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ABSTRACT. In this paper we apply a geometric integrator to the problem
of Lie-Poisson system for ideal compressible isentropic fluids (ICIF) nu-
merically. Our work is based on the decomposition of the phase space, as
the semidirect product of two infinite dimensional Lie groups. We have
shown that the solution of (ICIF) stays in coadjoint orbit and this result
extends a similar result for matrix group discussed in [6]. By using the
coadjoint action of the Lie group on the dual of its Lie algebra to advance
the numerical flow, we (as in [2]) devise methods that automatically stay

on the coadjoint orbit. The paper concludes with a concrete example.
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1. INTRODUCTION

Hamiltonian systems have a major role in physics, engineering and chem-
istry (see e.g., [7, [I1]). Lie-Poisson formalism is a well-known generalization
of Hamiltonian systems which occurs in many dynamical problems, e.g. the
Euler equations for the rigid body, the Vlasov-Poisson equations, the equation
for isentropic compressible fluids, ideal magnohydrodynamics, and others (see
[1} (111 (14} [15]). The Lie-Poisson equations are normally formulated in the dual
space of a Lie algebra g and their solutions are settled in the so-called coadjoint
orbit which is a nonlinear submanifold of g* (see [7] Ch. 14).

More precisely the Hamiltonian equation on g* is

d
o = adin (n). p(0) = po (L.1)

where H : g* — R is the Hamiltonian and %I is the functional derivative
defined in [7], p.11. Engp and Faltinsen [2] have introduced a numerical inte-
gration method of arbitrary order for any Lie-Poisson system in which preserves
coadjoint orbits, Casimires, and energy. Their algorithm uses the Runge-Kutta
Munthe-Kaas type [12] that render correctly several of the analytic features
of the exact solution of Lie-Poisson systems. The equation(1.1) in heavy top
problem has been investigated by Enge and Marthinsen (see [3, [4]), who apply
Munthe-Kaas and Crouch-Grossman methods for integrating it.

Some dynamical systems which are associated to semidirect product have been
introduced in [I0], these include the heavy top, compressible fluids, magno-
hydrodynamics and elasticity problems. In this paper we focus on equation
(1.1) for ideal compressible isentropic fluids problem. This problem is formu-
lated on an infinite dimensional semidirect product group S = D(Q) x» F(Q)
where D(Q2) and F(§2) are respectively the group of all diffeomorphisms and
the group of all real valued smooth functions on a suitable 3-dimensional sub-
manifold of R3. On the other hand, we have presented an explicit formula
computing of the exponential map on semidirect product Lie groups (see[13],
proposition 3.3 ). In this paper we apply this formula and the proposed algo-
rithm [2] for integrating (1.1) on ideal compressible isentropic fluids problem.
Our algorithm which is introduced in section 5, preserves the coadjoint orbit
and therefore preserves the Casimires invariants. This algorithm can be ap-
plied in similar situation, i.e., problems with semidirect product phase spaces.
For basic mathematical background we refer the reader to [7]; and for some
geometric numerical approaches to [8,[9]. In Section 2 we have discussed some
preliminaries and in section 3 the formulation of ideal compressible isentropic
fluid problem is presented in detail. The main technical results, used by the
algorithm, are presented in Section 4. Numerical algorithm and experiments
are included in Section 5.
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2. PRELIMINARIES AND NOTATIONS

2.1. Ideal compressible isentropic fluid(ICIF). For the sake of self suffi-
ciency and using the already introduced and known notations and definitions
we bring some related paragraphs from [10]. Let Q be a compact submanifold
of R? with smooth boundary, filled with a moving fluid free of exterior forces.
Let n(X,t), where X € Q, be the trajectory of fluid particle which at time
t =0is at X. Let n(.,t) : @ — §, be a time dependent diffeomorphism of
and denote the spatial velocity field of the fluid with v(z,t), i.e.,
on(X,t)

v(n(X, t)>t> = ot

Let p(z,t) denote the mass density function of the fluid at time t, and pg(x) =
p(x,0) the mass density in the reference configuration. Therefore the physical
problem of fluid motion has as configuration space the group D(2) of all dif-
feomorphisms of 2, and p(.,t) is determined by the configuration when pg is
known. The equations of motion are derived from three fundamental princi-
ples: conservation of mass, momentum and energy. By these principles we will
have the following equations: (see [10])

Op/ot + div(p(.,t)v) =0, (2.1)
and

ov 1

T (v- Vv = f;Vp, (2.2)

with the boundary condition v || 9 (no friction exists between fluid and
boundary) and the initial condition v(z,0) = vo(x) on Q. Here p is the pressure
function, and also we assume that the fluid is ideal and isentropic. The former
means that the force of stress per unit area exerted across a surface element
at z, with outward unit normal n at time t, is —p(z, ¢)n, and the latter means
that the internal energy of the fluid is [, pw(p)dz and p = p*w’(p), where
p'(p) > 0. These hypotheses imply that the total energy, which should be the
Hamiltonian of the system, is conserved.

2.2. Some results in Lie groups. We bring here some useful results from [7]
or [16]. Let G be a Lie group with the associated Lie algebra g. For any h € G
consider the inner automorphism Ij, : G — G, I(z) = hah™'(Vz € G) and
its differential map at unit element e € G, the adjoint operator Ady, : g — g,
i.e., Adp = do(I;). If g* be the dual of the space g, then we have the coadjoint
operator Adj : g* — g* by the usual definition

< Adjo, & >=< a,Adp€ >, Yh € G,Va € g*,V¢ € g.
It is well known (see[7]), that g* is foliated by coadjoint orbits O,,, where

O, ={Ad;-.ylge G} Cg", yeg
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Using the Lie bracket in g, for any £ € g we have the operator ad; : g — g, by
definition ad¢n = [€, 7], for all n € g, and its dual ad; : g* — g” is given by

(ad¢(a),m) = (o, aden) = (o, [§,1]), V& neEg Vacg
Also, we need the so-called dexp operator and its inverse. For this, let o(t) € g
be a differentiable curve then we have

%exp(a(t)) = dexp, (0’ (t)) exp(o(t)) = exp(o(t))dexp_, (o’ (1)), (2.3)

where
exp(ad,) — I

d = = d.. 2.4
eXpO’ a/do- Z (j + 1)! a (o8 ( )

It can be shown that for sufficiently small o(¢) there exists an inverse operator

given by

dexp, ' (v) = Hadﬁ(v), (2.5)

where By are the Bernoulli numbers, ad,(v) is the commutator [u,v], and
adk (v) is defined iteratively as ad® (v) = [u, ad®~1(v)], (see [2, 12]).

2.3. Semidirect products. In this paper, we only need the semidirect prod-
uct between two Lie groups in which one of them is a real vector space. More
precisely let (V,+) be a real vector space which as we know can be regarded
as a commutative Lie group which itself is its Lie algebra with vanishing Lie
bracket, G be a Lie group and g be its Lie algebra. Let A : G — Aut(V') be a
(left) smooth representation of the Lie group G and its derivation at identity
A g — End(V) be its induced representation of Lie algebra g on vector
space V. Denote by S = G x V the semidirect product group of G and V by
A multiplication:

(g1,u1) - (92,u2) = (91 - g2, u1 + A(g1)u2), (2.6)

for all (g1,u1),(g2,u2) € S, the identity element is (1¢,0) and the inverse
element is given by:

(gu)™" = (g7 =g Hu). (2.7)
The corresponding Lie algebra is s = g </ V where g is the Lie algebra of G
and its Lie bracket is given by:

[(€1,01), (€2,v2)] = ([€1, &2, N (§1)v2 — N (§2)v1), (2.8)
for all (&1, v1), (§2,v2) € s. The adjoint action of S on s is given by:
Ad(g,u) (57 U) = (Adgé-? )\(g)'U - )\/(Adgf)u), (29)

for all (g,u) € S and all (§,v) € 5. Also, we have the following formula for the
exponential map on s.
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Proposition 2.1. ([13], Proposition 3.8) Let (£,v) = (£(¢),v(t)) be a curve
in § such that emanates from the origin and is continuous at t = 0, then for
sufficiently small t > 0 we have:

exp(&,v) = (exp&, A(exp §)z)

where z = z(t) comes from the so-called Baker-Campbell-Hausdorff formula
and its first few terms are:

2= v ZX(Ev+ N0 + o X+ (2.10)

For the Baker-Campbell-Hausdorff formula e.g., see [16].

3. FORMULATION OF THE GOVERNING EQUATIONS

For the formulation of the ICIF problem [I10] , consider the equation (1.1),
let S = D(Q) x\ F(Q) where D(Q) is the Lie group of all diffeomorphisms
of Q, F() is the vector space of all smooth real-valued functions on  and
A D(Q) — Aut(F(Q)) is the action of D(2) on F(2) with definition:

Am)(f) = fon™", (3.1)
for all n € D(Q) and f € F(2). Therefore the group action is:
(m, f1)-(n2, f2) = (monz, f1 + fa0nr ") (3-2)

for all (n;, fi) € S,i = 1,2, and the related Lie algebra is s = X(2) xx F(Q)

where X() is the Lie algebra of all smooth vector fields on Q2 and X : X(Q) —

End(F(Q)), and the differential map of A at idg is given by (see [10]):
N(X)(f)=—-Lxf=-Vf-X (3.3)

for all (X, f) € s. Since the Lie algebra bracket on D(2) is minus the Jacobi-Lie
bracket of vector fields(see [7], p. 324), the Lie bracket in s is given by:

(X1, f1), (X2, f2)] = ([X1, Xa], Vf1 - Xo = Vfo- Xy) (3.4)

for all (X, f;) € s,i = 1,2. The exponential map is defined as in Proposition 2.1
and for the exponential map in the first component, i.e., exp : X(Q2) — D(Q)
we can use the solution of the following first order differential equation

WD _ X(6(w1), o(.0) =, (3.5)
since (e.g. see [11, p.17])
exp X (z) :== ¢(x,1), x €. (3.6)

Moreover the topological dual of s as a topological vector space is s* = X(Q)* x
F(Q)* where X(2)* = AY(Q) is the space of all one-forms and F(2)* is the
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space of all densities on € (see[10]) and s* acts naturally on s by the Lebesgue
integration pairing, i.e.,

(M, ), (X, f))s=9) : = (M, X) )=, x) + (0 ) F)=.F)

/M dx+/ flz 3.7

for all (M, p) € s* and for all (X, f) € s. Notice that the members of X(€2) and
X(Q)* = AY(Q) can be considered as 3-dimensional vector fields on 2 and also
the members of F(€2) and F(2)* can be considered as real valued functions
on . On the other hand the Hamiltonian function H : §* — R is given
by (see[10]):
101p) = 5 [ —SIM@)Pde+ [ pwyuloa)ds

for all (M,p) € s*, where M(z) = p(z)v(x) here represents the momentum
density (see[10] for more details). Now, we can compute the functional deriva-
tlon 1 ¢ 5 where u = (M, p) € 5%, that it appears in the Lie-Poisson equation

.

Lemma 3.1. With the above notations we have:

oH _ (M(z) | M ()| /
5= (o) o~ 2 ) p@) (o))
Proof. Since each component of s* = X(2)* x F(Q)* acts on s = X(2) x F(Q)
separately, we can compute 3 5—H and 5—H where u = (M, p) € s*, and then we
will have %ZI = (gﬁ, %IZ ). In the first component:
(6—H M)y = 1i 1[H(M—F 0M,p) — H(M,p)]
53 OM) = lim - e dM,p Ny
1 1 1
:lim—/ —— (M + e 6M)(z)||> = — || M (z)||*)dx
Jim s | Gl @) = 1M @)P)
1
= [ —M(z) 6M(z)dx
| i) -5 ()
M
= (—,0M).
( ; )
Hence 22 = % € X(9Q) and in the second component:
0H .1
<E,5p> = lim ~[H(M,p+e dp) — H(M, p)]
1 [ M()|?
=—— [ ——5— dp(z)dx
2o )
o1
+ Jimy 2 [ (€ Ep))ulp(o) + < 3p(@) - pla)ulp(r)da
€ g Q

L[ M@ :
3 | e d+ [ (o) + plo’ (o) o).

p*(x
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Using suitable choice of dp, and by a convergence theorem (e.g. Lebesgue dom-
inated convergence theorem), we have interchanged the limit and the integral
and then in the last equality, for computing the limit which is placed into
integral, I’'Hopital’s rule has been applied. Finally, we have

SH _ |M()| /
Sp T 2°() +w(p(z)) + p(x)w (p(z)),
which completes the proof. (I

4. MAIN RESULTS

In this section, we state and prove our main results which make it possible
to obtain Algorithm 1 in the next section. The following theorem asserts that
the solution of the equation (1.1) of ICIF under the hypothesis explained in
the Section 3, belongs to the coadjoint orbit of the initial value. The proof is
similar to the proof of the Theorem 1 in [2] and hence is omitted.

Theorem 4.1. Let p(z,t) = (M(x,t), p(x,t)) € s*, the solution of the equation
(1.1) with the initial value po = (M(x,0),p(z,0)) € s* on the group S =
D(2) x5 F(Q) be given by
M(z,t t)) = Ad* 4.1
(M(x.0).p(e.0) = A () (11)

then
/ _1 ,0H
o(t)= dexpa(lt)(—

50 (4.2)

where o(t) = (X(¢), f(t)).
One can rewrite (4.1) as follows:

ula,t) = Ad* (o) € Oy, = {Ad'pols € S}, (43)

(exp(X (1), (#) "1
hence the solution p(z,t) of (1.1) lies on the coadjoint orbit O, . Therefore
this theorem generalizes the Theorem 5.6 in [6], p. 287, and Theorem 1 in [2].
In order to use the formula (4.1), we need an explicit formula for Ad* operator
as follows.

Lemma 4.2. Let (n,f) € S and (M, p) € s*, then

Adyy (M, p) = (In (D" (M on+ (pen)(Vf om) , (pomdn).  (4.4)

where Dn, Jn and Vf are derivative matriz of n, the Jacobian of n and the
gradient of f, respectively.

Proof. From the pairing (3.7) between s* and s, (2.9) , (3.1) and the following
formula (see [7], p. 324 )

AdyX =DnoX on 1,
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we have:

<Ad>(kn,f)(M7 ,0) ) (Xv g)>

<(M7 ,0)7 Ad(nyf)(Xa g)>
=((M,p), (DnoXon™", gon ' +Vf-(DnoXon "))

M(x)-[D,_, 0l X(n~(2)) de

{o\p\

+

p(@) (g~ (@) + Vf(2) - [Dy-r@ynl X (7" (2))) da,

for any (X, g) € s, where ” -7 denotes the inner product between vectors in R3.
Now, by letting n~!(z) = t, we obtain

(Ad(, (M, p), (X,9)) = QM(n(t)) - [Den) X (t) Jyn dt

+ [ o) (ot0) + VI 0e) - (Dl X)) I

= [ 3 Dl (M@(®) + pa®)V 00 - X (0

+ [ Jnptao)ate)

= (I (D" (Mon+(pon) (VS am) , (pom)In), (X,g))
which completes the proof. ]

Now, by applying the above Lemma we will have the following corollary.

Corollary 4.3. For all (M,p) € s* and for all (X, f) € s sufficiently near
(0,0), we have:

Adgp—x,— (M, p) = (J exp(=X)[D exp(=X)]" (M o exp(=X) — (p o exp(—X))(VZ 0 exp(—X))) ,
poexp(—X)J exp(—X)),

where Z comes from Baker-Campbell-Hausdorff formula and its first few terms
are

1 1
Z:f+§Vf.X+6V(Vf~X)oX+~~ (4.5)
Proof. From (2.7), (3.1) and Proposition 2.1

exp(—X, —f) = exp(X, [)7' = (exp X, Zoexp(—X))™!
= (exp(—X), —Z oexp(—X) oexp X) (4.6)
= (exp(=X), -2)

where Z is similar as (2.10). Now the conclusion follows from Lemma 4.2. O
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5. NUMERICAL ALGORITHM AND AN EXAMPLE

Consider the equation (1.1) under those circumstances which explained in
the Section 3. Now, using the results of the Section 4, we can present the
following numerical algorithm for solving the equation (1.1).

Algorithm 1

1. Given Q,w,ug = (Mo, po) as in the Subsection 2.1 and Section 3, also
let Xog =0 and fo = 0. Fix z € Q and t > 0 sufficiently small (by virtue of
Proposition 2.1) we are going to compute u(x,t) = (M(x,t), p(z,t)), so let h
be an appropriate stepsize.

oH
2. Using Lemma 3.1, calculate i
7

3. Truncate the series (2.5) for dexp ', using one of the known methods
in [5L [12], e.g. Lie forward Euler, Lie trapezoidal rule, Runge-Kutta, etc, solve
the equation (4.2) to obtain o(t) = (X(¢t), f(¢)).

4. Calculate exp(—X(¢),—f(t)) = (exp(—X),—Z); see (4.6). For this aim,
solve the differential equation (3.5) and use (3.6) to obtain exp(—X(t)) by an
appropriate numerical method and truncate the series (4.5) to approximate Z.

5. Caculate Adep(—X(t),—f(t))(M’ p), using the Corollary 4.3.

T
More concretely, let 0 < t < T and N = [ﬁ]’ now the Algorithm’s steps

can be summarized as follows.

Algorithm 1

Input: Q,w, o
Output: uy

for n=0 to N-1

OHnv1 (M) (| My, ()2 !
Optnsr (pn(z) T m - T Wea(@) + palz)w <Pn<$>>>

(Xn+1, fn+1) = Ony1 form (4.2) by a Runge-Kutta method

exp(—Xn41) from (3.5) by a numerical or analytic method
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Zns1r = fat1 + 5V o1 - Xng1 + §V (Vg1 - Xn) - Xpg1 + -+ (truncating)

(Mp1, pnt1) = (J exp(—Xn+1)[D eXp(_Xn-i-l)]T(Mn o exp(—Xn+1) — (pn 0 exp(—Xp41))

(VZpy10exp(—=X,11))), Jexp(—Xnq1)pn © eXP(—XnH))

end for

Now, let us illustrate our approach to a concret example.

Example 1. Let © be the cylinder 0 < z < L and y2 + 22 < 7?2 where
0 <r< L. Let vg(z,y,2) = (L—1,0,0), po(x,y,2) = v+ L and My(x,y,z) =
(L? — 22,0,0) for (x,y,2) € €, be initial spatial velocity, initial mass density
and initial momentum density of the fluid, respectively. Notice that M = pv.
As usual we assume that the fluid is ideal and isentropic. Let w(p) = p, so
p = p*w'(p) = p? is the pressure function. For a numerical experiment let
L = 1. Now, we implement the Algorithm 1, input valus are My = 1 — 22 and
po = 1+ x. More precisely, we present the first iteration as below

0H, O0H

bpr  op
We truncate the series (2.5) to its first term, then the equation (4.2)becomes

o(t) = h%—g(uo), we are assuming h = 0.1, this leads to

(X1,f1):(71:([0.1—0.1$ 0 0

(mo)=([1—2 © O}T,%(—z2+6z+3)).

T 1
1, %(—12 + 6z + 3)).
Solving the system (3.5) that is

do((x,y,2),t) do1 doy dos
AN ARZARAN (el M < R
dt (dt’ dt’ dt) (0.1=0.1¢1,0,0),,
with initial value ¢((x,y, 2),0) = (z,y, 2) and considering (3.6), we have
]T

exp(—=X1) = [14+ (z— 1)’ y =z

Truncating the series (4.5) to its second term and calculating these terms of
Z1, we have

T
1 1 1
Z1~ fi+=Vf1.X1 = —(—92%+5 3 d VZ; = |—(28 —
1 f1—|—2Vf1 1 200( 92°+56x+33) and VZ; 100(28 92) 0 0| ,
moreover
[Dexp(—X1)]T = diag(e®?,1,1), Jexp(—X;) = %!,
and

My o exp(—X1) = [1— (1+ (z—1)e®H2 0 0]".
Therefore, for 0 < 2 < 1 we have
My = [~0.01e%2((z — 1)2e%2 + (z — 1)e®L +2)(19 — 9(z — 1)e®1) 0 0]
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and
pL = 60'1(2+ (ZE _ 1)60'1>.

The approximation of other iterations up to n = 4 are computing with a

T
0
0.2 14

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X

(A) The solution values of M,,. (B) The solution values of p,.

FiGure 1. Five iterations of M, and p, in Example 1 ob-
tained from Algorithm 1.

Matlab program and are given in the Figure 1. We assume that the stepsize
is At = 0.1 and we divide the interval of 0 < x < 1 to 10 subdivisions. For

computing of ¢, we use of Euler method with ¢ =0, 0.1, --- | 1 and for initial
values x = 0, 0.1, --- , 1. Here, we use linear interpolation for approximating
of functions, say Z;, M; and p; for i =0,--- , 4.

The left side figure in Figure 1, shows five iterations of M;, 7 =0, - , 4 in which

the uppermost curve is My; and the right side figure of Figure 1 is associated
to pi, © = 0,--+ 4, in which the lowest curve is pg. As we see, for sufficiently
large n the iterations reach to a satisfactory solution for pi,,.

Error growth. In order to estimate the error growth of the Algorithm 1,
recall that we have used the following approximations. The truncation of the
series (2.5) to its first q terms induces an error of size O(h9"!), see the proof
of the Theorem 8.5, in [6], p.126. Solving (4.2) via the Euler method induces
an error of size O(h?) as well. Also, if we apply the Simpson’s rule for the
numerical integrating of the separable differential equation (3.5), we have an
error of size O(h*). Finally, truncating (2.5) to its first term, i.e., our algorithm
displays a quadratic growth.

Conclusion. Using the decomposition of the phase space to semidirect product
of two Lie groups, we have proposed a numerical method for solving ideal com-
pressible isentropic fluids problem. The most important property of our pro-
posed method is that the obtained approximated solutions stay in the coadjoint
orbit and hence conserve the Casimires. Finally, we showed that our method
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display a quadratic growth error. Investigating a method that simultaneously
preserves energy and Casimires is a topic for future works.
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