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Abstract. The PUL integral is an integration process which uses the
notion of partition of unity [3]. The definition of this integral is similar
to the Gauge integral, which was defined by Kurzweil and Henstock.
Also, it is equivalent to the Lebesgue integral in Euclidean n-dimensional
Spaces. Boonpogkrong [1] discussed the Kurzweil-Henstock integral on
manifolds. The PUL-Stieltjes integral, established by Flores and Benitez
[2], is a generalization of the PUL Integral. In this paper, we present
some Convergence Theorems for the PUL-Stieltjes integral. Notions on
the equi-integrability of this integral is also presented in the paper.
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1. Introduction

Boonpogkrong [1] defined the Kurzweil-Henstock integral on manifolds us-
ing the definition of the PUL integral which was defined by J. Kurzwel and J.
Jarnik. The PUL integral is a Henstock type of definition which utilizes the
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notion of the partition of unity. In this integration process, a division of an
interval may contain some overlapping subintervals. In [2], Flores, et.al. ex-
tended this concept and defined the PUL-Stieltjes integral with values defined
on a Banach space. In the said paper, they presented some simple properties
and existence theorem for this integral.

In this paper, we exhibit some convergence theorems, namely, the Uniform
Convergence Theorem, and the Equi-integrability Theorem.

2. PUL-Stieltjes Integral in Banach Space

Denote a compact interval in Rn by [a, b] =

n∏
k=1

[ak, bk] with [ak, bk] ⊆ R

for each k = 1, 2, . . . , n and µ([a, b]) =

n∏
k=1

(bk − ak) be the volume of [a, b].

Also, we denote A as the closure of the set A ⊆ Rn. For a smooth function
ψ : [a, b] → R, the support of ψ, denoted by supp ψ, is given by

supp ψ = {x ∈ [a, b] : ψ(x) 6= 0}.

A gauge on [a, b] is a positive function defined on [a, b].

Definition 2.1. [1] A finite collection {ψk}mk=1 of smooth functions defined on
[a, b] is said to be a partial partition of unity if the following holds:

1. ψk(ξ) ≥ 0 for all ξ ∈ [a, b] and for all k ∈ {1, 2, · · · ,m} and

2.
m∑

k=1

ψk(ξ) ≤ 1 for all ξ ∈ [a, b].

If
m∑

k=1

ψk(ξ) = 1 for all ξ ∈ [a, b], then {ψk}mk=1 is said to be a partition of

unity.

Definition 2.2. [1] Let ψ : [a, b] → R be a smooth function and δ a gauge on
[a, b]. A triple (ξ, I, ϕ), with ξ ∈ [a, b] and I ⊆ [a, b], is said to be δ-fine if

supp ψ ⊆ I ⊆ B(ξ, δ(ξ)).

Note that ξ may not be in supp ψ and I. If δ1 and δ2 are gauges on [a, b] such
that δ1(ξ) ≥ δ2(ξ) and (ξ, I, ϕ) is δ2-fine, then (ξ, I, ϕ) is also δ1-fine.

A division D = {(Ik, ψk)}mk=1 of [a, b] is a collection of subintervals {Ik}mk=1

of [a, b] and a partition of unity {ψk}mk=1 on [a, b] such that for each k ∈
{1, 2, · · · ,m}, supp ψk ⊆ Ik. In this case, Ik’s may be overlapping.

Definition 2.3. [1] A finite collection D = {(ξk, Ik, ψk)}mk=1 is said to be a
δ-fine partial division of [a, b] if the collection {ψk}mk=1 is a partial partition of
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unity and every (ξk, Ik, ψk) is δ-fine. If {ψk}mk=1 is a partition of unity, then D
is said to be a δ-fine division of [a, b].

The existence of δ-fine divisions of [a, b] is guaranteed by the open covering
theorem and the existence of a partition of unity, see [1].

Let D = {(ξk, Ik, ψk)}mk=1 be a δ-fine division of [a, b], and g : [a, b] → R
be a function. Suppose that for each k ∈ {1, 2, · · · ,m}, the Riemann-Stieltjes

integral
∫
Ik

ψk dg exists. Define the PUL-Stieltjes sum of f with respect to g

over D by

S(f, g,D) =

m∑
k=1

f(ξk)

∫
Ik

ψk(x) dg(x) =

m∑
k=1

f(ξk)

∫
Ik

ψk dg.

For brevity, we write a δ-fine division of [a, b] by D = {(ξ, I, ψ)} and a PUL-
Stieltjes sum of f with respect to g over D by

S(f, g,D) = (D)
∑

f(ξ)

∫
I

ψ dg =
∑
D

f(ξ)

∫
I

ψ dg.

Definition 2.4. [2] Let (X, ‖ · ‖X) be a Banach space. We say that a function
f : [a, b] → X is said to be PUL-Stieltjes integrable with respect to g : [a, b] →
R on [a, b] if there exists A ∈ X such that for every ε > 0, there exists a gauge
δ on [a, b] such that for every δ-fine division D = {(ξk, Ik, ψk)}mk=1 of [a, b],
we have

‖S(f, g,D)−A‖X < ε.

If A is the PUL-Stieltjes integral of f with respect to g on [a, b], then we write

A = (P)

∫
[a,b]

f dg.

In this paper, we fix X = R. A real-valued function f defined on a compact
interval [a, b] ⊆ Rn is said to be bounded on [a, b] if there exists M > 0 such
that |f(x)| ≤M for all x ∈ [a, b]. Moreover, we define

‖f‖∞ = inf{K : |f(x)| ≤ K ∀x ∈ [a, b]}.

For a compact interval I =

n∏
k=1

[uk, vk], uk < vk, denote V(I) as the collection

of vertices of I. Define

∆g(I) = ∆g

( n∏
k=1

[uk, vk]

)
=

∑
x∈V(I)

g(x)

n∏
k=1

(−1)χ{uk}(xk),

where x = (x1, x2, · · · , xn) and g : [a, b] → R is a real-valued function. A real
valued-function g : [a, b] → R is said to be a function of bounded variation on
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[a, b], if V (g; [a, b]) <∞, where

V (g; [a, b]) = sup

{ ∑
I∈D

|∆g(I)| : D is a division of [a, b]
}
.

We denote BV ([a, b]) as the collection of real-valued function f defined on
[a, b].

Theorem 2.5. [2] If f : [a, b] → X is continuous on [a, b] and g : [a, b] → R
is of bounded variation on [a, b], then f is PUL-stieltjes integrable on [a, b]

with respect to g.

3. Main Results

Lemma 3.1. Let f : [a, b] → X be bounded and g ∈ BV ([a, b]). Suppose that
the PUL-Stieltjes integral of f with respect to g on [a, b] exists. Then∣∣∣∣ ∫

[a,b]

f dg

∣∣∣∣ ≤ ‖f‖∞ · V (g; [a, b]).

Proof : Let ε > 0. Then there exists a gauge δ on [a, b] such that for any δ-fine
division D of [a, b], we have∣∣∣∣S(f, g,D)−

∫
[a,b]

f dg

∣∣∣∣ < ε.

Since f is bounded on [a, b], ‖f‖∞ exists. Let D be a fix (but arbitrary) δ-fine
division D of [a, b]. Then

|S(f, g,D)| ≤
∑
D

∣∣∣∣f(ξ)∫
I

ϕ dg

∣∣∣∣ ≤ ‖f‖∞ · V (g; [a, b]).

Thus,∣∣∣∣ ∫
[a,b]

f dg

∣∣∣∣ ≤ ∣∣∣∣ ∫
[a,b]

f dg−S(f, g,D)

∣∣∣∣+ |S(f, g,D)| < ε+ ‖f‖∞ · V (g; [a, b]).

Since ε > 0 is arbitrary, the conclusion follows. �

Theorem 3.2 (Uniform Convergence Theorem). Let g ∈ BV ([a, b]) and
〈fn〉∞n=1 is a sequence of bounded and PUL-Stieltjes integrable with respect to
g on [a, b]. If fn → f uniformly on [a, b], then f is PUL-Stieltjes integrable
with respect to g on [a, b] and

lim
n→∞

∫
[a,b]

fn dg =

∫
[a,b]

f dg.

Proof : Let ε > 0. Since fn → f uniformly on [a, b], there exists N1 ∈ N such
that for all n ≥ N1 and for all x ∈ [a, b], we have

|fn(x)− f(x)| < ε

3 · [V (g; [a, b]) + 1]
. (3.1)
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If m,n ≥ N1 and x ∈ [a, b], then by Equation (3.1)

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)|

<
ε

3V (g; [a, b])
+

ε

3V (g; [a, b])

=
2ε

3V (g; [a, b])
.

Hence, for all m,n ≥ N1,

‖fn − fm‖∞ <
2ε

3V (g; [a, b])
. (3.2)

By (3.2), by Lemma 3.1 and by linearity,∣∣∣∣ ∫
[a,b]

fm dg −
∫
[a,b]

fn dg

∣∣∣∣ = ∣∣∣∣ ∫
[a,b]

(fm − fn) dg

∣∣∣∣ ≤ ‖fm − fn‖∞ · V (g; [a, b])

<
2ε

3V (g; [a, b])
· V (g; [a, b])

=
2ε

3
< ε

for all m,n ≥ N1. Thus,

〈∫
[a,b]

fn dg

〉
is Cauchy, and so there exists A ∈ R

such that lim
n→∞

∫
[a,b]

fn dg = A. Hence, there exists N2 ∈ N such that for all

n ≥ N2, ∣∣∣∣ ∫
[a,b]

fn dg −A

∣∣∣∣ < ε

3
.

Take N = max{N1, N2}. Since fN is PUL-Stieltjes integrable with respect to
g on [a, b], there is a gauge δ on [a, b] such that for any δ-fine division D of
[a, b], we have ∣∣∣∣S(fN , g,D)−

∫
[a,b]

fN dg

∣∣∣∣ < ε

3
.

By (3.1), we have

|S(f, g,D)− S(fN , g,D)| =
∣∣∣∣∑

D

[f(ξ)− fN (ξ)]

∫
I

ϕ dg

∣∣∣∣ ≤ ∑
D

|f(ξ)− fN (ξ)| ·
∣∣∣∣ ∫

I

ϕ dg

∣∣∣∣
<

ε

3 · [V (g; [a, b]) + 1]
· V (g; [a, b]) =

ε

3
· V (g; [a, b])

V (g; [a, b]) + 1
<
ε

3
.

Therefore,

|S(f, g,D)−A| ≤ |S(f, g,D)− S(fN , g,D)|+
∣∣∣∣S(fN , g,D)−

∫
[a,b]

fN dg

∣∣∣∣+ ∣∣∣∣ ∫
[a,b]

fN dg −A

∣∣∣∣
<
ε

3
+
ε

3
+
ε

3
= ε.
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Therefore, ∫
[a,b]

f = A = lim
n→∞

∫
[a,b]

fn. �

Example 3.3. For each n ∈ N, let fn = x2

n for all x ∈ [0, 1] ⊆ R. Fix ε > 0.
Then choose N ∈ N such that 1

N < ε so that for each x ∈ [0, 1] and for each
n ∈ N, we have

|fn(x)− 0| = |fn(x)| =
∣∣∣∣x2n

∣∣∣∣ < 1

n
≤ 1

N
< ε.

This means that 〈fn〉∞n=1 converges uniformly to 0 on [0, 1]. Moreover,∫ 1

0

fn(x) dx =

∫ 1

0

x2

n
dx =

1

n

implies

lim
n→∞

∫ 1

0

fn(x) dx = lim
n→∞

1

n
= 0 =

∫ 1

0

0 dx.

Definition 3.4. Let g : [a, b] → R. A family F of real-valued PUL-Stieltjes
integrable functions with respect to g on [a, b] is said to be equi-integrable with
respect to g on [a, b] if for every ε > 0, there is a gauge δ on [a, b] such that
for each f ∈ F and for every δ-fine division D of [a, b], we have∣∣∣∣S(f, g,D)−

∫
[a,b]

f dg

∣∣∣∣ < ε.

A sequence 〈fn〉∞n=1 of real-valued PUL-Stieltjes integrable functions with re-
spect to g on [a, b] is said to be equi-integrable with respect to g on [a, b] if the
family {fn : [a, b] → R | n ∈ N} is equi-integrable with respect to g on [a, b].

Lemma 3.5. Let g ∈ BV ([a, b]) and let 〈fn〉∞n=1 be a sequence of real-valued
PUL-Stieltjes integrable functions with respect to g on [a, b]. If 〈fn〉∞n=1 is
a equi-integrable with respect to g on [a, b] and converges pointwisely to f :

[a, b] → R on [a, b], then

〈∫
[a,b]

fn

〉
is Cauchy.

Proof : Let ε > 0. Since 〈fn〉∞n=1 is equi-integrable with respect to g on [a, b],
there is a gauge δ on [a, b] such that if D is a δ-fine division of [a, b],∣∣∣∣S(fn, g,D)−

∫
[a,b]

fn dg

∣∣∣∣ < ε

3
, for all n ∈ N.

Since g ∈ BV ([a, b]), V (g; [a, b]) = M ∈ R. Now, fix a δ-fine division D =

{(ξ, I, ϕ)} of [a, b]. Since 〈fn〉∞n=1 converges pointwisely to f on [a, b], for each
tag ξ in D there is an Nξ ∈ N such that for all n ≥ Nξ, we have

|fn(ξ)− f(ξ)| < ε

6(M + 1)
.
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Put N = max{Nξ : ξ is a tag in D}. For each m,n ≥ N , we have

|fm(ξ)− fn(ξ)| ≤ |fm(ξ)− f((ξ)|+ |fn(ξ)− f(ξ)|

<
ε

6(M + 1)
+

ε

6(M + 1)
=

ε

3(M + 1)
,

for each tag ξ in D. Hence, for all m,n ≥ N

|S(fm, g,D)− S(fn, g,D)| = |S(fm − fn, g,D)| =
∣∣∣∣∑

D

[fm(ξ)− fn(ξ)]

∫
I

ϕ dg

∣∣∣∣
≤

∑
D

∣∣fm(ξ)− fn(ξ)
∣∣∣∣∣∣ ∫

I

ϕ dg

∣∣∣∣ ≤ ε

3(M + 1)
(M + 1) =

ε

3
.

Thus, for all m,n ≥ N∣∣∣∣ ∫
[a,b]

fm dg −
∫
[a,b]

fn dg

∣∣∣∣ ≤ ∣∣∣∣ ∫
[a,b]

fm dg − S(fm, g,D)

∣∣∣∣
+ |S(fm, g,D)− S(fn, g,D)|+

∣∣∣∣S(fn, D, g)− ∫
[a,b]

fn dg

∣∣∣∣
<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore, the sequence

〈∫
[a,b]

fn dg

〉
is Cauchy in X. �

Theorem 3.6 (Equi-integrability Theorem). Let g ∈ BV ([a, b]) and let
〈fn〉∞n=1 be a sequence of real-valued PUL-Stieltjes integrable with respect to g

on [a, b]. If 〈fn〉∞n=1 is equi-integrable with respect to g on [a, b] and converges
pointwisely to f : [a, b] → R, then f is PUL-Stieltjes integrable with respect to
g on [a, b] and ∫

[a,b]

f dg = lim
n→∞

∫
[a,b]

fn dg.

Proof : Let ε > 0. By Lemma 3.5,
〈∫

[a,b]

fn dg

〉
is Cauchy in X. Since R is a

complete, the sequence
〈∫

[a,b]

fn dg

〉
converges to, say A, that is,

lim
n→∞

∫
[a,b]

fn dg = A.

Thus, there is N1 ∈ N such that for all n ≥ N1, we have∣∣∣∣ ∫
[a,b]

fn dg −A

∣∣∣∣ < ε

3
.

By equi-integrability of 〈fn〉∞n=1, choose a gauge δ on [a, b] and fix (but arbi-
trary) a δ-fine division D = {(ξ, I, ϕ)} of [a, b] such that for each n ∈ N,∣∣∣∣S(fn, g,D)−

∫
[a,b]

fn dg

∣∣∣∣ < ε

3
.
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By pointwise convergence of 〈fn〉∞n=1, for each tag ξ in D there is Nξ ∈ N such
that for all n ≥ Nξ,

|fn(ξ)− f(ξ)| < ε

3(M + 1)
.

Put N2 = max{Nξ : ξ is a tag in D}. Hence, for each n ≥ N2, we have∣∣∣∣S(f, g,D)− S(fn, g,D)

∣∣∣∣ = ∣∣∣∣S(f − fn, g,D)

∣∣∣∣ = ∣∣∣∣∑
D

[f(ξ)− fn(ξ)]

∫
I

ϕ dg

∣∣∣∣
≤

∑
D

|f(ξ)− fn(ξ)|
∣∣∣∣ ∫

I

ϕ dg

∣∣∣∣ ≤ ε

3(M + 1)
(M + 1) =

ε

3
.

Take N = max{N1, N2}. Then∣∣∣∣S(f, g,D)−A

∣∣∣∣ ≤ ∣∣∣∣S(f, g,D)− S(fN , g,D)

∣∣∣∣+ ∣∣∣∣S(fN , g,D)−
∫
[a,b]

fN dg

∣∣∣∣
+

∣∣∣∣ ∫
[a,b]

fNdg −A

∣∣∣∣
<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore, f is equi-integrable with respect to g on [a, b] and∫
[a,b]

f dg = A = lim
n→∞

∫
[a,b]

fn dg. �

Denote C([a, b]) as the collection of all continuous functions f : [a, b] → R.

Lemma 3.7. Let f ∈ C([a, b]) and 〈gn〉∞n=1 be sequence in BV ([a, b]) such
that sup

{
V (gn; [a, b]) : n ∈ N

}
< ∞. Suppose that gn(x) → g(x) uniformly

on [a, b]. Then the sequence 〈∫
[a,b]

f dgn

〉∞

n=1

is Cauchy.

Proof : Let ε > 0. Put K = sup
{
V (gn; [a, b]) : n ∈ N

}
. Since f ∈ C([a, b]),

for each x ∈ [a, b], there exists δ(ξ) such that for any y ∈ [a, b] with y ∈
B(x, δ(x)), we have

|f(x)− f(y)| < ε

4(1 +K)
. (3.3)
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Let D = {(ξ, I, ϕ)} be a δ-fine division of [a, b]. Then, for all n ∈ N

∣∣∣∣S(f, gn, D)−
∫
[a,b]

f dgn

∣∣∣∣ = ∣∣∣∣∑
D

[
f(ξ)

∫
I

ϕ dgn −
∫
I

f · ϕ dgn

]∣∣∣∣
≤

∑
D

∣∣∣∣f(ξ)∫
I

ϕ dgn −
∫
I

f · ϕ dgn

∣∣∣∣
≤

∑
D

∣∣∣∣ ∫
I

[f(ξ) · ϕ− f · ϕ] dgn
∣∣∣∣ ≤ ∑

D

∣∣∣∣ ∫
I

[f(ξ)− f ] · ϕ dgn

∣∣∣∣
≤

∑
D

∣∣∣∣ ∫
I

ε

4(1 +K)
ϕ dgn

∣∣∣∣ = ε

4(1 +K)

∑
D

∣∣∣∣ ∫
I

ϕ dgn

∣∣∣∣
≤ ε

4(1 +K)
·K <

ε

4
.

Since f is continuous on [a, b], f is bounded in [a, b]. Hence, there is M > 0

such that |f(x)| ≤M for all x ∈ [a, b].
Now, choose L = sup{|D| : D is a division of [a, b]}. Since lim

n→∞
g(x) =

g(x) on [a, b], there is an N ∈ N such that for all n ≥ N and for all x ∈ [a, b],
we have

|gn(x)− g(x)| < ε

8(M + 1) · 2n · (L+ 1)
.

We now find a bound for V (g − gn; [a, b]). Let P be a division of [a, b].
Then

∑
J∈P

|∆(g−gn)(J)| ≤
∑
J∈P

∑
t∈V(J)

|g(t)− gn(t)|

<
∑
J∈P

∑
t∈V(J)

ε

8(M + 1) · 2n · (L+ 1)

<
ε

8(M + 1) · 2n · (L+ 1)

∑
J∈P

∑
t∈V(J)

1

=
ε

8(M + 1) · 2n · (L+ 1)
· |P | · 2n

≤ ε

8(M + 1) · 2n · (L+ 1)
· L · 2n

=
ε

8(M + 1)
.

So, V (g − gn; [a, b]) <
ε

8(M + 1)
. Thus
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|S(f, gn, D)− S(f, g,D)| = |S(f, gn − g,D)| =
∣∣∣∣∑

D

f(ξ)

∫
I

ϕ d(g − gn)

∣∣∣∣
≤M ·

∑
D

∣∣∣∣ ∫
I

ϕ d(g − gn)

∣∣∣∣
≤M ·

∑
D

‖ϕ‖C · V (g − gn; I)

≤M · V (g − gn; [a, b]) =
ε

8
.

So, if m,n ≥ N , then∣∣S(f, gn, D)− S(f, gm, D)
∣∣ ≤ ∣∣S(f, gn, D)− S(f, g,D)

∣∣
+

∣∣S(f, g,D)− S(f, gm, D)
∣∣

≤
∣∣S(f, gn − g,D)

∣∣+ ∣∣S(f, g − gm, D)
∣∣

<
ε

8
+
ε

8
=
ε

4
.

For each m,n ≥ N ,∣∣∣∣(P)

∫
[a,b]

f dgn − (P)

∫
[a,b]

f dgm

∣∣∣∣ ≤ ∣∣∣∣(P)

∫
[a,b]

f dgn − S(f, gn, D)

∣∣∣∣
+

∣∣∣∣S(f, gn, D)− S(f, g,D)

∣∣∣∣
+

∣∣∣∣S(f, g,D)− S(f, gm, D)

∣∣∣∣
+

∣∣∣∣S(f, gm, D)− (P)

∫
[a,b]

f dgm

∣∣∣∣
<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε;

which means that the sequence
〈
(P)

∫
[a,b]

f dgn

〉∞

n=1

. �

Denote C([a, b]) to be the set of continuous real-valued functions on [a, b].

Theorem 3.8 (Uniform Convergence Theorem II). Let f ∈ C([a, b])

and 〈gn〉∞n=1 be sequence in BV ([a, b]) such that

sup
{
V (gn, [a, b]) : n ∈ N

}
<∞.

Suppose that gn(x) → g(x) uniformly on [a, b]. Then f is PUL-Stieltjes
integrable with respect to g on [a, b] and∫

[a,b]

f dg = lim
n→∞

∫
[a,b]

f dgn.
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Proof : By Lemma 3.7, the sequence
〈
(P)

∫
[a,b]

f dgn

〉∞

n=1

is Cauchy and so

lim
n→∞

(P)

∫
[a,b]

f dgn = A. (3.4)

It remains to show that A = (P)

∫
[a,b]

f dg. By (3.4), there is N ∈ N such that

for all n ≥ N , we have ∣∣∣∣(P)

∫
[a,b]

f dgn −A

∣∣∣∣ < ε

3
.

In particular, ∣∣∣∣(P)

∫
[a,b]

f dgN −A

∣∣∣∣ < ε

3
. (3.5)

Note that f is PUL-Stieltjes integrable with respect to gN on [a, b]. Hence,
there is a gauge δ on [a, b] such that for any δ-fine division D of [a, b], we have∣∣∣∣S(f, gN , D)− (P)

∫
[a,b]

f dgN

∣∣∣∣ < ε

3
. (3.6)

Also, as in the proof of Lemma 3.7,

|S(f, g,D)− S(f, gN , D)| < ε

3
. (3.7)

Therefore, by (3.5), (3.6), and (3.7)

|S(f, g,D)−A| ≤
∣∣∣∣S(f, g,D)− S(f, gN , D)

∣∣∣∣
+

∣∣∣∣S(f, gN , D)− (P)

∫
[a,b]

f dgN

∣∣∣∣
+

∣∣∣∣(P)

∫
[a,b]

f dgN −A

∣∣∣∣
<
ε

3
+
ε

3
+
ε

3
= ε;

Hence,

lim
n→∞

(P)

∫
[a,b]

f dgn = A = (P)

∫
[a,b]

f dg. �

Example 3.9. Let {fk}nk=1 be a finite collections of integrable real-valued
functions on the compact interval [0,1] ⊆ Rn. Then {fk}nk=1 is equi-integrable.

Example 3.10. Let 〈fn〉∞n=1 be a sequence of nonnegative integrable functions
that converges pointwise to 0 on [0,1] ⊆. If 〈fn〉∞n=1 is equi-integrable on
[0,1] ⊆ Rn, then

lim
n→∞

∫ 1

0

fn = 0.



72 Greig Bates C. Flores, Julius V. Benitez

Acknowledgments

The authors would like to thank the Department of Science and Technology
(DOST) through the Accelerated Science and Technology Human Resource
Development Program (ASTHRDP) for the support in the process of formu-
lating the study and, of course, the two of the prominent universities in the
Philippines, Mindanao State University-Iligan Institute of Technology
and Central Mindanao University.

References
1. Boonpogkrong, V., Kursweil-Henstock Integration on Manifolds, Taiwanese Journal of

Mathematics, 15(2), (2011), 559-571.
2. G. C. Flores, J. V. Benitez, Simple Properties of PUL-Stieltjes Integral in Banach Space,

Journal of Ultra Scientist of Physical Sciences, 29(4), (2017), 126-134.
3. J. Jarnik, J. Kurzweil, A nonabsolutely convergent integral which admits transformation

and can be used for integration on manifolds, Czechoslovak Math. J., 35(1), (1985),
116-139.


