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Abstract. As two-dimensional coupled system of nonlinear partial dif-

ferential equations does not give enough smooth solutions, when approx-

imated by linear, quadratic and cubic polynomials and gives poor con-

vergence or no convergence. In such cases, approximation by zero degree

polynomials like Haar wavelets (continuous functions with finite jumps)

are most suitable and reliable. Therefore, modified numerical method

based on Taylor series expansion and Haar wavelets is presented for solv-

ing coupled system of nonlinear partial differential equations. Efficiency

and accuracy of the proposed method is depicted by comparing with clas-

sical methods.
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240 I. Singh, Sh. Kumar

1. Introduction

A system of nonlinear PDEs play a significant role in nonlinear physical sci-

ence because they provide much physical information and more insight into the

physical aspects of the problem and thus lead to further applications such as

fluid mechanics, plasma physics, physical chemistry, biology, solid state physics,

chemical kinematics and geochemistry. The motivation of this paper is to ex-

tend the analysis of the Haar wavelet collocation method to solve three dif-

ferent kinds of nonlinear coupled equations, namely, the (2 + 1)-dimensional

coupled system of breaking soliton equations ([3], [12], [14]), Whitham-Broer-

Kaup wave equations for dispersive long waves in the shallow water [1] and the

variant Boussinesq equations [13].

During 19th century, wavelets were used in many applications of research

and technology. Haar wavelet being discontinuous and non-differentiable, is

the oldest mathematical tool for solving linear as well as nonlinear PDEs. It

is used for solving differential and integral equations in many research papers

such as [2], [6], [11], [15], [16], [17], [20], [21] and [22]. Efficient approaches are

presented in [4], [5], [8] and [9] for solving nonlinear PDEs.

The rest of this paper is arranged as follow:

In Section 2, we simply provide the mathematical framework of the computa-

tional operational matrices based on Haar wavelet basis functions. In Section

3, in order to illustrate the method, three models arising in physics are inves-

tigated. Convergence of Haar wavelet method is discussed in Section 4 and

convergence of quasilinearisation technique is presented in Section 5. In Sec-

tion 6, numerical examples are solved to establish the efficiency and accuracy

of the present method by comparing the numerical results with Adomain de-

composition method (ADM) and finite difference method (FDM). Stability of

the proposed method is discussed in Section 6. Finally, some conclusion and

discussion are provided.

2. Haar wavelet

Haar functions are orthogonal family of switched rectangular waveforms

where amplitudes can differ from one function to another. These are defined

in [α1, α3] as below:

Hi(x) =


1, α1 ≤ x < α2,

−1, α2 ≤ x < α3,

0, elsewhere,

(2.1)

where α1 = k
m , α2 = k+0.5

m and α3 = k+1
m . Integerm = 2j , (j = 0, 1, 2, 3, 4, .......J)

indicates the level of the wavelet, and k = 0, 1, 2, 3, .....,m−1 is the translation
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Modified Wavelet Method for Solving Some Nonlinear Coupled Evolution Equations 241

parameter. Maximal level of resolution is J. The index i = m+ k + 1. In case

of minimal values, m = 1, k = 0 we have i = 2. The maximal value of i is

i = 2M , where M = 2J .

Define the collocation points xl = (l−0.5)
2M , where l = 1, 2, 3, ..., 2M . The opera-

tional matrix of integration, which is a 2M × 2M square matrix, is defined by

the relations:

P1,i(x) =


x− α1, x∈[α1, β1),

γ1 − x, x∈[β1, γ1),

0, elsewhere,

(2.2)

and

P2,i(x) =


1
2 (x− α1)2, x∈[α1, β1),

1
4m2 − 1

2 (γ1 − x)2, x ∈ [β1, γ1),
1

4m2 , x∈[γ1, 1),

0, elsewhere.

(2.3)

3. Applications

In this section, the modified Haar wavelet collocation method is used to

find the approximate solutions of three kinds of coupled evolution equations,

namely, (2 + 1)- dimensional coupled system of breaking soliton equations,

Whitham-Broer-Kaup wave equations for dispersive long waves in the shallow

water and the variant Boussinesq equations. The system of partial differential

equations is converted into a system of nonlinear ordinary differential equations

by using some wave transformations and apply quasilinearisation technique to

convert a system of nonlinear ordinary differential equations into a system of

linear ordinary differential equations and then apply Haar wavelet collocation

method to solve such linear system of ordinary differential equations. All the

equations discussed in this paper have non-linear phrases of power type.

3.1 (2 + 1)- dimensional system of breaking soliton equations described in [12]:

(2 + 1)- dimensional interaction of a Riemann wave propagating along the

y–axis with a long wave along the x-axis is represented as{
ut + auxxy + 4auvx + 4auxv = 0,

uy = vx,
(3.1)

where a is known constant.

Using wave variable transformation{
u(x, y, t) = u(ξ),

v(x, y, t) = v(ξ), ξ = x+ y − ηt. (3.2)
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From (3.1), we obtain{
−ηu′(ξ) + au′′′(ξ) + 4au(ξ)v′(ξ) + 4au′(ξ)v(ξ) = 0,

u′(ξ) = v′(ξ).
(3.3)

Integrating the second equation of (3.3) with respect to ξ, and for simplicity,

considering the constants of integration equal to zero, we obtain

u(ξ) = v(ξ). (3.4)

Substituting (3.4) into first equation of (3.3) and integrating one time, we

obtain

− ηu(ξ) + 4au2(ξ) + au′′(ξ) = 0. (3.5)

After simplification, from (3.5), we obtain

au′′(ξ) = ηu(ξ)− 4au2(ξ), (3.6)

with initial conditions obtained from exact solutions. The exact solutions of

(3.6) are finding by using tanh–coth method combined with Riccati equation

as discussed in [3] and [14]. Choosing the initial value approximation say u0(ξ).

Comparing the Equation (3.6) with

u′′(ξ) = F (ξ, u(ξ), u′(ξ)). (3.7)

We have F (ξ, u(ξ), u′(ξ)) = 1
a

[
ηu(ξ)− 4au2(ξ)

]
. Expanding the nonlinear

function F around the initial approximation u0(ξ), using Taylor series up to

two terms, to linearize the nonlinear term. From (3.7), we obtain

u′′(ξ) = F [u′0(ξ), u0(ξ), ξ] +
[
u(ξ)− u0(ξ)

] dF
du0

[u′0(ξ), u0(ξ), ξ]

+
[
u′(ξ)− u′0(ξ)

] dF
du′0

[u′0(ξ), u0(ξ), ξ]. (3.8)

Applying (3.8) in (3.6), we obtain

au′′(ξ) =
[
ηu0(ξ)− 4au2

0(ξ)
]

+ (u(ξ)− u0(ξ))(η − 8au0(ξ)). (3.9)

After simplification, from (3.9), we obtain

au′′(ξ)− (η − 8u0(ξ))u(ξ) = 4au2
0(ξ). (3.10)

Consider the Haar wavelet approximation

u′′(ξ) =

2M∑
i=1

aiHi(ξ), (3.11)

and integrating (3.11), twice with respect to ξ, from 0 to ξ, we obtain

u′(ξ) = u′(0) +

2M∑
i=1

aiP1,i(ξ), (3.12)
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Modified Wavelet Method for Solving Some Nonlinear Coupled Evolution Equations 243

and

u(ξ) = u(0) + ξu′(0) +

2M∑
i=1

aiP2,i(ξ). (3.13)

From (3.10), (3.11), (3.12) and (3.13), we obtain the system of algebraic equa-

tions. After solving such system of algebraic equations, we obtain wavelet

coefficients. The approximate solution of (3.9), say u1(ξ) is obtained by substi-

tuting the wavelet coefficients into (3.13). Repeating the above procedure for

u1(ξ), we obtain approximate solution say u2(ξ). The accuracy of the approx-

imate solution is increases by repeating the above process. To illustrate the

efficiency and accuracy, these approximation results are compared with exact

solutions given in [3] and [14]. These solutions were obtained with the aid of

tanh–coth method combined with Riccati equations.

3.2 Whitham-Broer-Kaup model:

Whitham-Broer-Kaup model for dispersive long waves in the shallow water

small-amplitude regime is given by{
ut + uux + vx + buxx = 0,

vt − (uv)x − bvxx + cuxxx = 0,
(3.14)

where u = u(x, t) is the field of horizontal velocity, v = v(x, t) is the height

that deviates from the equilibrium position of the liquid and b, c are constants

which are represented in different diffusion powers. Using the wave variable

transformation u(x, t) = u(ξ) and v(x, t) = v(ξ), ξ = x − δt, the system of

partial differential equations is converted into the following system of ordinary

differential equation {
−δu′ + uu′ + v′ + bu′′ = 0,

−δv′ + (uv)′ − bv′′ + cu′′′ = 0.
(3.15)

Solving the first equation of (3.15) for the function v = v(ξ), we obtain the

relation

v = δu− 1

2
u2 − bu′. (3.16)

Substituting (3.16) in the second equation of (3.15), we obtain the following

ordinary differential equation

(b2 + c)u′′ − 1

2
u3 +

3

2
u2 − δ2u = 0. (3.17)

The exact solutions of (3.17) are finding by using G′

G expansion method as dis-

cussed in [1].

Comparing the Equation (3.17) with

u′′(ξ) = F (ξ, u(ξ), u′(ξ)), (3.18)
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where F ia a nonlinear function in term of u and u′. The value of F in this case

is F (ξ, u(ξ), u′(ξ)) = 1
(b2+c)

[
δ2u(ξ)− 3

2u
2(ξ) + 1

2u
3
]
. Expanding the nonlinear

function F around initial approximation say u0(ξ), using Taylor series up to

two terms, to linearize the nonlinear term. From (3.18), we obtain

u′′(ξ) = F [u′0(ξ), u0(ξ), ξ] +
[
u(ξ)− u0(ξ)

] dF
du0

[u′0(ξ), u0(ξ), ξ]

+
[
u′(ξ)− u′0(ξ)

] dF
du′0

[u′0(ξ), u0(ξ), ξ]. (3.19)

Applying (3.19) in (3.18), we obtain

(b2 + c)u′′(ξ) =
[1

2
u0

3 − 3

2
u0

2 + δ2u0

]
+ (u(ξ)− u0(ξ))(

3

2
u0

2 − 3u0 + δ2).

(3.20)

After simplification, from (3.20), we obtain

(b2 + c)u′′(ξ)− (
3

2
u0

2 − 3u0 + δ2) = −u0
3 +

3

2
u0

2. (3.21)

Consider the Haar wavelet approximation

u′′(ξ) =

2M∑
i=1

aiHi(ξ), (3.22)

and integrating (3.22), twice with respect to ξ, from 0 to ξ, we obtain

u′(ξ) = u′(0) +

2M∑
i=1

aiP1,i(ξ), (3.23)

and

u(ξ) = u(0) + ξu′(0) +

2M∑
i=1

aiP2,i(ξ). (3.24)

From (3.21), (3.22), (3.23) and (3.24), we obtain the system of algebraic equa-

tions. After solving such system of algebraic equations, we obtain wavelet

coefficients. The approximate solution of (3.20), say u1(ξ) is obtained by sub-

stituting the wavelet coefficients into (3.24). Repeating the above procedure

for u1(ξ), we obtain approximate solution say u2(ξ). The accuracy of the ap-

proximate solution is increases by repeating the above process. By substituting

the values of u(x, t) into (3.16), we obtain solution v(x, t). To illustrate the ef-

ficiency and accuracy of the proposed method, these approximate solutions are

compared with exact solutions given in [1] and are given by

u(x, t) =
δ(A+B)

(
1 + tanh( δ(x−δt)

2
√
b2+c

)
)

(
B +Atanh ( δ(x−δt)

2
√
b2+c

)
) , (3.25)
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provided A 6= ±B, where A, B and δ are free parameters. Accordingly the

solution of v(x, t) is

v(x, t) =
1

2
√
b2 + c

δ2(A+B)2(
√
b2 + c− b)(

Bcosh ( δ(x−δt)
2
√
b2+c

) +Asinh ( δ(x−δt)
2
√
b2+c

)
)2 (3.26)

3.3 The Variant Boussinesq Equations:

In this section, we will apply the modified Haar wavelet method to find the

approximate solution of the variant Boussinesq equation in the form{
ut +Hx + uux = 0,

Ht + (uH)x + uxxx = 0.
(3.27)

Using the wave variable transformation u(x, t) = u(ξ) and H(x, t) = H(ξ), ξ =

x−ωt, the system of partial differential equations is converted into the following

system of ordinary differential equation{
−ωu′ +H ′ + uu′ = 0,

−ωH ′ + (uH)′ + u′′′ = 0.
(3.28)

Solving the first equation of (3.28) for the function H = H(ξ), we obtain the

relation

H = ωu− 1

2
u2. (3.29)

Substituting (3.29) in the second equation of (3.28), we obtain the following

ordinary differential equation

u′′ − 1

2
u3 +

3

2
ωu2 − ω2u = 0. (3.30)

The exact solutions of (3.28) are finding by using MSE method as discussed

in [13]. Consider the initial approximation is u0(ξ). After using the proposed

method, we obtain

u′′(ξ)− (1− 3u0 +
3

2
u0

2)ur+1 = −u0
3 +

3

2
u0

2. (3.31)

From (3.31), (3.22), (3.23) and (3.24), we obtain the system of algebraic equa-

tions. After solving such system of algebraic equations, we obtain wavelet

coefficients. The approximate solution of (3.31), say u1(ξ) is obtained by sub-

stituting the wavelet coefficients into (3.24). Repeating the above procedure

for u1(ξ), we obtain approximate solution say u2(ξ). The accuracy of the ap-

proximate solution is increases by repeating the above process. By substituting

the values of u(x, t) into (3.29), we obtain solution H(x, t). To illustrate the

efficiency and accuracy of the proposed method, these approximate solutions

are compared with exact solutions given in [13] and are given by

u(x, t) = ω
(

1± tanh
(ω

2
(x− ωt)

))
, (3.32)
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and

H(x, t) =
ω2

2
sech2

(ω
2

(x− ωt)
)
. (3.33)

4. Convergence of Haar wavelet method

The convergence of Haar wavelet method, given in [2] is stated below:

Assume that u(ξ) be a differentiable function with bounded first order deriv-

ative on [0, 1] and u2M (ξ) be the Haar wavelet approximation solution. Then,

the error function is

error =‖ u(ξ)− u2M (ξ) ‖≤ 1

2J
. (4.1)

From (3.18), we see that error is inversely proportional to the level of resolution.

It ensures the convergence of Haar wavelet approximation at higher level of

resolution J .

5. Convergence of quasilinearization technique

Consider the nonlinear second order differential equation

y′′(x) = F (y), (5.1)

with initial conditions

y(0) = y(b) = 0. (5.2)

Using quasilinearization technique, from (5.1), we obtain

y′′r+1(x) = F (yr) + [yr+1(x)− yr(x)]F ′(yr), (5.3)

with initial conditions

yr+1(0) = yr+1(b) = 0. (5.4)

Let y0(x) be some initial approximation. Each function yr+1(x) is a solution of

a (5.3), where yr is always considered known and is obtained from the previous

iteration. Now, subtracting rth equation from the (r+1)th equation, we obtain

[yr+1 − yr]′′ =

f(yr)− f(yr−1) + [yr+1 − yr]f ′(yr)− [yr − yr−1]f ′(yr−1). (5.5)

Considering (5.5) as a differential equation for [yr+1− yr] and converting (5.5)

into an integral equation, we obtain

[yr+1 − yr] =∫ b

0

K(x, y)
[
F (yr)− F (yr−1) + [yr+1 − yr]F ′(yr)− [yr − yr−1]F ′(yr−1)

]
dy,

(5.6)
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where K(x, y) is a Green’s function and is given by

K(x, y) =

{
x(y−b)

b , 0 ≤ x < y ≤ b,
(x−b)y

b , b ≥ x > y ≥ 0.
(5.7)

It is observed that max
x,y
| K(x, y) | = b

4 , where maximisation is taken over the

region 0 ≤ x < y ≤ b. Now, by using Taylor’s series, we obtain

F (yr) = F (yr−1) + [yr − yr−1]F ′(yr−1) +
[yr − yr−1]

2

2
F ′′(u), yr−1 < u < yr.

(5.8)

Consider max
y

(| F (y) |, | F ′(y) |) = m < ∞ and max
u

(F ′′(u)) = k. From (5.6),

we obtain

| [yr+1 − yr] |≤∫ b

0

| K(x, y) |
[
| [yr+1 − yr] || F ′(yr) | +

[yr − yr−1]2

2
| F ′′(u) |

]
dy. (5.9)

Taking maximization of (5.9), over x, we obtain

max
x
| [yr+1 − yr] | ≤

b

4

∫ b

0

[
max
x
| [yr+1 − yr] | m+ max

x

[yr − yr−1]2

2
k
]
dy.

(5.10)

After simplification, from (5.10), we obtain

max
x
| [yr+1 − yr] | ≤

b2m

4
max
x
| [yr+1 − yr] | +

b2k

8
max
x

[yr − yr−1]2. (5.11)

After simplification, from (5.11), we obtain

max
x
| [yr+1 − yr] | ≤

b2k
4

1− b2m
4

max
x

[yr − yr−1]2. (5.12)

Thus, the convergence is quadratic in nature.

6. Numerical Experiments and discussion

To illustrate the accuracy and efficiency of the proposed method, some nu-

merical examples are solved using proposed method. The obtained numerical

results are compared with exact solutions. We also report L∞, L2 and RMS

errors of the computed solutions which are defined as

L∞(u) = max
1≤i≤2M

∣∣∣uExact(ξi)− uApproximate(ξi)∣∣∣, (6.1)

L2(u) =

√√√√2M∑
i=1

[
|uExact(ξi)− uApproximate(ξi)|

]2
, (6.2)
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and

RMS =

√√√√∑2M
i=1

[
|uExact(ξi)− uApproximate(ξi)|

]2
2M

. (6.3)

The method with far less degrees of freedom and with smaller CPU time pro-

vides better solutions than classical ones. Among all the wavelet families math-

ematically most simple are the Haar wavelets. We introduce a Haar wavelet

method for solving two-dimensional coupled systems because it has many ad-

vantages features:

• Very high accuracy and fast transformation and possibility of imple-

mentation of fast algorithms compared with other known methods.

• The simplicity and the small computational costs resulting from the

sparsity of the transform matrices and the small number of significant

wavelet coefficients.

• Haar wavelet method is also very convenient for solving two-dimensional

boundary value problems, as the boundary conditions are taken care

of automatically.

Example 1.

For Equation (3.1), letting η = a = 1, the exact solution of (3.10) is

u(x, y, t) = v(x, y, t) =
3

8
sech2

(x+ y − t
2

)
. (6.4)

Table 1 shows the comparison of different norms of errors of Example 1 for

third iteration at different values of J . Table 2 show the comparison of Haar

wavelet solution (Third iteration and J=9) with exact solution, FDM and ADM

(Three-term approximation) at t = 0.1. Table 3 shows the computational time

of each method used in Example 1. Figure 1 shows the comparison of solutions

u(ξ) and v(ξ) of Example 1 for third iteration for J = 4. Figure 2 shows

the comparison of absolute errors of Example 1 for third iteration at J = 4.

Figure 3 and Figure 4 shows the physical behavior of solutions of Example 1

at t = 1/32 and t = 31/32 respectively.

Example 2.

For Equation (3.1), letting η = 4a and a = 1, the exact solutions of (3.10), is

given by

u(x, y, t) = v(x, y, t) =
3

2
sech2(x+ y − 4t). (6.5)

Table 4 shows the comparison of different norms of errors of Example 2 for

third iteration at different values of J . Table 5 show the comparison of Haar

wavelet solution (Third iteration and J=9) with exact solution, FDM and ADM

at t = 0.025. Table 6 shows the computational time of each method used in
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J 2M L∞(ξ) L2(ξ) RMS error

1 4 2.7026E-004 4.4369E-004 2.2185E-004

2 8 6.2056E-005 1.0861E-004 3.8399E-005

3 16 1.6099E-005 2.7448E-005 6.8621E-006

4 32 4.1201E-006 6.8883E-006 1.2177E-006
Table 1. Comparison of errors of Example 1 at third itera-

tions for different values of J .

x=y Exact solution Haar wavelet FDM solution ADM solution

solution (J=9)

0.1 0.3740640602 0.3740640603 0.3741000000 0.3740640625

0.2 0.3666874675 0.3666874681 0.3667835408 0.3666890625

0.3 0.3525055683 0.3525055699 0.3526443326 0.3525390625

0.4 0.3325693099 0.3325693127 0.3327340362 0.3328140625

0.5 0.3082504610 0.3082504649 0.3084275266 0.3093140625
Table 2. Comparison of solutions of Example 1 at t = 0.1.

2M Comput. time of Haar Comput. time of Comput. time of

wavelet method (in sec) ADM (in sec) FDM (in sec)

4 0.22 0.27 0.31

8 0.38 0.52 0.55

16 1.59 2.05 2.25

32 7.12 9.57 10.22

64 15.58 19.18 20.12
Table 3. Comput. times of different methods of Ex 1.

Example 2. Figure 5 and Figure 6 shows the physical behavior of solutions

of Example 2 at t = 1/32 and t = 23/32 respectively. Figure 7 shows the

comparison of solutions u(ξ) and v(ξ) of Example 2 for third iteration for

J = 4. Figure 8 shows the comparison of absolute errors of Example 2 for

third iteration at J = 4.

Example 3.

For Equation (3.1), letting η = −4a and a = 1, the exact solution is

u(x, y, t) = v(x, y, t) =
1

2
[1− 3tanh2(x+ y + 4t)]. (6.6)

Table 7 shows the comparison of different norms of errors of Example 3 for

third iteration at different values of J . Table 8 shows the comparison of Haar

wavelet solution (Third iteration and J=4) with exact solution and FDM at

t = 0.025. Table 9 shows the computational time of each method used in
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for third iteration and
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Figure 2. Absolute

errors of Example 1 for

third iteration at J =

4.

J 2M L∞(ξ) L2(ξ) RMS error

1 4 5.7587E-003 1.1613E-002 4.1059E-003

2 8 1.4085E-003 3.0346E-003 1.0729E-003

3 16 3.4106E-004 7.6843E-004 2.7168E-004

4 32 8.7036E-005 1.9274E-004 6.8144E-005
Table 4. Comparison of errors of Example 2 at third itera-

tions for different values of J .

x=y Exact solution Haar wavelet FDM solution ADM solution

solution (J=9)

0.1 1.4850994362 1.4850994409 1.4850000000 1.4850994333

0.2 1.3727054427 1.3727054783 1.3719483800 1.3726869000

0.3 1.1796715994 1.1796716707 1.1781602658 1.1786458333

0.4 0.9521093849 0.9521094706 0.9503031742 0.9384322333

0.5 0.7303760417 0.7303761128 0.7288876135 0.6399501000
Table 5. Comparison of solutions of Example 2 at t = 0.025.

Example 3. Figure 9 show the comparison of solutions of Example 3 for third

iteration at J = 4 and Figure 10 show the absolute errors of Example 3 for

third iteration at J = 4.

Example 4:
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2M Comput. time of Haar Comput. time of Comput. time of

wavelet method (in sec) ADM (in sec) FDM (in sec)

4 0.27 0.28 0.31

8 0.29 0.44 0.56

16 1.49 2.01 2.15

32 4.28 5.22 6.01

64 13.33 18.25 19.12
Table 6. Comput. times of different methods of Ex 2.

Figure 3. Physical

behavior of solutions of

Example 1 at t = 1/32.

Figure 4. Physical

behavior of solutions of

Example 1 at t =

31/32.

Figure 5. Physical

behavior of solutions of

Example 2 at t = 1/32.

Figure 6. Physical

behavior of solutions of

Example 2 at t =

23/32.

In Equation (3.14), take c = 3, b = 1 and δ = 1. If A = 0, B = 1, the exact

solution is

u(x, t) = 1 + tanh
(x− t

4

)
, (6.7)

and

v(x, t) =
1

4
sech2

(x− t
4

)
. (6.8)

Table 10 and Table 11 shows the different norms of errors of Example 4 for

solution u(x, t) and v(x, t) for third iteration at different values of J . Table 12
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7. Comparison of

solutions of Example 2

for third iteration and

J = 4.
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Figure 8. Absolute

errors of Example 2 for

third iteration at J =

4.

J 2M L∞(ξ) L2(ξ) RMS error

1 4 5.7587E-003 1.1613E-002 5.8066E-003

2 8 1.4085E-003 3.0346E-003 1.0729E-003

3 16 3.4106E-004 7.6843E-004 1.9211E-004

4 32 8.7036E-005 1.9274E-004 3.4072E-005
Table 7. Comparison of errors of Example 3 at third itera-

tions for different values of J .

x=y Exact solution Haar wavelet FDM solution

solution (J=4)

0.05 0.4415644744 0.4415820320 0.4411910000

0.10 0.3727054427 0.3727426501 0.3719483800

0.15 0.2834581791 0.2835158273 0.2822940010

0.20 0.1796715994 0.1797446173 0.1781602658

0.25 0.0673666438 0.0674493873 0.0656304767
Table 8. Comparison of solutions of Example 3 at t = 0.025.

and Table 13 shows the comparison of Haar wavelet solutions u(x, t) and v(x, t)

(Third iteration and J=4) with exact solution and FDM. Table 14 shows the

computational time of each method used in Example 4. Figure 11 shows the

comparison of solution u(x, t) with exact solution for third iteration at J = 3.

Figure 12 shows the comparison of absolute errors of solution u(x, t) for third
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2M Comput. time of Haar Comput. time of

wavelet method (in sec) FDM (in sec)

4 0.27 0.32

8 0.35 1.12

16 1.52 2.38

32 7.48 8.12

64 15.03 19.24
Table 9. Comput. time of different methods of Ex 3.

Figure 9. Physical

behavior of solutions of

Example 3 for −5 ≤
x ≤ 5, −5 ≤ y ≤ 5 and

t = 1/32.

Figure 10. Physical

behavior of solutions of

Example 3 for −5 ≤
x ≤ 5, −5 ≤ y ≤ 5 and

t = 23/32.

J 2M L∞(ξ) L2(ξ) RMS

1 4 1.4082E-004 2.6606E-004 1.3303E-004

2 8 3.4459E-005 6.6322E-005 2.3448E-005

3 16 8.6882E-006 1.6616E-005 4.1541E-006

4 32 2.1846E-006 4.1572E-006 7.3489E-007

Table 10. Comparison of errors of solution u(x, t) of Example

4 at third iterations for different values of J .

iteration at J = 3. Figure 13, Figure 14, Figure 15 and Figure 16 shows the

physical behavior of solutions of Example 4 for different x and t.

Example 5:
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Example 4 for third

iteration and J = 3.
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Figure
12. Comparison

of absolute errors of

Example 4 for third

iteration at J = 3.

J 2M L∞(ξ) L2(ξ) RMS

1 4 2.3410E-004 5.6391E-004 2.8196E-004

2 8 5.8576E-005 1.4093E-004 4.9828E-005

3 16 1.4647E-005 3.5231E-005 8.8078E-006

4 32 3.6564E-006 8.8174E-006 1.5587E-006

Table 11. Comparison of errors of solution v(x, t) of Example

4 at third iterations for different values of J .

x Exact solution Haar wavelet FDM solution

solution (J=4)

0.5 1.0249947929 1.0249945464 1.0250000000

0.9 1.0499583749 1.0499578713 1.0499995120

1.3 1.0748596906 1.0748589283 1.0749980499

1.7 1.0996679946 1.0996669801 1.0999951312

2.1 1.1243530017 1.1243517497 1.1249902791

Table 12. Comparison of solutions u(x, t) of Example 4 at

t = 0.1.

In Equation (3.28), take ω = 1. The exact solution is

u(x, t) = 1 + tanh
(x− t

2

)
, (6.9)
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Figure 13. Physical

behavior of u(x, t) of

Example 4 for 0 ≤ x ≤
10 and 0 ≤ t ≤ 20.

Figure 14. Physical

behavior of u(x, t) of

Example 4 for 0 ≤ x ≤
30 and 0 ≤ t ≤ 20.

Figure 15. Physical

behavior of v(x, t) of

Example 4 for 0 ≤ x ≤
10 and 0 ≤ t ≤ 10.

Figure 16. Physical

behavior of v(x, t) of

Example 4 for 0 ≤ x ≤
20 and 0 ≤ t ≤ 30.

x Exact solution Haar wavelet FDM solution

solution (J=4)

0.5 0.2498438150 0.2498462573 0.2497875000

0.9 0.2493760401 0.2493796965 0.2487549041

1.3 0.2485990066 0.2486026594 0.2472022671

1.7 0.2475165727 0.2475190471 0.2450296734

2.1 0.2461340827 0.2461342776 0.2422372366

Table 13. Comparison of solutions v(x, t) of Example 4 at t = 0.1.

and

H(x, t) =
1

2
sech2

(x− t
2

)
. (6.10)
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2M Comput. time of Haar Comput. time of

wavelet method (in sec) FDM (in sec)

4 0.23 0.33

8 0.37 0.44

16 1.19 2.02

32 8.14 8.32

64 14.11 16.10
Table 14. Comput. time of different methods of Example 4.

Table 15 and Table 16 show the comparison of numerical solutions u(x, t) and

H(x, t) with exact solution and FDM. Table 17 shows the computational time

of each method used in Example 5.

ξ Exact solution Haar wavelet FDM solution

solution (J=4)

0.1 1.0499583749 1.0499564059 1.0500000000

0.2 1.0996679946 1.0996639956 1.0997506250

0.3 1.1488850336 1.1488790371 1.1490074595

0.4 1.1973753202 1.1973674436 1.1975357990

0.5 1.2449186624 1.2449090881 1.2451149991

0.6 1.2913126124 1.2913014557 1.2915422585

0.7 1.3363755443 1.3363628759 1.3366357074

0.8 1.3799489622 1.3799349146 1.3802367217

0.9 1.4218990052 1.4218837444 1.4222114255

Table 15. Comparison of solutions u(x, t) of Example 5 for

ω = 1.

7. Stability of proposed method

There are many ways to describe the idea of stability analysis. Clearly a

computation is stable if it does not ”blow up”. In this section, we find the

stability of the numerical computations using the procedure based on Patra &

Ray (2014). The stability of a numerical computation is calculated by taking

the different length step size ω. To obtain a stable result, a set of different length

step sizes are considered. The stability criterion in this analysis is related with

1% of the relative error to u0 for the given simulation time.

R.E =
∣∣∣uApproximate − u0

uApproximate

∣∣∣× 100 ≤ 1%, (7.1)

where uApproximate is the approximated value of u, which is obtained from

our proposed method. To show the behavior of solutions of above examples,
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ξ Exact solution Haar wavelet FDM solution

solution (J=4)

0.1 0.4987520803 0.4987521787 0.4987500000

0.2 0.4950331454 0.4950335439 0.4950249064

0.3 0.4889166233 0.4889175161 0.4888983884

0.4 0.4805214914 0.4805230460 0.4804898040

0.5 0.4700074244 0.4700097692 0.4699593185

0.6 0.4575684809 0.4575717309 0.4575015557

0.7 0.4434257465 0.4434300078 0.4433382002

0.8 0.4278193930 0.4278247303 0.4277100177

0.9 0.4110006146 0.4110070531 0.4108687560

Table 16. Comparison of solutions H(x, t) of Example 5 for

ω = 1.

2M Comput. time of Haar Comput. time of

wavelet method (in sec) FDM (in sec)

4 0.24 0.29

8 0.36 1.14

16 1.54 2.25

32 5.43 6.38

64 13.20 20.14
Table 17. Comput. time of different methods of Example 5.

consider the interval 0.125 ≤ ω ≤ 0.0009765625.

For Example 1, take u0 = 0.374, the values of R.E is less than 0.02%.

For Example 2, take u0 = 1.48, the values of R.E is less than 0.3%.

For Example 3, take u0 = 0.44, the values of R.E is less than 0.3%.

For Example 4, take u0 = 1.00, the values of R.E is less than 0.31%.

For Example 5, take u0 = 1.04, the values of R.E is less than 0.9%.

From above numerical computation, we see that all the relative errors are less

than 1% for the given interval of ω, which confirm the computational stability

of u by our proposed method. Therefore, the proposed method is stable.
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8. Conclusion

It is concluded that, the proposed Haar wavelet method is computation-

ally simple, numerically fast for solving coupled evolution equations arising in

mathematical physics. The approximate solutions tends to exact solutions by

increasing level of resolutions and number of iterations. The significant feature

of proposed method is that it is applicable for high dimension problems (see,

for Example 1). It is easy to handle ordinary differential equations rather than

partial differential equations for nonlinear problems. This method with far less

degrees of freedom and with smaller CPU time provides solutions with negligi-

ble error. For getting the necessary accuracy the number of calculation points

may be increased.
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