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1. Introduction

Among the various classes of functions, the class of bianaytic functions, the
class of polyanalytic functions and the Gevrey classes occupy a major place in
mathematical analysis and in mathematical physics. Given a nonempty open
subset U of R2, a function f : U → C is said to be bianalytic if it satisfies,
for each z ∈ U, the condition

(
∂
∂z

)2
F (z) = 0. Bianalytic functions originates

from mechanics where they played a fundamental role in solving the problems
of the planar elasticity theory. Their usefulness in mechanics was illustrated by
the pioneering works of Kolossoff, Muskhelishvili and their followers ([21]-[23],
[38], [39], [47]). By the systematic use of complex variable techniques these
authors have greatly simplified and extended the solutions of the problems of
the elasticity theory. The class of polyanalytic functions of order N (N ∈ N∗),
is a generalisation of the class of analytic functions and of that of bianalytic
functions. The class HN (U) of polyanalytic functions of order N on U is the
set of functions F : U → C of class CN on U such that the following condition
holds for each z ∈ U :

(
∂
∂z

)N
F (z) = 0. The class of polyanalytic functions

was studied intensively by the russian school under the supervision of M. B.
Balk ([11]). The lines of current research on polyanalytic functions are various
: the problem of the best uniform approximation by N−analytic polynomials
([30]-[32], [51]), the study of wavelets and Gabor frames ([2]-[5], [9]), the time-
frequency analysis ([5], [7], [8]), the sampling and interpolation in function
spaces ([1]), the study of coherent states in quantum mechanics ([19], [36]),
[37]), the image and signal processing ([6], [7]), etc. Gevrey classes, which
are also, but in a completely different way, a generalisation of real analytic
functions, were first introduced by Gevrey ([16]). Indeed they are intermedi-
ate spaces between the space of real-analytic functions and the space of C∞

smooth functions. Given s > 0, the Gevrey class Gs (U) is defined as the set
of all functions f : U → C, of class C∞ on U such that there exist a constant
R > 0 satisfying for every x ∈ U and (α1, α2) ∈ N2 the following estimate :∣∣∣ ∂α1+α2g
∂x

α1
1 ∂x

α2
2

(x)
∣∣∣ ≤ Rα1+α2+1 (α1 + α2)

s(α1+α2). The Gevrey classes play an im-
portant role in various branches of partial and ordinary differential equations
and especially in the analysis of operators whose properties cannot be appre-
hended by the classical analytic framework. The field of applications of Gevrey
classes is very wide : the Gevrey class regularity of the equations of mathe-
matical physics ([20], [25], [26], [48], [49], [53]), the study of singularities in
micro-local analysis ([43]-[45]), the Gevrey solvability of differential operators
([12], [44], [45]), the divergent series and singular and the singular differential
equations ([34], [41]), the study of dynamical systems ([17], [42]), the evolution
partial differential equations ([14], [29], [46]), etc. However despite this great
interest devoted to polyanalytic functions and to Gevrey classes there is still, at
our knowledge, no interplay between them. Our main goal in this paper is then
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to contribute to bridging this gap. In order to achieve this task, we consider the
intersection of a Gevrey class on the unit disk D and the class of polyanalytic
functions of order N on D and then look for some property which characterizes
this class of functions. Indeed we obtain, in the main result of this paper, the
complete description of these so-called Gevrey polyanalytic classes of order N

by specific expansions into N−analytic polynomials on suitable neighborhoods
of D. We establish two applications of our main theorem. The first application
concerns the proof for the Gevrey polyanalytic classes of order N on the unit
disk D of an analogue to the E. M. Dyn’kin’s theorem ([13]). Let us recall that
this theorem basically says that a function f : R → C of class C∞on a region R
of C belongs to a class X of smooth complex valued functions on R if and only
if it has an extension F : C → C of class C1 on C so that ∂F

∂z satisfies a growth
condition of the form

∣∣∂F
∂z (z)

∣∣ ≤ AHX (B% (z,R)), z ∈ C\R, where A,B > 0

are constants, % (z,R) is the euclidean distance from z to R and HX : R+∗ → R
is a function related to the class X, depending only on this class and such that
lim

t→0,t>0
HX (t) = 0. HX is then called the weight function of the class X while

the function F is said to be a pseudoanalytic extension of the function f with
respect to the class X. The second application of our main theorem concerns
the construction, for Gevrey polyanalytic classes of order N , of their degree of
the best uniform approximation on D by N−analytic polynomials.

The paper is structured as follows. In section 2, we state some notations
and definitions and prove a fundamental result which is necessary for the proof
of the first application of our main result. In section 3, we give the definition of
polyanalytic functions of order N and recall their main properties. In section
4, we recall the definition of Gevrey classes and the quantitative version of
the closure of these classes under the composition of functions and finally we
state the definition of polyanalytic Gevrey classes on an open subset U of the
complex plane. In section 5, we state the main result of this paper. The section
6 is devoted to the proof of the main result. Section 7 presents our applications
of the main result of the paper. Finally section 8 is an appendix which provides
the proofs of some technical estimates which are crucial for the proof of three
results : the proof of the direct part for N = 1 (proposition 8.1.) , the proof
of the converse part of corollary 1 (proposition 8.2.), the proof of the converse
part of corollary 2 (proposition 8.3.).

2. Preliminary Notes

2.1. Basic notations. Let h a function defined on a nonempty subset E of C.
We denote by ||h||∞,E the quantity :

||h||∞,E := sup
u∈E

|h(u)| ∈ R+ ∪ {+∞}
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Let S be a nonempty subset of C, then we set for each z ∈ C :

% (z, S) := inf
u∈S

|z − u|

% (z, S) represents the euclidean distance from z to S.
For all x ∈ R we set :

bxc := max ({p ∈ Z : p ≤ x})

We set for every n ∈ N :

J (n) := {p ∈ N : 0 ≤ p ≤ n− 1}

We set for each α ∈ Nn and s ∈ I (n) :

α! :=

n∏
j=1

αj !, |α| :=
n∑

j=1

αj

Let σ := (σ1, σ2) , σ
′ := (σ′

1, σ
′
2) ∈ N2. We set :

σ 4 σ′ ⇔ (σ1 ≤ σ′
1 and σ2 ≤ σ′

2)

In this case we set : (
σ′

σ

)
:=

(
σ′
1

σ1

)(
σ′
2

σ2

)
We denote by dν (ζ) the usual Lebesgue measure on C.
Let ζ ∈ C and r > 0. We denote by ∆(ζ, r)

(
resp. ∆(ζ, r)

)
the usual open

(resp. closed) disk of center ζ and radius r. Γ(ζ, r) denotes the usual circle of
center ζ and radius r. D := ∆ (0, 1) (resp. D := ∆ (0, 1)) is called the open
(resp.closed) unit disk of the complex plane. It is then clear that :

% (z,D) =

{
0 if z ∈ D

|z| − 1 else

For all r,R > 0 and n ∈ N∗ we set :

DR := ∆ (0, 1 +R) , DR := ∆ (0, 1 +R) , Dk,R,n := D
Rn

−1
k

For each m ∈ N∗\ {1} we denote by Lm the function defined on the set
Um :=

{
(s1, ..., sm−1) ∈ Rm−1 : 1 < s1 < ... < sm−1

}
by the formula :

Lm (s1, ..., sm−1)

: =

m−1∏
j=1

(
s2j + 1

s2j − 1

)
m−1∑
p=1

sm−1
p

∏
j 6=p

(
s2j + 1∣∣s2j − s2p

∣∣
)

For each real numbers r and r0 such that r > r0 > 0 we set :

Jm (r0, r)

: = Lm

(
1 +

r − r0
mr0

, 1 + 2

(
r − r0
mr0

)
..., 1 + (m− 1)

(
r − r0
mr0

))
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Proposition 2.1. The following estimate holds for each m ∈ N∗ and ε > 0 :

Jm

(
1 +

ε

2
, 1 + ε

)
≤ (m− 1)

(
5m

2

)2m−2(
1 +

2

ε

)2m−2

(2.1)

Proof. Indeed we have :

Jm

(
1 +

ε

2
, 1 + ε

)
= Lm

(
1 +

1

m

(
ε

2 + ε

)
, 1 +

2

m

(
ε

2 + ε

)
, ..., 1 +

(
m− 1

m

)(
ε

2 + ε

))

=

m−1∏
j=1


(
1 + j

m

(
ε

2+ε

))2
+ 1(

1 + j
m

(
ε

2+ε

))2
− 1

m−1∑
p=1


(
1 + p

m

(
ε

2+ε

))m−1

·

·
∏
j 6=p

 (
1+ j

m

(
ε

2+ε

))2
+1∣∣∣∣(1+ j

m

(
ε

2+ε

))2
−
(
1+ p

m

(
ε

2+ε

))2
∣∣∣∣



≤
m−1∏
j=1

 5m
(
2+ε
ε

)
j
(
2 + j

m

(
ε

2+ε

))
m−1∑

p=1

2m−1
∏
j 6=p

 5m
(
2+ε
ε

)
|j − p|

(
2 + (j+p)

m

(
ε

2+ε

))


≤ (m− 1)

(
5m

2

)2m−2(
1 +

2

ε

)2m−2

Thence we achieve the proof of the proposition. �

From now on N ∈ N∗ and k > 0 are arbitrary but fixed real numbers.

2.2. Some function spaces and differential operators. C
(
D
)

represents
the set of continuous complex valued functions on D while C∞

0 (C) denotes the
set of complex valued functions defined and of class C∞ on C and of compact
support.

We denote by ∂
∂z the well-known Cauchy-Riemann operator differential op-

erator defined by the formula :
∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
while ∂

∂z is the differential operator whose definition is :

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
For each α := (α1, α2) ∈ N2, we denote by Dα the differential operator :

Dα :=
∂|α|

∂xα1∂yα2

while ∂|α|

∂zα1∂zα2
is the differential operator defined by :

∂|α|

∂zα1∂zα2
:=

(
∂

∂z

)α1
(

∂

∂z

)α2
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The following proposition will play a fundamental role in the proof of the
first application of our main result.

Proposition 2.2. For every ϕ ∈ C∞
0 (C) and N ∈ N∗ the following relation

holds :

ϕ (z) =

∫∫
C

(
z − ζ

)N−1

π (N − 1)! (z − ζ)

(
∂

∂z

)N

ϕ (ζ) dν (ζ)

Proof. It is well-known ( [52]; page 126, exercise 11-4) that the function :

VN : (x, y) 7→ (x− iy)
N−1

π. (N − 1)! (x+ iy)

is a fundamental solution of the differential operator
(

∂
∂z

)N
. Let us then write

VN (x, y) in the form :

VN (z) :=
zN−1

π. (N − 1)!z

where z := x+iy. Consequently for each ϕ ∈ C∞
0 (C) and N ∈ N∗ the following

formula holds for all z ∈ C :

ϕ (z) =

∫∫
C

VN (z − ζ)

(
∂

∂z

)N

ϕ (ζ) dν (ζ)

=

∫∫
C

(
z − ζ

)N−1

π (N − 1)! (z − ζ)

(
∂

∂z

)N

ϕ (ζ) dν (ζ)

The proof of the proposition is then complete. �

3. Polyanalytic Functions of Order N : Definition and Main
Properties

Let U be a nonempty open subset of C. The set HN (U) of polyanalytic
functions of order N on U is the set of functions F : U → C of class CN on U

such that :

(∀z ∈ U) :

(
∂

∂z

)N

F (z) = 0

Then H1(U) is the set of holomorphic functions on U, while H2(U) is the set
of bianalytic functions on U. It is well known ([11], pages 10 and 11) that a
function F : U → C is polyanalytic of order N if and only if it is of the form :

(∀z ∈ U) : F (z) =

N−1∑
p=0

Fp(z)z
p (3.1)

where F0, ..., FN−1 are holomorphic on U. We can prove by an easy induction
on N that the representation (3.1) of F is unique. For every p ∈ J (N) , the
function Fp is called the holomorphic component of order p of F and labelled
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by the notation Fp := Kp (F ) . It follows also from the formula (3.1) that every
function f ∈ HN (U) is of class C∞ on U. We denote by ΠN the vector space
of complex polynomial functions P of the form :

z ∈ C 7→ P (z) :=

N−1∑
p=0

Qp(z)z
p,

where Q0, , ..., QN−1 are holomorphic polynomials. The members of ΠN are
called N -analytic polynomials. The degree of P 6= 0 is then the integer :

d◦ (P ) := max
0≤p≤N−1, Qp 6=0

deg (Qp)

where deg (Qp) denotes the usual degree of Qp ∈ C [X] . We will set d◦ (0) =

−∞. With the convention that

(∀n ∈ N) : −∞ ≤ n

ΠN,n is, for each n ∈ N, the vector subspace of ΠN defined by :

ΠN,n := {P ∈ ΠN : d◦ (P ) ≤ n}

For each continuous function f : D → C, the N−approximating number of
order n is :

EN,n (f) := inf
P∈ΠN,n

‖f − P‖∞,D

Let X be a nonempty subset of C
(
D
)
. A degree of the best uniform N−poly-

nomial approximation of functions of X is a set R : = {mµ : µ ∈ Λ} of functions
mµ : R+ → R+ (Λ a nonempty set) such that :(

∀f ∈ C
(
D
))

: [(f ∈ X) ⇔ ((∃µ ∈ Λ) (∀n ∈ N) : EN,n (f) ≤ mµ (n))]

The following results, whose proofs can be found in ([11], pages 21-25 and
27), will play a fundamental role in the current paper.

Theorem 3.1. Let γp := Γ(ζ, rp) be N circles where 0 < r0 < r1 < ... <

rN−1 < r and f ∈ HN (∆(ζ, r)) .

1. Maximum modulus principle for polyanalytic functions of order N on
∆(ζ, r) :

a) The following estimates hold

‖f‖∞,∆(ζ,r0)
≤ LN

(
r1
r0

, ...,
rN−1

r0

)
max

0≤p≤N−1
‖f‖∞,γp

(3.2)

b) If we assume that :

‖f‖∞,∆(ζ,r)�∆(ζ,r0)
< +∞

then the following estimates hold :

‖f‖∞,∆(ζ,r0)
≤ JN (r0, r) ‖f‖∞,∆(ζ,r)�∆(ζ,r0)

(3.3)
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(∀p ∈ J (N)) : ‖Kp (f)‖∞,∆(ζ,r0)
≤

JN (r0, r) ‖f‖∞,∆(ζ,r)�∆(ζ,r0)

rp0
(3.4)

2. Weierstrass theorem for polyanalytic functions of order on ∆(ζ, r) :

Let (fn)n≥1 be a sequence of polyanalytic functions of order N on ∆(ζ, r)

which is uniformly convergent on every compact subset of ∆(ζ, r) to a function
f . Then f ∈ HN (∆ (ζ, r)) and for each (p, q) ∈ N2 the sequence

(
∂p+qfn
∂zp∂zq

)
n≥1

is uniformly convergent on every compact subset of ∆(ζ, r) to the function
∂p+qf
∂zp∂zq .

By means of the theorem 3.1. we prove easily the following result.

Proposition 3.2. Let (fn)n≥1 be a sequence of polyanalytic functions of or-
der N on an open disk ∆(ζ, r) . Let us assume that the sequence (fn)n≥1 is
uniformly convergent on every compact subset of ∆(ζ, r) to the function f .

Then f ∈ HN (∆ (ζ, r)) and, for every p ∈ J (N − 1) , the sequence of functions
(Kp (fn))n≥1 is uniformly convergent on every compact subset of ∆(ζ, r) to the
function Kp (f) .

The following result plays a crucial role in the proof of the second application
of the main result of this paper.

Proposition 3.3. Bernstein-Walsh inequality for N-analytic polynomials on
the unit disk :

For each P ∈ ΠN,n and z ∈ C \D, the following inequality holds :

|P (z)| ≤
(
2N+1 − 1

)
JN

(
1

2
, 1

)
‖P‖∞,D |z|n+N−1

Proof. We have for each j ∈ J (N) :

‖Kj (P )‖∞,∆ 1
2

≤ 2jJN

(
1

2
, 1

)
‖P‖∞,D

On the other hand, by virtue of the well known Bernstein-Walsh inequality
([10]), we have for every z ∈ C \D and j ∈ J (N − 1) :

|Kj (P ) (z)| ≤ 2n ‖Kj (P )‖∞,∆ 1
2

|z|n

It follows that :

|P (z)| ≤
N−1∑
j=0

|Kj (P ) (z)| |z|j

≤
N−1∑
j=0

2jJN

(
1

2
, 1

)
‖P‖∞,D |z|n+j

≤
(
2N+1 − 1

)
JN

(
1

2
, 1

)
‖P‖∞,D |z|n+N−1

Thence we achieve the proof of the proposition. �
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4. Gevrey Classes and Gevrey Polyanalytic Classes of Order N

Definition 4.1. Let k, s > 0 and N ∈ N∗ be given fixed numbers. Let U be a
nonempty subset of C and I an interval of R.

(1) The Gevrey class Gs (U) is the set of functions f : U → C of class C∞

on U such that :(
∀α ∈ N2

)
: ‖Dαf‖∞,U ≤ B

|α|+1
0 |α|s|α|

B0 > 0 being a constant, with the convention that 00 = 1.

(2) The Gevrey class Gs (I) is the set of functions f : I → C of class C∞

on I such that :

(∀n ∈ N) :
∥∥∥f (n)

∥∥∥
∞,I

≤ Bn+1
1 nsn

B1 > 0 being a constant.
(3) The Gevrey polyanalytic class of order N on U , Hk

N (U), is the set of
functions f ∈ HN (U) such that :(

∀α ∈ N2
)
: ‖Dαf‖∞,U ≤ B

|α|+1
2 |α|

(
1+ 1

k

)
|α|

B2 > 0 being a constant. It follows that :

Hk
N (U) = HN (U) ∩G1+ 1

k (U)

Remark 4.2. We prove easily by direct computations that Hk
N (U) is the set of

functions f ∈ HN (U) such that :(
∀ (n,m) ∈ N2

)
:

∥∥∥∥ ∂n+mf

∂zn∂zm

∥∥∥∥
∞,U

≤ Bn+m+1
3 (n+m)

(
1+ 1

k

)
(n+m)

B3 > 0 being a real constant.

Remark 4.3. We prove, by an easy induction on N ≥ 1, that the following
equivalence holds for each f ∈ HN (U) :

f ∈ Hk
N (U) ⇔

[
(∀p ∈ J (N)) : Kp (f) ∈ Hk

1 (U)
]

A slight refinement of the proof by D. Figueirinhas ([15], theorem 2. 5. pages
11 − 13) of the closure of Gevrey classes under composition provide us with
the following result which is essential for the proof of direct part of our main
result.

Theorem 4.4. Let I be an interval of R and f ∈ Gs (I), s > 1. Let U be an
open set of C and g : U → C a function of class C∞ on J such that f (I) ⊂ U

and g ∈ Gs (U). The function h := g ◦ f belongs also to Gs (I) and if we
assume that : ∥∥∥f (n)

∥∥∥
∞,I

≤ c1d
n
1n

sn, n ∈ N

‖Dαg‖∞,U ≤ c2d
|α|
2 |α|s|α| , α ∈ N2
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(c1, d1, c2, d2 > 0 being constants) then we will have :∥∥∥h(n)
∥∥∥
∞,I

≤ c3d
n
3n

sn, n ∈ N

where :

c3 =
ec1c2d2
1 + ec1d2

, d3 = d1 (1 + ec1d2)

5. Statement of the Main Result

Our main result, in this paper, is the following.

Theorem 5.1.

(1) Let F ∈ Hk
N (D). Then there exist constants C > 0, R > 0 and δ ∈]0, 1[

and a sequence (Pn)n∈N∗ of N−analytic polynomials such that :
(∀n ∈ N∗) : ||Pn||∞,Dk,R,n

≤ Cδn

(∀z ∈ D) :
+∞∑
n=1

Pn(z) = F (z)

(∀n ∈ N∗) : d◦ (Pn) ≤ n
k+1
k

(2) Conversly, let (fn)n∈N∗be a sequence of N−analytic polynomials such
that :

(∀n ∈ N∗) : ||fn||∞,Dk,R,n
≤ Cδn

for some constants C > 0, R > 0 and δ ∈]0, 1[. Then the function
series

∑
fn converges uniformly on D to a function f ∈ Hk

N (D).

6. Proof of the Main Result

6.1. Proof of the direct part of the main result.

6.1.1. Proof of the direct part for N=1.

Lemma 6.1. Let
F : D → C

z 7→
+∞∑
p=0

apz
p

be a function which belongs to Hk
1 (D). Then there exists constants P1, P2 > 0

such that :
(∀p ∈ N) : |ap| ≤ P1 exp

(
−P2p

k
k+1

)
Proof. Let us associate to every t ∈ [0, 1[ the function :

ϕt : [0, 2π] → C
θ 7→ F

(
teiθ
)

Assume that F ∈ Hk
1 (D), then there exists P0 ≥ 1 such that :

(∀n ∈ N) : ||F (n)||∞,D ≤ Pn+1
0 n

(
1+ 1

k

)
n
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Direct computations based on the result of theorem 4. 4. prove that :

(∀t ∈ [0, 1[) (∀n ∈ N∗) :

||ϕ(n)
t ||∞,[0,2π] ≤ (1 + eP0)

n
nn(1+ 1

k )

On the other hand for every n ∈ N∗ and t ∈ ]0, 1[ , the function ϕ
(n)
t is a

2π−periodic function whose Fourier coefficient of order p ∈ N∗ is :

inpntpap =
1

2π

2π∫
0

ϕ
(n)
t (θ)e−ipθdθ

It follows that :(
∀ (p, n) ∈ (N∗)

2
)
(∀ t ∈ ]0, 1[) :

|ap| ≤ 1

pntp
(1 + eP0)

nnn(1+ 1
k )

Thence we have :

(∀p ∈ N∗) : |ap| ≤ 2P0 inf
n∈N∗

nn(1+ 1
k )

(
1 + eP0

p

)n

But straightforward computations show that the following relation holds for all
p ∈ N∗:

inf
n∈N∗

nn(1+ 1
k )

(
1 + eP0

p

)n

= min

((1 + eP0

p

) k
k+1

rp

)(1+ 1
k )rp

,

((
1 + eP0

p

) k
k+1

(rp + 1)

)(1+ 1
k )(rp+1)


where rp :=

⌊
e−1 (1 + eP0)

− k
k+1 p

k
k+1

⌋
. Consequently there exists two con-

stants P1, P2 > 0 such that :

(∀p ∈ N∗) : inf
n∈N∗

nn(1+ 1
k )(

p
1+eP0

)n ≤ P1

1 + eP0
exp

(
−P2p

k
k+1

)
It follows that :

(∀p ∈ N∗) : |ap| ≤ P1 exp
(
−P2p

k
k+1

)
Thence we achieve the proof of the proposition. �

End of the proof of the direct part for N = 1.

Let us set for every z ∈ C and n ∈ N :

Pn (z) :=
∑

2
−
(
k+1
k

)
n

k+1
k ≤p<2

−
(
k+1
k

)
(n+1)

k+1
k

apz
p

Then (Pn)n∈N∗ is a sequence of 1−analytic polynomials such that :

(∀n ∈ N∗) : d◦ (Pn) ≤ n
k+1
k
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Furthermore the following inequality holds for each n ∈ N∗ and z ∈ D
k,

P2
4 ,n

:

|Pn (z)|

≤
∑

2
−
(
k+1
k

)
n

k+1
k ≤p<2

−
(
k+1
k

)
(n+1)

k+1
k

|ap| |z|p

≤
∑

2
−
(
k+1
k

)
n

k+1
k ≤p<2

−
(
k+1
k

)
(n+1)

k+1
k

P1 exp
(
−P2p

k
k+1

)
·

·
(
1 +

P2

4
n− 1

k

)p

≤ P1 exp

(
−P2

2
n

)(
2
−
(

k+1
k

)
(n+ 1)

k+1
k − 2

−
(

k+1
k

)
n

k+1
k + 1

)
·

·
(
1 +

P2

4
n− 1

k

)n
k+1
k

≤ 2
k+1
k P1 exp

(
−P2

2
n

)(
(n+ 1)

k+1
k − n

k+1
k + 1

)(
1 +

P2

4
n− 1

k

)n
k+1
k

But we will prove in the proposition 8.1. in the appendix below, that there
exists a constant P3 > 0 such that

(∀n ∈ N) : 2
k+1
k P1 exp

(
−P2

2
n

)(
(n+ 1)

k+1
k − n

k+1
k + 1

)
·

·
(
1 +

P2

4
n− 1

k

)n
k+1
k

≤ P3

(
e−

P2
8

)n
Consequently the following relation holds :

(∀n ∈ N) : ‖Pn‖∞,D
k,

P2
4

,n

≤ P3

(
e−

P2
8

)n
But e−

P2
8 ∈ ]0, 1[ thence we achieve the proof of the direct part of the main

result for N = 1.

�

6.1.2. Proof of the direct part in the general case N ≥ 2. Let f ∈ Hk
N (D). Then

there exist, thanks to the remark 3 above, a functions g0, ..., gN belonging to
Hk

1 (D) such that :

(∀z ∈ D) : f (z) =

N−1∑
p=0

gp (z) z
p

Hence there exist for each p ∈ J (N) a triple (Cp, Rp, δp) ∈ R+∗ × R+∗ × ]0, 1[

of constants and a sequence (Qn,p)n∈N∗ of holomorphic polynomials such that
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: 
(∀n ∈ N∗) : d◦ (Qn,p) ≤ n

k+1
k

(∀n ∈ N) : ‖Qn,p‖∞,Dk,Rp,n
≤ Cpδ

n
p

(∀z ∈ D) :
+∞∑
n=1

Qn,p(z) = gp(z)

Let us set R := min (R0, ..., RN−1) , δ := max (δ0, ..., δN−1) , C := max (C0, ..., CN−1) ,

Qn (z) :=
N−1∑
p=0

Qn,p (z) z
p. Then δ ∈ ]0, 1[ and Qn is for each n ∈ N a N−ana-

lytic polynomial such that :

{
(∀n ∈ N∗) : d◦ (Qn) ≤ n

k+1
k

(∀n ∈ N) : ‖Qn‖∞,Dk,R,n
≤ NC (1 +R)

N−1
δn

Furthermore we have for each z ∈ D :

f (z) =

N∑
p=0

gp (z) z
p

=

+∞∑
n=0

Qn (z)

Thence we achieve the proof of the direct part of the main result.
�

6.2. Proof of the converse part of the main result. Let A > 0 and for
each n ∈ N, a function fn ∈ H1(Dk,A,n) such that :

{
(∀n ∈ N∗) : fn ∈ HN (Dk,A,n)

(∀n ∈ N∗) : ||fn||∞,Dk,A,n
≤ Cρn

where C > 0, ρ ∈ ]0, 1[ are constant. Without loss of the generality we can
also assume that A < 1. It follows, by virtue of the Weierstrass theorem for
polyanalytic functions of order N , that the function series

∑
fn|D converges

uniformly to a function f ∈ HN (D). For every n ∈ N∗ and p ∈ J (N) , let ap,n
be the holomorphic component of order p of fn. Let ap be the holomorphic
component of order p of f. By virtue of the remark, for each p ∈ J (N) the
function series

∑
ap,n is uniformly convergent on every compact of D to the

function ap. Then the inequalities (3.4) and (2.1) entail that the following
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estimate holds for each (p, n) ∈ N2 :

‖ap,n‖∞,D
k,A

2
,n

≤ JN

(
1 +

A

2
n− 1

k , 1 +An− 1
k

)
Cρn

≤ C (N − 1)

(
5

2
N

)2N−2(
1 +

2

A
n

1
k

)2N−2

ρn

≤ C (N − 1)

(
10

A
N

)2N−2

n
2N−2

k ρn

≤ C (N − 1)

(
10

A
N

)2N−2(
sup
t≥0

t
2N−2

k
√
ρ
t

)
√
ρ
n

But direct computations prove that :

(∀l ∈ N) : sup
t≥0

(
t

l
k
√
ρ
t
)
=


 2

ek ln
(

1
ρ

)
 1

k


l

l
l
k (6.1)

It follows that :
‖ap,n‖∞,D

k,A
2

,n

≤ Q√
ρ
n

where :

Q := C (N − 1)

(
10

A
N

)2N−2

(2N − 2)
2N−2

k


 2

ek ln
(

1
ρ

)
 1

k


2N−2

Thence, in view of the Cauchy’s inequalities for holomorphic functions, we can
write :

(∀n ∈ N∗) :
∥∥∥a(l)p,n

∥∥∥
∞,D

≤ Ql!

(
2

A

)l

n
l
k e

− ln
(

1
4√ρ

)
n

4
√
ρ
n

≤ Q

 2

A

 1

ek ln
(

1
ρ

)
 1

k


l

l
(
1+ 1

k

)
l 4
√
ρ
n

Thence the following estimates hold :

(∀ (l, n) ∈ N× N∗) : ‖a(l)p,n‖∞,D ≤ P l+1
4 l

(
1+ 1

k

)
l 4
√
ρ
n (6.2)

where P4 := max

Q,Q

(
2
A

(
1

ek ln
(

1
ρ

)) 1
k

)l

, 1

 . Consequently the function

series
∑

a
(l)
p,n is uniformly convergent on each compact subset of D, and we
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obtain the following estimate :

(∀l ∈ N) : ||a(l)p ||∞,D ≤ P4

1− 4
√
ρ
P l
4l
(
1+ 1

k

)
l

Consequently :
(∀p ∈ J (N)) : ap ∈ Hk

1 (D)

Let us consider the function f ∈ HN (D) defined by the formula :

(∀z ∈ D) : f(z) :=

N−1∑
j=0

ap(z)z
p

Then we have for each (l,m) ∈ N2 :

(∀z ∈ D) :∣∣∣∣ ∂l+mf

∂zl∂zm
(z)

∣∣∣∣ ≤
N−1∑
j=0

p!
∣∣∣a(l)p (z)

∣∣∣
≤ N !NP4

1− 4
√
ρ
P l
4l
(
1+ 1

k

)
l

≤ N !NP4

1− 4
√
ρ
P l+m
4 (l +m)

(
1+ 1

k

)
(l+m)

It follows that f ∈ Hk
N (D) .

The proof of the converse part of the main result is then achieved.
�

Remark 6.2. It follows easily from the relation (6.1) that if (fn)n∈N∗ is a
sequence of N−analytic polynomials such that

(∀n ∈ N∗) : ||fn||∞, Dk,A,n
≤ Cρn

for some constants C > 0, A > 0 and ρ ∈]0, 1[ then there exist some constants
P ≥ 1 such that the following estimates hold for each (n, α) ∈ N∗ × N2 :

‖Dαfn ‖∞, D
k,A

3
,n

≤ P |α|+1 |α|
(
1+ 1

k

)
|α| 4

√
ρ
n

7. Applications

7.1. E. M. Dyn’kin’s theorem for the Gevrey class Hk
N (D).

Corollary 7.1. Let f ∈ HN (D) .

1. If f ∈ Hk
N (D) then there exists a function F : C → C of class C∞ on

C with compact support such that :{
F |D = f(

∀z ∈ C \D
)
:
∣∣∣( ∂

∂z

)N
F (z)

∣∣∣ ≤ C1 exp
[
−C2 (|z| − 1)

−k
]

where C1, C2 > 0 are constants.
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2. Conversly, if there exists a function F : U → C of class C∞ on an open
neighborhood U of the closed unit disk D such that :{

F |D = f(
∀z ∈ U \D

)
:
∣∣∣( ∂

∂z

)N
F (z)

∣∣∣ ≤ C1 exp
[
−C2 (|z| − 1)

−k
]

where C1, C2 > 0 are constants then f ∈ Hk
N (D) .

Proof. 1. Assume that f ∈ Hk
N (D) then, according to theorem 5. 1., there

exists constants A ∈]0, 1[, C > 0, ρ ∈]0, 1[ and a sequence of N−polynomial
functions (fn)n∈N such that :{

(∀n ∈ N) : ‖fn‖∞,Dk,A,n
≤ Cρn

(∀x ∈ D) :
∑+∞

n=0 fn(x) = f(x)

On the other hand there exist ([50], lemma 3.3., page 77) for each n ∈ N a
function hn : C −→ [0, 1] and a family of positive constants (Lν)ν∈N2 such that
: 

(
∀z ∈ Dk,A4 ,n

)
: hn(z) = 1(

∀ z ∈ C \Dk,A3 ,n

)
: hn(z) = 0(

∀ν ∈ N2
) (

∀z ∈ R2
)
: |Dνhn(z)| ≤ Lνn

|ν|
k

We set for each p ∈ N :

Mp := max
|ν|≤p

Lν

We denote by Fn the function defined by :{
(∀z ∈ Dk,A,n) : Fn(z) = hn(z)fn(z)

(∀z ∈ C \Dk,A,n) : Fn(z) = 0

The function Fn is of class C∞ on C and satisfies the condition :

Fn|D
k,A

4
,n

= fn|D
k,A

4
,n

Since :
(∀n ∈ N) : ||Fn||∞,C ≤ Cρn

it follows that the function series
∑

Fn is uniformly convergent on C to a
continuous function F with compact support contained in DA. Furthermore
we have for all z ∈ D :

F (z) =

+∞∑
n=0

Fn(z)

=

+∞∑
n=0

fn(z)

= f(z)
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Thence F is an extension to C of f. Let n ∈ N, α ∈ N2 and z ∈ C. If z ∈
C \Dk,A3 ,n then we will have :

DαFn(z) = 0

Now if z ∈ Dk,A3 ,n then we have :

|DαFn(z)|

≤
∑
β4α

(αβ)|Dβhn(z)| |Dα−βfn(z)|

But there exists, thanks to remark 4.2., a constant P5 ≥ 1 such that the
following estimate holds for each v ∈ N2 :

‖Dvfn ‖∞, D
k,A

3
,n

≤ P |v|+1
5 |v|

(
1+ 1

k

)
|v| 4

√
ρ
n

Hence we can write :

|DαFn(z)|

≤
∑
β4α

(αβ)M|α|n
|β|
k |Dα−βfn(z)|

≤
∑
β4α

M|α|(
α
β)n

|β|
k P |α−β|+1

5 |α− β|
(
1+ 1

k

)
|α−β| 4

√
ρ
n

≤ P5M|α| (2P5)
|α| |α|

(
1+ 1

k

)
|α|

n
|α|
k 4
√
ρ
n

It follows that the function series
∑

DαFn(z) is for all α ∈ N2 normally con-
vergent on C. Hence the function F =

∑∞
n=1 Fn is of class C∞ on C and we

have for each z ∈ C \D and α ∈ N2 :{
DαF (z) =

∑+∞
n=1 D

αFn(z)(
∂
∂z

)N
F (z) =

∑+∞
n=1

(
∂
∂z

)N
Fn(z)

On the other hand we have for each n ∈ N∗ :(
∂

∂z

)N

Fn(z) = 0 if %(z,D) ≥ A

3
n− 1

k or %(z,D) <
A

4
n− 1

k

But if A
4 n

− 1
k ≤ %(z,D) ≤ A

3 n
− 1

k then we have the following estimates :∣∣∣∣∣
(

∂

∂z

)N

Fn(z)

∣∣∣∣∣ ≤
N∑

p=0

(
N
p

)
2N

∣∣∣D(p,N−p)Fn(z)
∣∣∣

≤ P5MN (2P5)
N
N
(
1+ 1

k

)
Nn

N
k 4
√
ρ
n

≤ P6e
ln(ρ)

8 nsup
t≥0

t
N
k e−

ln
(
1
ρ

)
8 t
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where P6 := P5MN (2P5)
N
N
(
1+ 1

k

)
N . The relation (6.1) entails then that the

following relation holds :∣∣∣∣∣
(

∂

∂z

)N

Fn(z)

∣∣∣∣∣ ≤ P6

 8N

ek ln
(

1
ρ

)
N

k

e
ln(ρ)

8 n

Let us then set P7 :=
P6

(
8N

ek ln
(
1
ρ

)
)N

k

1−e
ln(ρ)

8

and P8 := 1
4

(
A
4

)k
ln
(

1
ρ

)
.Thence we have

for every z ∈ C \D the following estimate :∣∣∣∣∣
(

∂

∂z

)N

F (z)

∣∣∣∣∣ ≤
(
1− e

ln(ρ)
8

)
P7

∑
A
4 n− 1

k ≤%(z,D)≤A
3 n− 1

k

e
ln(ρ)

4 n

≤
(
1− e

ln(ρ)
8

)
P7

∑
(

A
4%(z,D)

)k
≤n

e
ln(ρ)

4 n

≤ P7 exp
(
−P8%(z,D)−k

)
≤ P7 exp

(
−P8 (|z| − 1)

−k
)

2. Let f ∈ HN (D) . Assume that there exists a function F : U → C of class
C∞ on a neighborhood U of the closed unit disk D such that :{

F |D = f(
∀z ∈ U \D

)
:
∣∣∣( ∂

∂z

)N
F (z)

∣∣∣ ≤ P9 exp
(
−P10 (|z| − 1)

−k
)

where P9, P10 > 0 are constants. Let R0 > 0 be such that the disk D1+R0 is
contained in U . There exist ([50]) a function Φ : C −→ [0, 1] of class C∞ on C
such that : 

(
∀z ∈ D

1+
R0
3

)
: Φ(z) = 1(

∀z ∈ C \D
1+

2R0
3

)
: Φ(z) = 0

We denote by F̃ the function defined by :
(
∀z ∈ D

1+
2R0
3

)
: F̃ (z) = Φ(z)F (z)(

∀z ∈ C \D
1+

2R0
3

)
: F̃ (z) = 0

Then it is clear that the function F̃ is an extension of the function f to C, and
that F̃ is of class C∞ on C with compact support contained in D

1+
2R0
3

and
that the following estimate holds :

(
∀z ∈ C \D

)
:

∣∣∣∣∣
(

∂

∂z

)N

F̃ (z)

∣∣∣∣∣ ≤ P11 exp
(
−P12 (|z| − 1)

−k
)
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with some convenient constants P11, P12 > 0. Thanks to proposition 2.1., the
following relations hold for every z ∈ C :

F̃ (z) =

∫∫
C

(
z − ζ

)N−1

π (N − 1)! (z − ζ)

(
∂

∂z

)N

F̃ (ζ) dν (ζ)

=

∫∫
D

1+
2R0
3

\D

(
z − ζ

)N−1

π (N − 1)! (z − ζ)

(
∂

∂z

)N

F̃ (ζ) dν (ζ)

Let us denote by Ψ the function :

Ψ : C×
(
D1+R0

\D
)

→ C

(z, ζ) 7→
(
z−ζ

)N−1

π(N−1)!(z−ζ)

(
∂
∂z

)N
F̃ (ζ)

Then we have the following estimates for each (l,m) ∈ N2 :

sup
(z,ζ)∈D×D

1+
2R0
3

, ζ /∈D∪{z}

∣∣∣∣ ∂l+mΨ

∂zl∂zm
(z, ζ)

∣∣∣∣
≤ sup

(z,ζ)∈D×D
1+

2R0
3

, ζ /∈D∪{z}
max (|z − ζ| , 1)N−1

∣∣∣( ∂
∂z

)N
F̃ (ζ)

∣∣∣ l!
π |z − ζ|l+1

≤ π−1P11

(
2

(
1 +

2R0

3

))N−1

·

· sup
(z,ζ)∈D×D

1+
2R0
3

, ζ /∈D∪{z}

exp
(
−P12 (|ζ| − 1)

−k
)
l!

|z − ζ|l+1

But there exists, according to proposition 8.2. in the appendix below, a
constant P13 > 0 such that :

sup
(z,ζ)∈D×D

1+
2R0
3

, ζ /∈D∪{z}

exp
(
−P12 (|ζ| − 1)

−k
)
l!

|z − ζ|l+1

≤ 1

π−1P11

(
2
(
1 + 2R0

3

))N−1
P l+1
13 l

(
1+ 1

k

)
l

Consequently the following condition holds :

(
∀ (l,m) ∈ N2

)
: sup
(z,ζ)∈D×D

1+
2R0
3

, ζ /∈D∪{z}

∣∣∣∣ ∂l+mΨ

∂zl∂zm
(z, ζ)

∣∣∣∣ ≤ P l+1
13 l

(
1+ 1

k

)
l
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It follows that, when applying the differential operator Llm := ∂l+m

∂zl∂zm to F, we

can interchange Llm and the integral sign
∫∫

D
1+

2R0
3

\D

to write for each z ∈ D :

∂l+mf

∂zl∂zm
(z) =

∂l+mF̃

∂zl∂zm
(z)

=

∫∫
D

1+
2R0
3

\D

∂l+mΨ

∂zl∂zm
(z, ζ) dν(ζ)

Hence we can write for each z ∈ D :∣∣∣∣∣ ∂l+mF̃

∂zl∂zm
(z)

∣∣∣∣∣ ≤ 4πR0 (R0 + 3)

9
P l+m+1
13 (l +m)

(
1+ 1

k

)
(l+m)

Consequently f ∈ Hk
N (D) .

The proof of the corollary is complete. �

7.2. Degree of the best uniform N-polynomial approximation of func-
tions of the Gevrey class Hk

N (D).

Corollary 7.2. For every k > 0, the set of the functions

Θα,β : R+ → R+

t 7→ α exp
(
−βt

k
k+1

)
where (α, β) runs over R+∗×R+∗, is a degree of the best uniform N−polynomial
approximation of the Gevrey class Hk

N (D).

Proof. 1. Let f ∈ Hk
N (D) . According to the main result of this paper there

exists a sequence (Pn)n∈N∗ of N−analytic polynomials such that :


(∀n ∈ N∗) : ||Pn||∞,Dk,R,n

≤ Cδn

(∀z ∈ D) :
+∞∑
n=1

Pn(z) = F (z)

(∀n ∈ N∗) : d◦ (Pn) ≤ n
k+1
k

where C > 0 and δ ∈]0, 1[ are constants. Let us denote for each n ∈ N∗ by Qn

the finite sum Qn :=
∑

j
k+1
k ≤n

Pj . Then Qn ∈ ΠN,n and the following inequalities
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hold :

EN,n (f) ≤ ‖f −Qn‖∞,D

≤
∑

j
k+1
k >n

‖Pj‖∞,D

≤ C
∑

j
k+1
k >n

δj

≤ C

1− δ
δn

k
k+1

Consequently we have for each n ∈ N :

EN,n (f) ≤ P14 exp
(
−P15n

k
k+1

)
where P14 := max

(
C

1−δ , EN,0 (f)
)
> 0 and P15 := ln

(
1
δ

)
> 0.

2. Conversly, let f ∈ C
(
D
)

which fullfiles the following condition :

(∀n ∈ N) : EN,n (f) ≤ P16 exp
(
−P17n

k
k+1

)
where P16,P17 > 0 are constants. Then there exists for each n ∈ N, a function
Wn ∈ ΠN,n such that :

‖f −Wn‖∞,D ≤ P16 exp
(
−P17n

k
k+1

)
We denote for each n ∈ N∗, by Yn the finite sum

∑
n

k+1
k ≤j<(n+1)

k+1
k

(Wj −Wj−1) .

Then Yn ∈ ΠN and we obtain, for every z ∈ Dk, β3 ,n, by virtue of the proposition
3.3., the following estimates :

|Yn (z)| ≤
∑

n
k+1
k ≤j<(n+1)

k+1
k

|Wj(z)−Wj−1(z)|

≤
∑

n
k+1
k ≤j<(n+1)

k+1
k

(
2N+1 − 1

)
JN

(
1

2
, 1

)
·

·P16

(
exp

(
−P17j

k
k+1

)
+ exp

(
−P17 (j − 1)

k
k+1

))
|z|j+N

≤ P16

(
2N+1 − 1

)
JN

(
1

2
, 1

)
exp (−P17n) ·

·
∑

n
k+1
k ≤j<(n+1)

k+1
k

(
1 + exp

(
P17

(
j

k
k+1 − (j − 1)

k
k+1

)))
·

·
(
1 +

P17

3
n− 1

k

)j+N
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But, according to the proposition 8.3. in the appendix below, we have the
following asymptotic estimates :

exp (−P17n)
∑

n≤j
k

k+1 <n+1

(
1 + exp

(
P17

(
j

k
k+1 − (j − 1)

k
k+1

)))
·

·
(
1 +

P17

3
n− 1

k

)j+N

= O
n→+∞

((
e−

P17
4

)n)
Consequently there exist a constant P18 > 0 such that the following estimate

holds for each n ∈ N :

‖Yn‖∞,D
k,

β
3

,n

≤ P18

(
e−

P17
4

)n
Since the function series

∑
Yn is uniformly convergent on D to the function f

it follows, thanks to theorem 5. 1., that f ∈ Hk
N (D) .

The proof of the corollary is then achieved. �

8. Appendix

Proposition 8.1. For each constant B > 0, there exists a constant D1 > 0

such that the following estimate holds :

(∀n ∈ N) : e−Bn
(
(n+ 1)

k+1
k − n

k+1
k + 1

)
·

·
(
1 +

B
2
n− 1

k

)n
k+1
k

≤ D1

(
e−

B
4

)n
Proof. The following inequalities hold for each n ∈ N :

e−Bn
(
(n+ 1)

k+1
k − n

k+1
k + 1

)(
1 +

B
2
n− 1

k

)n
k+1
k

≤ e−Bne
B
2 n
(
(n+ 1)

k+1
k − n

k+1
k + 1

)
≤

(
k + 1

k

)
e−

B
2 n
(
n

1
k + 1

)
≤

(
k + 1

k

)
e−

B
4 n
(
n

1
k + 1

)
e−

B
4 n
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Consequently there exist a constant D1 > 0 such that :

(∀n ∈ N) : e−Bn
(
(n+ 1)

k+1
k − n

k+1
k + 1

)
·

·
(
1 +

B
2
n− 1

k

)n
k+1
k

≤ D1

(
e−

B
4

)n
Thence we achieve the proof of the proposition. �

Proposition 8.2. For each constants R,B > 0, there exists a constant D2 > 0

such that the following estimate holds :

(∀l ∈ N) : sup
(z,ζ)∈D×D

1+ 2R
3

, ζ /∈D∪{z}

exp
(
−B (|ζ| − 1)

−k
)
l!

|z − ζ|l+1


≤ Dl+1

2 l
(
1+ 1

k

)
l

Proof. For each constants R,B > 0, we have for every l ∈ N :

sup
(z,ζ)∈D×D

1+ 2R
3

, ζ /∈D∪{z}

exp
(
−B (|ζ| − 1)

−k
)
l!

|z − ζ|l+1


≤ l! sup

(z,ζ)∈D×D
1+ 2R

3
, ζ /∈D∪{z}

exp
(
−B |z − ζ|−k

)
|z − ζ|l+1


≤ B− l+1

k l!sup
t≥0

(
t
l+1
k e−t

)
But, according to the relation (6.1), we can write :

B− (l+1)
k sup

t≥0

(
t
l+1
k e−t

)
≤

(
B
k

) 1
k

((
k

B

) 1
k

)l

l
l
k

Let us set D2 := max
((B

k

) 1
k , 1

)
. Then we have the following relation :

(∀l ∈ N) : sup
(z,ζ)∈D×D

1+ 2R
3

, ζ /∈D∪{z}

exp
(
−B (|ζ| − 1)

−k
)
l!

|z − ζ|l+1


≤ Dl+1

2 l
(
1+ 1

k

)
l

Thence we achieve the proof of the proposition. �
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Proposition 8.3. For each constant B > 0, the following asymptotic estimate
holds :

e−Bn
∑

n
k+1
k ≤j<(n+1)

k+1
k

(
1 + exp

(
B
(
j

k
k+1 − (j − 1)

k
k+1

)))
·

·
(
1 +

B
3
n− 1

k

)j+N

= O
n→+∞

((
e−

B
4

)n)
Proof. The following asymptotic relations hold for each constant B > 0 :

e−Bn
∑

n
k+1
k ≤j<(n+1)

k+1
k

(
1 + exp

(
B
(
j

k
k+1 − (j − 1)

k
k+1

)))(
1 +

B
3
n− 1

k

)j+N

= O
n→+∞

e−Bn exp

((
1 + o

n→+∞
(1)

)
B
3
n

) ∑
n

k+1
k ≤j<(n+1)

k+1
k

1




= O
n→+∞

(
e

2B
3 ne−Bn

(
(n+ 1)

k+1
k − n

k+1
k

))
= O

n→+∞

(
n

1
k e−

B
3 n
)

= O
n→+∞

((
e−

B
4

)n)
Thence we achieve the proof of the proposition. �
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