, we get |E2
G(x)/R2(G)| =

1 and so E2
G(x) = R2(G). Thus x ∈ R2(G), which is a contradiction.

Therefore E2
G(x)/R2(G) = E2

G/R2(G)(xR2(G)).

Clearly for all y ∈ G\R2(G),

E2
G(y)/R2(G) ⊆ E2

G/R2(G)(yR2(G)) = E2
G/R2(G)(xR2(G)).

Hence |E2
G/R2(G)(xR2(G))| = |E2

G(y)/R2(G)|, and so E2
G(y)/R2(G) =

E2
G(x)/R2(G). Thus

E2
G(x)

R2(G)
=

E2
G(y)

R2(G)
= {R2(G), x1R2(G), x2R2(G), ..., xp−1R2(G)},

where {x1, ..., xp−1} ⊆
(
E2

G(x) ∩ E2
G(y)

)
\R2(G). So E2

G(x) = E2
G(y).

□

In the next result we calculate the number of 2-Engelizers of Dihedral
group of order 2n, except D8, as it is nilpotent of class 2.

Proposition 2.4. Let D2n be the Dihedral group of order 2n. Then
|E2(D2n)| = n+ 2, when n is odd and otherwise n

2
+ 2.

Proof. LetD2n = ⟨x, y | xn = y2 = 1, yxy−1 = x−1⟩ = {1, x, · · · , xn−1, y,
yx, · · · , yxn−1} and n ⩾ 3. Now E2

D2n
(1) = D2n. Next consider

E2
D2n

(xi), where 1 ⩽ i ⩽ n− 1. Suppose yxj ∈ E2
D2n

(xi), then

[yxj, xi, xi] = 1, [xi, yxj, yxj] = x4i = 1 ⇒ n | 4i.

If n is odd then n divides i, a contradiction. If n is even then i = n
2
or

n
4
, (if n

4
∈ Z). Therefore E2

D2n
(xi) = ⟨x⟩, if n is odd or n is even and

i ̸= n
2
, n
4
.

Next consider E2
D2n

(yxj), 0 ⩽ j ⩽ n − 1. Suppose xi ∈ E2
D2n

(yxj)
then by a similar argument i = n

2
or n

4
. Therefore if n is odd then

xi ̸∈ E2
D2n

(yxj) and if n is even then x
n
2 and x

n
4 ∈ E2

D2n
(yxj). Moreover,

E2
D2n

(x
n
2 ) = E2

D2n
(x

n
4 ) = D2n.
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Now suppose yxk ∈ E2
D2n

(yxj), where 0 ⩽ k ̸= j ⩽ n− 1. Then

[yxk, yxj, yxj] = x−4j+4k = 1 ⇒ n | 4(k − j),

[yxj, yxk, yxk] = x4j−4k = 1 ⇒ n | 4(j − k).

If n is odd then n divides k − j or j − k, a contradiction. If n is even
then k− j = n, k− j = −n, k− j = n

2
or k− j = n

4
. Hence if n is odd

E2
D2n

(1) = D2n, E
2
D2n

(xi) = ⟨x⟩, E2
D2n

(yxj) = {1, yxj},

and so |E2(D2n)| = n+ 2.
Also, as yxj−n = yxj+n for even number n

E2
D2n

(x
n
2 ) = E2

D2n
(x

n
4 ) = E2

D2n
(1) = D2n, E

2
D2n

(xi) = ⟨x⟩(i ̸= n

2
,
n

4
),

E2
D2n

(yxj) = {1, yxj, x
n
2 , x

n
4 , yxj+n

2 , yxj+n
4 }.

Thus |E2(D2n)| = n
2
+ 2. □

In the next remark, we discuss the important property of the ele-
ments of a given group G, which will be used in Example 3.6.

Remark 2.5. Let x, y ̸∈ Z(G) and xy ∈ Z(G), then for all g ∈ G

[xy, g] = 1 ⇒ gx = gy
−1

.

Thus ϕx(g) = ϕy−1(g) implies that ϕxy = id and so x = y−1.
Similarly, if x, y ̸∈ R2(G) and xy ∈ R2(G), then for every g ∈ G

[xy, g, g] = 1 ⇒ g[x,g]
y

= g[y,g]
−1

.

Hence [x, g]y = [g, y] and again x = y−1.

3. Main Results

Many authors have studied the influence of the number of centralizers
on a finite group G (see [2, 3, 5]). It is clear that a group is 1-centralizer
if and only if it is abelian. In [3] Belcastro and Sherman proved that
there are no groups with 2 or 3 centralizers. They also proved that
G has 4 centralizers if and only if G/Z(G) ∼= C2 × C2 and G has
5 centralizers if and only if G/Z(G) ∼= C3 × C3 or S3. Ashrafi in [2]
showed that if G has 6 centralizers, then G/Z(G) ∼= D8, A4, C2×C2×C2

or C2 × C2 × C2 × C2.
The above results concerning the centralizers give us some motivation

to study the concept of 2-Engelizers of groups. Our results in this
section show that some known facts on centralizers of groups can be
established for 2-Engelizers, and in some cases the results are different
and more interesting.
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Note that, in this section we work with the groups under the condi-
tion of Theorem 1.1, so that each 2-Engelizer of a non-trivial element
of the group G must form a subgroup.

Theorem 3.1. Let G be a group such that G/R2(G) ∼= Cp × Cp, for
any prime number p. Then |E2(G)| = p+ 2.

Proof. Assume that G/R2(G) ∼= Cp × Cp, then

G

R2(G)
= ⟨xR2(G), yR2(G) : xp, yp, [x, y] ∈ R2(G)⟩.

Clearly any non-trivial proper subgroup H/R2(G) of G/R2(G) has or-
der p. Therefore H = R2(G) ∪ h1R2(G) ∪ h2R2(G) ∪ ... ∪ hp−1R2(G),
where hi ∈ H\R2(G) for all 1 ⩽ i ⩽ p− 1. Thus the proper subgroups
of G properly containing R2(G) are one of the following forms:

R2(G) ∪ xR2(G) ∪ x2R2(G) ∪ ... ∪ xp−1R2(G);

R2(G) ∪ yR2(G) ∪ y2R2(G) ∪ ... ∪ yp−1R2(G) or

R2(G) ∪ xiyjR2(G), for all 1 ⩽ i, j ⩽ p − 1. Note that, for all 1 ⩽
i, j ⩽ p− 1, it is easy to see that xiyjR2(G) = xjyiR2(G) since [x, y] ∈
R2(G). Hence we have only p−1 proper subgroups of G of latest type.
For simplicity, we denote all the above subgroups by H1, H2, ..., Hp+1,
respectively. Now we show that H1, H2, ..., Hp+1 are the only proper
2-Engelizers of G. Let a ∈ G\R2(G) then aR2(G) = bR2(G), for some

b ∈ {x, ..., xp−1, y, ..., yp−1, xy, xy2, ..., xyp−1, ..., xp−1y, ..., xp−1yp−1}.
Note that the order of each 2-Engelizers of G/R2(G) can not be p2 or
1. Therefore E2

G/R2(G)(aR2(G)) = E2
G/R2(G)(bR2(G)) and Lemma 2.3

imply that E2
G(a) = E2

G(b). Again let b ∈ Hi\R2(G) then E2
G(b) ⊆

∪p+1
j=1Hj, as H1, ..., Hp+1 are the only proper subgroups of G. Also

b ∈ E2
G(b), and hence E2

G(b) ̸= Hj, for 1 ⩽ i ̸= j ⩽ p + 1. Therefore
E2

G(b) = Hi, and H1, H2, ..., Hp+1 are the only proper 2-Engelizers of G
and so |E2(G)| = p+ 2. □

In 1926, Scorza [10] showed the following result, which is useful for
our further investigation (see also [4]).

Theorem 3.2. ([4], Theorem 1) A group G is the non-trivial union
of three subgroups if and only if it is homomorphic to the Klein four
group.

Now, using the above theorem we have the following result.

Theorem 3.3. Let G be a group, then |E2(G)| = 4 if and only if
G/R2(G) ∼= C2 × C2.
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Proof. Using Theorem 3.1, it is enough to show that |E2(G)| = 4 im-
plies that G/R2(G) ∼= C2 × C2.

Suppose |E2(G)| = 4, then E2(G) = {G,E2
G(x), E

2
G(y), E

2
G(z)},

where x, y and z are non 2-Engel elements of G. Thus G = E2
G(x) ∪

E2
G(y) ∪ E2

G(z), as G is the union of its proper 2-Engelizers. Hence,
Theorem 3.2 implies that G/(E2

G(x) ∩ E2
G(y) ∩ E2

G(z)) is isomorphic
with Klein four group.

Now, it is enough to show that R2(G) = E2
G(x) ∩ E2

G(y) ∩ E2
G(z).

Clearly E2
G(xy) must be equal to G, E2

G(x), E
2
G(y) or E

2
G(z).

If E2
G(xy) = G then xy ∈ R2(G) and [xy, y, y] = 1 implies that

[x, y, y] = 1. Also, [y, xy, xy] = 1 implies that [y, x, x] = 1 and so
y ∈ E2

G(x). Now, for every g ∈ E2
G(x) we have

[xy, g, g] = 1 ⇒ [y, g, g] = 1 and [g, xy, xy] = 1 ⇒ [g, y, y] = 1.

Thus g ∈ E2
G(y) and so E2

G(x) ⊆ E2
G(y), which is a contradiction.

By the same argument if E2
G(xy) = E2

G(x) or E2
G(y) we obtain a

contradiction. Hence, E2
G(xy) = E2

G(yx) = E2
G(z). Now, it is clear that

g ∈ E2
G(x) ∩ E2

G(y) implies that g ∈ E2
G(xy) and g ∈ E2

G(x) ∩ E2
G(xy)

implies that g ∈ E2
G(y). Also g ∈ E2

G(y) ∩ E2
G(xy) implies that g ∈

E2
G(x). Hence, the intersection of any two 2-Engelizers is R2(G), which

gives the result. □

To prove our main result we need the following lemma.

Lemma 3.4. Let |E2(G)| = 5 and E2
i be the proper 2-Engelizers of the

group G, for i = 1, 2, 3, 4. Then
(a) none of them is contained in the union of the others;
(b) no element of G is in exactly two or three of E2

i ’s, 1 ≤ i ≤ 4.

Proof. (a) By the contrary, assume that E2
1 is a subset of E2

2 ∪E2
3 ∪E2

4 ,
and hence G =

∪4
i=2E

2
i . Theorem 3.2 implies that G/

∩4
i=2E

2
i
∼=

C2 × C2. Now, in this case we show that
∩4

i=2E
2
i = R2(G), and then

we obtain a contradiction.
Choose any x2 ∈ E2

2 \ (E2
3 ∪ E2

4), x3 ∈ E2
3 \ (E2

2 ∪ E2
4), and x4 ∈

E2
4 \ (E2

2 ∪ E2
3). We show that E2

i = E2
G(xi), for i = 2, 3, 4. For

example, assume E2
G(x2) ̸= E2

2 , then we have E2
G(x2) = E2

1 . Thus
E2

2 \ (E2
3 ∪ E2

4) ⊆ E2
1 \ (E2

3 ∪ E2
4) and so E2

2 ⊆ E2
1 . Now, we could

interchange the role of E2
1 by E2

2 . Hence E2
1 = E2

2 , which is impossible
and so E2

i = E2
G(xi), for i = 2, 3, 4.

Now, let x ∈
∩4

i=2 E
2
i \R2(G), then we have the following cases:

(i) E2
G(x) ̸= G, as x ̸∈ R2(G);

(ii) E2
G(x) ̸= E2

1 , as x ̸∈ E2
1 ;

(iii) E2
G(x) ̸= E2

2 , as x3, x4 ∈ E2
G(x) \ E2

2 ;
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(iv) E2
G(x) ̸= E2

3 , as x2, x4 ∈ E2
G(x) \ E2

3 ;
(v) E2

G(x) ̸= E2
4 , as x2, x3 ∈ E2

G(x) \ E2
4 .

Hence
∩4

i=2E
2
i \R2(G) = ∅, which gives part (a).

(b) First take an element x ∈ (E2
1 ∩ E2

2) \ (E2
3 ∪ E2

4), then clearly
x1, x2 ∈ E2

G(x). But x1 ̸∈ E2
2 and this implies that E2

G(x) ̸= E2
1 or E2

2 .
Also E2

G(x) ̸= E2
3 or E2

4 , as x ̸∈ E2
3 ∪ E2

4 . On the other hand,
E2

G(x) ̸= G, as x ∈ G \ R2(G). Therefore E2
G(x) ̸= G,E2

1 , E
2
2 , E

2
3 or

E2
4 , which contradicts the number of 2-Engelizers |E2(G)| = 5, and so

(E2
1 ∩ E2

2) \ (E2
3 ∪ E2

4) = ∅ .
Now assume that x ∈ (E2

1 ∩E2
2 ∩E2

3) \E2
4 , then x1, x2, x3 ∈ E2

G(x).
It can be easily seen that E2

G(x) ̸= E2
1 , E

2
2 or E2

3 . Also E2
G(x) ̸= E2

4

or G, as x /∈ E2
4 and x /∈ R2(G). Therefore E2

G(x) ̸= G,E2
1 , E

2
2 , E

2
3 , E

2
4 ,

which means |E2(G)| must be at least 6 and this gives a contradiction.
Thus (E2

1 ∩ E2
2 ∩ E2

3) \ E2
4 = ∅. □

Remark 3.5. Note that the above lemma shows that the group G is at
most a disjoint union of its four proper 2-Engelizers, when |E2(G)| = 5.
Also, in this case we have

R2(G) =
4∩

i=1

E2
i = E2

i ∩ E2
j ∩ E2

k = E2
i ∩ E2

j ,

for all 1 ≤ i ̸= j ̸= k ≤ 4.

In the following, we compute the number of 2-Engelizers of some
groups, which will be used in our final result.

Example 3.6. (i) If G/R2(G) ∼= S3 = ⟨xR2(G), yR2(G) | x2, y3, yyx ∈
R2(G)⟩. Then it is clear that |G/R2(G)

H/R2(G)
| = 2 or 3, for every proper

subgroup H/R2(G) of G/R2(G). Thus H = R2(G) ∪ h1R2(G) or H =
R2(G) ∪ h2R2(G) ∪ h3R2(G), where h1, h2, h3 ∈ H \ R2(G). Therefore
the proper subgroups of G properly containing R2(G) are as follows:

H1 = R2(G) ∪ yR2(G) ∪ y2R2(G); H2 = R2(G) ∪ xR2(G);

H3 = R2(G) ∪ xyR2(G); H4 = R2(G) ∪ xy2R2(G).

Take an element a ∈ G \ R2(G) then aR2(G) = hR2(G), for some
h ∈ {y, y2, x, xy, xy2}. Thus, E2

G/R2(G)(aR2(G)) = E2
G/R2(G)(hR2(G))

and so Lemma 2.3 implies that E2
G(a) = E2

G(h).
Now, we show that Hi’s are the only proper 2-Engelizers of G. As-

sume h ∈ Hi \ R2(G) and E2
G(h) ⊆

∪
j ̸=i Hj, where 1 ⩽ i, j ⩽ 4 . On

the other hand, h ∈ E2
G(h) implies that E2

G(h) ̸= Hj, for 1 ⩽ j ̸= i ⩽ 4.
Therefore E2

G(h) = Hi gives the claim and so |E2(G)| = 5.
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(ii) The factor group G/R2(G) ∼= C2 ×C6, has the following presen-
tation

G

R2(G)
= ⟨xR2(G), yR2(G) | x2, y6, [x, y] ∈ R2(G)⟩

= {1̄, x̄, ȳ, ȳ2, ȳ3, ȳ4, ȳ5, x̄y, ¯xy2, ¯xy3, ¯xy4, ¯xy5},
where¯means modulo R2(G).

Clearly, non-trivial proper subgroups of G/R2(G), which properly
containing R2(G) are as follows:

H1 = R2(G)∪xR2(G), H2 = R2(G)∪xy3R2(G), H3 = R2(G)∪y3R2(G)

H4 = R2(G) ∪ y2R2(G) ∪ y4R2(G),

H5 = R2(G) ∪ yR2(G) ∪ y2R2(G) ∪ y3R2(G) ∪ y4R2(G) ∪ y5R2(G),

H6 = R2(G)∪ xyR2(G)∪ y2R2(G) ∪ xy3R2(G) ∪ y4R2(G) ∪ xy5R2(G),

H7 = R2(G) ∪ xy2R2(G) ∪ y4R2(G) ∪ xR2(G) ∪ y2R2(G) ∪ xy4R2(G).

Lemma 2.3 implies that Hi’s are the proper 2-Engelizers of G/R2(G),
for 1 ⩽ i ⩽ 4.

Now, in the subgroups H5, H6 and H7, if aR2(G) = bR2(G), for
a ̸= b, then a−1b ∈ R2(G). Remark 2.5 implies that a = b, which is a
contradiction and so |E2(G)| = 8.

(iii) Let G/R2(G) ∼= A4 be the alternating group of degree 4. Then by
a similar argument as part (i), non-trivial proper subgroups of G/R2(G)
which properly containing R2(G) are as follows:

H1 = R2(G) ∪ (1, 2)(3, 4)R2(G), H2 = R2(G) ∪ (1, 3)(2, 4)R2(G),

H3 = R2(G)∪(1, 4)(2, 3)R2(G), H4 = R2(G)∪(1, 2, 3)R2(G)∪(1, 3, 2)R2(G),

H5 = R2(G) ∪ (1, 2, 4)R2(G) ∪ (1, 4, 2)R2(G),

H6 = R2(G) ∪ (1, 3, 4)R2(G) ∪ (1, 4, 3)R2(G),

H7 = R2(G) ∪ (2, 3, 4)R2(G) ∪ (2, 4, 3)R2(G).

Lemma 2.3 implies that Hi’s are the only proper 2-Engelizers of G/R2(G),
for 1 ⩽ i ⩽ 7 and hence |E2(G)| = 8.

(iv) Let G/R2(G) be a semidirect product of cyclic groups of order 3
by the one of order 4, i.e.

G

R2(G)
∼= C3 ⋊ C4 = ⟨xR2(G), yR2(G) | x3, y4, xyx ∈ R2(G)⟩

= {1, x, x2, y, y2, y3, xy, xy2, xy3, x2y, x2y2, x2y3}.
Then by a similar argument as in the previous parts, non-trivial proper
subgroups of G/R2(G), which properly containing R2(G) are as follow-
ing

H1 = R2(G) ∪ y2R2(G), H2 = R2(G) ∪ xR2(G) ∪ x2R2(G),
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H3 = R2(G) ∪ yR2(G) ∪ y2R2(G) ∪ y3R2(G),

H4 = R2(G) ∪ xyR2(G) ∪ y2R2(G) ∪ xy3R2(G),

H5 = R2(G) ∪ x2yR2(G) ∪ y2R2(G) ∪ x2y3R2(G),

H6 = R2(G) ∪ xy2R2(G) ∪ x2R2(G) ∪ y2R2(G) ∪ xR2(G) ∪ x2y2R2(G).

By a similar argument as used in part (i), we conclude that |E2(G)| =
7.

The following result characterizes the factor group G/R2(G), when
the group G is five 2-Engelizers.

Theorem 3.7. Let G be a finite group with |E2(G)| = 5, then G/R2(G) ∼=
C3 × C3, D12, C2 × C6, C3 ⋊ C4, A4 or S3.

Proof. Assume that |E2(G)| = 5 then using Lemma 3.4 and Remark
3.5, there exist only four distinct 2-Engelizers such that G =

∪4
i=1E

2
i .

Hence

|G| = |E2
1 ∪ E2

2 ∪ E2
3 ∪ E2

4 | = |E2
1 |+ |E2

2 |+ |E2
3 |+ |E2

4 | − 3|R2(G)|.

Now, for computing the value of |R2(G)|, we show that if E2
i and E2

j

are arbitrary distinct proper 2-Engelizers of G, for 1 ⩽ i ̸= j ⩽ 4, then

|E2
i ||E2

j |
|G|

⩽ |R2(G)| ⩽ |G|
6

. (∗)

Clearly,
|E2

i ||E2
j |

|E2
i E

2
j |

= |E2
i

∩
E2

j |, and since E2
i E

2
j ⊆ G, we have 1

|E2
i E

2
j |
⩾ 1

|G| .

Therefore |E2
i

∩
E2

j | ⩾
|E2

i ||E2
j |

|G| implies that |R2(G)| ⩾ |E2
i ||E2

j |
|G| . On the

other hand, one observes that

|G| =|E2
1 |+ |E2

2 |+ |E2
3 |+ |E2

4 | − 3|R2(G)|
⩾2|R2(G)|+ 2|R2(G)|+ 2|R2(G)|+ 2|R2(G)| − 3|R2(G)| = 5|R2(G)|,

and hence |G|
|R2(G)| ⩾ 5. Assume |G|

|R2(G)| = 5, then G
R2(G)

is cyclic and so

G is 2-Engel group, which implies that |G|
|R2(G)| ⩾ 6 and proves the claim

of (∗).
Now without loss of generality, we may assume that |E2

1 | ⩾ |E2
2 | ⩾

|E2
3 | ⩾ |E2

4 |. Suppose |E2
1 | ⩽ |G|

4
, then we have

|G| =|E2
1 |+ |E2

2 |+ |E2
3 |+ |E2

4 | − 3|R2(G)|

⩽ |G|
4

+
|G|
4

+
|G|
4

+
|G|
4

− 3|R2(G)| = |G| − 3|R2(G)|,
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which is a contradiction. Hence |E2
1 | =

|G|
2

or |G|
3
. If |E2

1 | =
|G|
2
, we get

|G| =|E2
1 |+ |E2

2 |+ |E2
3 |+ |E2

4 | − 3|R2(G)|

=
|G|
2

+ |E2
2 |+ |E2

3 |+ |E2
4 | − 3|R2(G)|.

One can easily calculate that

|G|
2

< |E2
2 |+ |E2

3 |+ |E2
4 | ⩽ 3|E2

2 |,

and so |G|
6

< |E2
2 |.

Now applying (∗) to E2
1 and E2

2 , we have
|E2

1 ||E2
2 |

|G| ⩽ |G|
6

and hence

|E2
2 | ⩽ 2|G|

6
. That is |G|

6
< |E2

2 | ⩽ |G|
3
, so |E2

2 | =
|G|
5
, |G|

4
or |G|

3
. The

property
|E2

1 ||E2
2 |

|G| ⩽ |R2(G)| ⩽ |G|
6

implies that |G|
10

⩽ |R2(G)| ⩽ |G|
6
.

Therefore the value of |R2(G)| must be one of |G|
6
, |G|

7
, |G|

8
, |G|

9
or |G|

10
.

Now if |R2(G)| = |G|
7
, then |R2(G)| divides |E2

1 |, and hence 2 | 7,
which is impossible. Similarly |R2(G)| ̸= |G|

9
. Assume |R2(G)| = |G|

6

then | G
R2(G)

| = 6 and as G
R2(G)

can not be cyclic, hence G
R2(G)

∼= S3.

Let |R2(G)| = |G|
8
, then as |R2(G)| divides |E2

2 |, if |E2
2 | =

|G|
3
, then 3 |

8 and if |E2
2 | =

|G|
5
then 5 | 8, which both give contradictions. Therefore

|E2
2 | =

|G|
4
. Also, the property |G| = |E2

1 |+ |E2
2 |+ |E2

3 |+ |E2
4 |−3|R2(G)|

implies that |G|
4

= |E2
3 |+ |E2

4 | − 3 |G|
8
, and hence 5|G|

8
= |E2

3 |+ |E2
4 |. As

|E2
3 |, |E2

4 | ⩽ |G|
4
, we obtain 5|G|

8
= |E2

3 | + |E2
4 | ⩽ |G|

2
, which is again a

contradiction. So |R2(G)| can not be equal to |G|
8
.

Finally, assume that |R2(G)| = |G|
10

and |R2(G)| divides |E2
2 |. If

|E2
2 | =

|G|
3

then 3 | 10, and if |E2
2 | =

|G|
4

then 4 | 10, which are both

impossible. Therefore |E2
2 | =

|G|
5
. Now, again |G| = |E2

1 |+ |E2
2 |+ |E2

3 |+
|E2

4 | − 3|R2| implies that |E2
3 | + |E2

4 | =
6|G|
10

. Also, |E2
2 | ⩾ |E2

3 | ⩾ |E2
4 |

implies that 6|G|
10

= |E2
3 |+ |E2

4 | ⩽ 2|G|
5
, which is a contradiction. Hence

|R2(G)| ̸= |G|
10
.

Now, assume that |E2
1 | =

|G|
3
. In this case, using

|G| = |E2
1 |+ |E2

2 |+ |E2
3 |+ |E2

4 | − 3|R2(G)|,

we have 2|G|
3

< |E2
2 | + |E2

3 | + |E2
4 | ⩽ 3|E2

2 |. Thus |E2
2 | >

2|G|
9
. On the

other hand, |E2
1 | ⩾ |E2

2 | and so 2|G|
9

< |E2
2 | ⩽ |G|

3
. Therefore |E2

2 | =
|G|
3
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or |G|
4
. Again applying (∗) on E2

1 and E2
2 we get,

|E2
1 ||E2

2 |
|G|

⩽ |R2(G)| ⩽ |G|
6

.

Thus |G|
12

⩽ |R2(G)| ⩽ |G|
6
, and hence |R2(G)| = |G|

6
, |G|

7
, |G|

8
, |G|

9
, |G|
10
, |G|
11

or |G|
12
.

Assume that |R2(G)| = |G|
7
, and as |R2(G)| divides |E2

1 | we must

have 3 | 7, which is impossible. Similarly |R2(G)| ̸= |G|
8
, |G|
10

and |G|
11
.

Also, assume that |R2(G)| = |G|
6
, |E2

1 | =
|G|
3
, and |E2

2 | =
|G|
4

or |G|
3
, then

|G| = |E2
1 |+ |E2

2 |+ |E2
3 |+ |E2

4 | − 3|R2(G)|,

again implies that 11|G|
12

= |E2
3 |+ |E2

4 | ⩽ |G|
2

or 5|G|
6

= |E2
3 |+ |E2

4 | ⩽ 2|G|
3
,

respectively, which are both impossible. Hence |R2(G)| ̸= |G|
6
, and so

we have one of the following cases:

|R2(G)| = |G|
12

⇒ |G|
|R2(G)|

= 12 ⇒ G

R2(G)
∼= C12, A4, D12, C3⋊C4, C2×C6,

or

|R2(G)| = |G|
9

=⇒ |G|
|R2(G)|

= 9 =⇒ G

R2(G)
∼= C9, C3 × C3.

On the other hand, G
R2(G)

can not be cyclic, as G is not 2-Engel group.

Thus G
R2(G)

∼= D12, C2 × C6, A4, C3 ⋊ C4 or C3 × C3. □

Note that, Proposition 2.4, Theorem 3.1 and Example 3.6 imply that
the converse of the above result is not true in general. One can easily
see that, if G/R2(G) ∼= D12, C3 × C3 or S3, then |E2(G)| = 5.
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