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Abstract. Let G be an abelian group with identity e. Let R be a

G-graded commutative ring and M a graded R-module. In this paper,

we generalize the graded primary avoidance theorem for modules to the

graded primal avoidance theorem for modules. We also introduce the

concept of graded PL-compactly packed modules and give a number of

its properties.
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1. Introduction and Preliminaries

The graded prime avoidance theorem for modules was introduced and stud-

ied by F. Farzalipour and P. Ghiasvand in [5]. The graded primary avoidance

theorem for modules was introduced and studied by S.E. Atani and U. Tekir

in [3]. Also, graded P -compactly packed modules were introduced and studied

by K. Al-Zoubi, I. Jaradat and M. Al-Dolat in [1]. Here, we study the graded

primal avoidance theorem for modules. A number of results concerning the

graded primal avoidance theorem are given. Also, we introduce the concept of

graded PL-compactly packed modules and give a number of its properties.

Before we state some results, let us introduce some notations and terminolo-

gies. Let G be an abelian group with identity e and R be a commutative ring

with identity 1R. Then R is a G-graded ring if there exist additive subgroups
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Rg of R such that R =
⊕

g∈G Rg and RgRh ⊆ Rgh for all g, h ∈ G. The

nonzero elements of Rg are said to be homogeneous of degree g where the Rg’s

are additive subgroups of R indexed by the elements g ∈ G. If x ∈ R, then x

can be written uniquely as
∑

g∈G xg, where xg is the homogeneous component

of x in Rg. Moreover, h(R) =
⋃

g∈G Rg. Let I be an ideal of R. Then I

is called a graded ideal of a G-graded ring R if I =
⊕

g∈G(I
⋂
Rg). Thus, if

x ∈ I, then x =
∑

g∈G xg with xg ∈ I. An ideal of a G-graded ring need not

be G-graded (see [7, 8].)

Let R be a G-graded ring and M an R-module. We say that M is a G-

graded R-module (or graded R-module) if there exists a family of subgroups

{Mg}g∈G
of M such that M =

⊕
g∈G

Mg (as abelian groups) and RgMh ⊆ Mgh

for all g, h ∈ G. Here, RgMh denotes the additive subgroup of M consisting

of all finite sums of elements rgsh with rg ∈ Rg and sh ∈ Mh. Also, we write

h(M) =
⋃

g∈G

Mg and the elements of h(M) are said to be homogeneous. Let

M =
⊕
g∈G

Mg be a graded R-module and N a submodule of M . Then N is

called a graded submodule of M if N =
⊕
g∈G

Ng where Ng = N ∩Mg for g ∈ G.

In this case, Ng is called the g-component of N (see [7, 8].)

Let R be a G-graded ring and S ⊆ h(R) be a multiplicatively closed sub-

set of R. Then the ring of fraction S−1R is a graded ring which is called the

graded ring of fractions and denoted by RS . Indeed, RS =
⊕
g∈G

(RS)g where

(RS)g = {r/s : r ∈ h(R), s ∈ S and g = (deg s)−1(deg r)}. Let M be a graded

module over a G-graded ring R and S ⊆ h(R) be a multiplicatively closed

subset of R. The module of fractions S−1M over a graded ring S−1R is a

graded module MS =
⊕
g∈G

(MS)g where (MS)g = {m/s : m ∈ h(M), s ∈ S and

g = (deg s)−1(degm)}. We write h(RS) =
⋃

g∈G

(RS)g and h(MS) =
⋃

g∈G

(MS)g.

Consider the graded homomorphism η : M → MS defined by η(m) = m/1.

For any graded submodule N of M, the submodule of MS generated by η(N)

is denoted by NS . Similar to non graded case, one can prove that NS =

{β ∈ MS : β = m/s for m ∈ N and s ∈ S} and that NS ̸= S−1M if and only

if S ∩ (N :R M) = ϕ. If K is a graded submodule of an RS-module MS , then

K ∩M will denote the graded submodule η−1(K) of M. A graded R-module

M is called graded finitely generated if there exist xg1 , xg2 , ..., xgn ∈ h(M)

such that M = Rxg1 + · · · + Rxgn . A graded R-module M is called graded

cyclic if M = Rmg where mg ∈ h(M). For more details, one can refer to [7, 8].

A proper graded ideal P of R is said to be a graded prime ideal if whenever

r, s ∈ h(R) with rs ∈ P , then either r ∈ P or s ∈ P (see [9].) It is known

that a graded prime ideal is not a prime ideal (see [9, Example 1.6].) A proper

graded submodule P of a graded R-module M is said to be a graded primary
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submodule if whenever r ∈ h(R) and m ∈ h(M) with rm ∈ P , then either

m ∈ P or rk ∈ (P :
R
M) for some positive integer k (see [3].)

2. The Graded Primal Avoidance Theorem

Let R be a G-graded ring, M a graded R-module and N a graded submodule

of M . An element a ∈ h(R) is called homogeneous prime to N if am ∈ N ,

with m ∈ h(M), implies that m ∈ N . An element a =
∑
g∈G

ag ∈ R is called

G-prime to N if at least one homogeneous component ag of a is homogeneous

prime to N . Denote by g(N) the set of all homogeneous elements of R that are

not homogeneous prime to N and by G(N) the set of all elements of R that

are not G-prime to N . N is called a graded primal submodule of M if N ̸= M

and P = G(N) is an ideal of R. By [4, Theorem 1.4], this ideal is always a

graded prime ideal, called the adjoint graded prime ideal of N . In this case we

also say that N is a graded P -primal submodule of M . The graded primal and

primal submodules are different concepts (see[4].) Recall that the concept of

graded primal submodules is a generalization of the concept of graded primary

submodules. For more details, one can refer to [4].

The following Lemma is known (see [2, Lemma 1.2] and [6, Lemma 1.1 and

Lemma 1.2 ]) and we write it her for the sake of references.

Lemma 2.1. Let R be a G-graded ring and M a graded R-module. Then the

following hold:

(i) If I and J are graded ideals of R, then I + J and I ∩ J are graded ideals.

(ii) If N is a graded submodule of M , r ∈ h(R), x ∈ h(M) and I is a graded

ideal of R, then Rx, IN and rN are graded submodules of M .

(iii) If N and K are graded submodules of M , then (N :R M) = {r ∈ R :

rM ⊆ N} is a graded ideal of R.

(iv) Let {Nλ} be a collection of graded submodules of M . Then
∑
λ

Nλ and

∩
λ
Nλ are graded submodules of M .

Proposition 2.2. Let R be a G-graded ring, M be a graded R-module, N and

K be two proper graded submodules of M and J be a graded ideal of R. If

JK ⊆ N, then either K ⊆ N or J ⊆ G(N).

Proof. Assume that JK ⊆ N and K ⊈ N . Then there exists m ∈ K
⋂

h(M)−
N. Let x ∈ J . Then xm ∈ JK ⊆ N and m ̸∈ N . Hence, x ∈ G(N), because N

is a graded submodule of M . Thus J ⊆ G(N).

□

Lemma 2.3. Let R be a G-graded ring and M a graded R-module. If U and

V are graded submodules of M, then (U
⋂
V :R M) = (U :R M)

⋂
(V :R M).

Proof. The proof is straightforward. □
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Let N1, N2, . . . Nn be graded submodules of a graded R-module M . We

call a covering N ⊆ N1 ∪ N2 ∪ · · · ∪ Nn efficient if N is not contained in

the union of any n − 1 of the graded submodules N1, N2, . . . Nn. We say that

N = N1∪N2∪· · ·∪Nn is an efficient union, if non of the Nk may be excluded.

Any covering of a union of graded submodules can be reduced to an efficient

one, called an efficient reduction, by deleting any unnecessary terms, (see [3].)

Theorem 2.4. Let R be a G-graded ring, M a graded R-module and N a

graded submodule of M . Let N ⊆ P1

⋃
P2

⋃
· · ·

⋃
Pn be an efficient covering

of graded submodules of M where n > 2. Then N
⋂
(
⋂

i ̸=k Pi) ⊆ Pk for all

k ∈ {1, 2, . . . , n}.

Proof. By Lemma 2.1(iv), N ∩Pi is a graded submodule of M for i = 1, . . . , n.

Hence, by assumption, N = (N
⋂

P1)
⋃
(N

⋂
P2)

⋃
· · ·

⋃
(N

⋂
Pn) is an effi-

cient union. By [3, Lemma 2.3], we conclude thatN
⋂
(
⋂

i ̸=k Pi) =
⋂

i ̸=k(N
⋂

Pi) =⋂n
i=1(N

⋂
Pi) ⊆ N

⋂
Pk ⊆ Pk. □

Theorem 2.5. Let R be a G-graded ring, M a graded R-module and N a

graded submodule of M . Let N ⊆ P1

⋃
P2

⋃
· · ·

⋃
Pn be an efficient covering of

graded submodules of M where n > 2, then for all k ∈ {1, 2, . . . , n},
⋂

i ̸=k(Pi :R
M) ⊆ G(Pk).

Proof. For k ∈ {1, 2, . . . , n}, put Jk =
⋂

i ̸=k(Pi :R M). By Lemma 2.3 , Jk =

(
⋂

i ̸=k Pi :R M). Then JkM ⊆
⋂

i ̸=k Pi and so JkN ⊆
⋂

i ̸=k Pi. Hence JkN ⊆
N

⋂(⋂
i̸=k Pi

)
. By Theorem 2.4, JkN ⊆ N

⋂(⋂
i ̸=k Pi

)
⊆ Pk. Note that

N ⊈ Pk by assumption. Thus, by Proposition 2.2 Jk =
⋂

i ̸=k(Pi :R M) ⊆
G(Pk). □

Corollary 2.6. Let R be a G-graded ring, M a graded R-module and N a

graded submodule of M. Let P1, P2, . . . , Pn be graded submodules of M such

that N ⊆ P1

⋃
P2

⋃
· · ·

⋃
Pn. Assume that

⋂
k ̸=i(Pi :R M) ⊈ G(Pk) for all

k = 1, 2, . . . , n except possibly for at most two of the k’s. Then N ⊆ Pk for

some k ∈ {1, 2, . . . , n}.

Proof. We may assume that the covering is efficient without loss of generality.

Then n ̸= 2. By Theorem 2.5, n ≤ 2. Thus n = 1 and hence N ⊆ Pk for some

k ∈ {1, 2, . . . , n}. □

Lemma 2.7. Let R be a G-graded ring and M a graded R-module. Let

P1, P2, . . . , Pn be graded submodules of M . If for 1 ≤ k ≤ n, Pk is a graded

primal submodule of M , then the following are equivalent:

(i)
⋂

k ̸=i(Pi :R M) ⊈ G(Pk).

(ii) (Pi :R M) ⊈ G(Pk) whenever i ̸= k.

Proof. (i) ⇒ (ii) Clear.
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(ii) ⇒ (i) Assume that (Pi :R M) ⊈ G(Pk) whenever i ̸= k. Since Pk is a

graded primal submodule of M , by [4, Theorem 1.4] G(Pk) is a graded prime

ideal of R. Thus,
⋂

k ̸=i(Pi :R M) ⊈ G(Pk).

□

The following theorem is a generalization of the graded primary Avoidance

Theorem for modules that was proved in [3].

Theorem 2.8. [The Graded Primal Avoidance Theorem] Let R be a G-graded

ring, M a graded R-module and N a graded submodule of M. Let P1, P2, . . . , Pn

be graded submodules of M such that N ⊆ P1

⋃
P2

⋃
· · ·

⋃
Pn. Assume that at

most two of the Pk’s are not graded primal and (Pi :R M) ⊈ G(Pk) whenever

i ̸= k, then N ⊆ Pk for some k ∈ {1, 2, . . . , n}.

Proof. This follows from corollary 2.6 and Lemma 2.7. □

3. Graded PL-Compactly Packed Modules

Let N be a graded submodule of a graded R-moduleM . If r =
∑

h∈G rh ∈ R

and x =
∑

g∈G xg ∈ G(N), then for all g ∈ G there exists mλ ∈ h(M)−N with

xgmλ ∈ N and hence rhxgmλ ∈ N . Since mλ /∈ N, rhxg ∈ g(N) ⊆ G(N).

Hence rx ∈ G(N). Thus to prove G(N) is an ideal of R we only prove that

G(N) is closed under the addition.

Definition 3.1. Let R be a G-graded ring and M a graded R-module.

(i) A proper graded submodule N of M is called graded irreducible if N

cannot be expressed as the intersection of two strictly larger graded sub-

modules of M .

(ii) A proper graded submodule N of M is called graded strongly irreducible if

for any family {Pα}α∈∆ of graded submodules of M with N =
⋂

α∈∆ Pα,

N = Pβ for some β ∈ ∆.

Lemma 3.2. Let R be a G-graded ring and M a graded R-module. Then every

graded irreducible submodule of M is graded primal.

Proof. Let N be a graded irreducible submodule of M. Let x, y ∈ G(N). Then

there existm,m′ ∈ h(M)−N such that xm ∈ N and ym′ ∈ N. Let U = N+Rm

and V = N + Rm′. By Lemma 2.1, U and V are graded submodules of M .

Since N is graded irreducible N ⊊ U
⋂
V. Then there exists sh ∈ h(M) such

that sh ∈ U
⋂
V −N. Since xsh ∈ x(N + Rm) = xN + Rxm ⊆ N and ysh ∈

y(N +Rm′) = yN +Rym′ ⊆ N, we conclude that (x+ y)sh = xsh + ysh ∈ N

while sh /∈ N. Thus x+y is not homogeneous prime to N . Hence x+y ∈ G(N).

Thus N is graded primal. □

Theorem 3.3. Let R be a G-graded ring, M a graded R-module and N a

proper graded submodule of M . If mg ∈ h(M)−N, then there exists a graded

strongly irreducible submodule that contains N and does not contain mg.
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Proof. (Using Zorn’s Lemma). Let 𭟋 be the set of all graded submodules of M

that contain N and not containing mg. Since N ∈ 𭟋, 𭟋 ̸= ϕ. Let {Pi}i∈I be

a chain in 𭟋. It is clear that
⋃

i∈I Pi is an upper bound of {Pi}i∈I . Then by

Zorn’s Lemma 𭟋 contains a maximal element K. We claim that K is graded

strongly irreducible. Let {Uα}α∈∆ be a family of graded submodules such that

K =
⋂

α∈∆ Uα. Assume that K ̸= Uα for all α ∈ ∆. Then mg ∈ Uα for all

α ∈ ∆ and hence mg ∈
⋂

α∈∆ Uα = K, which is a contradiction. □

Corollary 3.4. Let R be a G-graded ring, M a graded R-module and K and

U be two proper graded submodules of M . Then K ⊆ U if and only if every

graded strongly irreducible submodule of M containing U also contains K.

Proof. (⇒)Clear.

(⇐) Assume that every graded strongly irreducible submodule of M con-

taining U also contains K and K ⊈ U . Then there exists ng ∈ K
⋂

h(M)−U.

By Theorem 3.3, there exists a graded strongly irreducible submodule L such

that U ⊆ L and ng /∈ L. So K ⊈ L, which is a contradiction. Thus K ⊆ U. □

The following definition is a generalization of the concept of graded P -

compactly packed modules (see [1, Definition 2.1].)

Definition 3.5. Let R be a G-graded ring, M a graded R-module and N a

proper graded submodule of M . N is called graded PL-compactly packed if

whenever N is contained in the union of a family of graded primal submodules

of M , N is contained in one of the graded primal submodules of the family. M

is called graded PL-compactly packed if every proper graded submodule of M

is graded PL-compactly packed.

Theorem 3.6. Let R be a G-graded ring and M a graded R-module. Then the

following statements are equivalent:

(i) M is a graded PL-compactly packed module.

(ii) For each proper graded submodule N of M , if {Pα}α∈∆ is a family of

graded irreducible submodules of M and N ⊆
⋃

α∈∆ Pα, then N ⊆ Pβ for

some β ∈ ∆.

(iii) For each proper graded submodule N of M , if {Pα}α∈∆ is a family of

graded strongly irreducible submodules of M and N ⊆
⋃

α∈∆ Pα, then

N ⊆ Pβ for some β ∈ ∆.

(iv) Every proper graded submodule of M is graded cyclic.

(v) For each proper graded submodule N of M , if {Pα}α∈∆ is a family of

graded submodules of M and N ⊆
⋃

α∈∆ Pα, then N ⊆ Pβ for some

β ∈ ∆.

Proof. (i) ⇒ (ii) ⇒ (iii) Clear.

(iii) ⇒ (iv) Assume that (iii) holds and let N be a proper graded submodule

ofM . It is clear thatRng ⊆ N for each ng ∈ N
⋂

h(M). Suppose thatN ⊈ Rng
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for each ng ∈ N
⋂
h(M). By Corollary 3.4, for each ng ∈ N

⋂
h(M) there

exists a graded strongly irreducible submodule Kng
such that Rng ⊆ Kng

and

N ⊈ Kng
. Hence N =

⋃
ng∈N Rng ⊆

⋃
ng∈N Kng

, which is a contradiction.

(iv) ⇒ (v) Assume that (iv) holds and let N be a proper graded submodule

of M . Let {Pα}α∈∆ be a family of graded submodules of M such that N ⊆⋃
α∈∆ Pα. By (iv), there exists ng ∈ N

⋂
h(M) such that N = Rng, then

ng ∈
⋃

α∈∆ Pα and hence ng ∈ Pβ for some β ∈ ∆. Hence N = Rng ⊆ Pβ .

(v) ⇒ (i) Clear. □

Recall that a graded R-module M is said to be with graded primary decom-

position if each of its proper graded submodules is an intersection, possibly

infinite, of graded primary submodules of M (see [1].)

Every graded primary submodule is graded primal by [4, Theorem 1.6], so

every graded PL-compactly packed module is a graded P -compactly packed

module.

By combining [1, Theorem 2.6] and Theorem 3.6, we have the following

corollary.

Corollary 3.7. Let R be a G-graded ring and M a graded R-module with

graded primary decomposition. If M is a graded P -compactly packed module,

then M is a graded PL-compactly packed module.

Recall that a graded R-module M is called a graded Noetherian module if it

satisfies the ascending chain condition on graded submodules of M (see [8].)

Corollary 3.8. Let R be a G-graded ring and M a graded R-module such that

every graded finitely generated submodule of M is graded cyclic. If M is graded

Noetherian, then M is a graded PL-compactly packed module.

Proof. Let N be a proper graded submodule of M . Since M is graded Noether-

ian, N is a graded finitely generated submodule and hence it’s graded cyclic.

By Theorem 3.6, M is a graded PL-compactly packed module. □

Recall that a proper graded submodule N of a graded R-module M is said

to be a graded maximal submodule if there is no graded submodule K of M

such that N & K & M , (see [8].)

Theorem 3.9. Let R be a G-graded ring and M a graded R-module. If M is

a graded PL-compactly packed module which has at least one graded maximal

submodule, then M is graded Noetherian.

Proof. Let P1 ⊆ P2 ⊆ P3 ⊆ · · · be an ascending chain of graded submodules

of M . If Pi = M for some i, then the result follows immediately, so assume

that none of Pi’s is M and let N =
⋃∞

i=1 Pi. We claim that N is a proper

graded submodule of M . Assume on contrary that N = M and let K be a
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graded maximal submodule of M . Then K ⊆
⋃∞

i=1 Pi. Since M is a graded

PL-compactly packed module, by Theorem 3.6 K ⊆ Pn for some n. Thus

K = Pn and hence Pn is graded maximal. Hence Pn = Pi for all i ≥ n

it follows that Pn =
⋃∞

i=1 Pi = M, which is impossible. Thus N is a proper

graded submodule of M . Since M is a graded PL-compactly packed module, by

Theorem 3.6 N ⊆ Pm for some m and hence Pm = Pi for all i ≥ m. Therefore

M is graded Noetherian. □

Theorem 3.10. Let R be a G-graded ring and M a graded R-module and

S ⊆ h(R) a multiplicatively closed subset of R. If M is a graded PL-compactly

packed R-module, then MS is a graded PL-compactly packed RS-module.

Proof. Let N be a proper graded submodule of MS and let {Pα}α∈∆ be a

family of graded primal submodules of MS such that N ⊆
⋃

α∈∆ Pα. Hence

N∩M ⊆
(⋃

α∈∆ Pα

)⋂
M and so N

⋂
M ⊆

⋃
α∈∆(Pα

⋂
M). By [4, Proposition

2.4.], Pα

⋂
M is a graded primal submodule of M for all α ∈ ∆. Since M

is a graded PL-compactly packed R-module, there exists β ∈ ∆ such that

N ∩ M ⊆ Pβ

⋂
M. Hence (N

⋂
M)S ⊆ (Pβ

⋂
M)S . By [4, Proposition 2.4],

N ⊆ Pβ . Therefore MS is a graded PL-compactly packed RS-module. □
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