Erratum "Some Result on Simple Hyper K- Algebras ", Iranian Journal of Mathematical Sciences and Informatics Vol. 3, No. 2 (2008), pp. 29-48

Soodabeh Madadi- Dargahi, Mohammad Ali Nasr-Azadani*
Department of Mathematics, shahed University, Tehran, Iran.

```
E-mail: s.madadi@shahed.ac.ir
    E-mail: nasr@shahed.ac.ir
```

Abstract. In this manuscript, we show that the Theorem 3.28 [2] is not correct and modify it.

Keywords: Hyper K-algebras, Simple hyper K-algebras, Positive implicative hyper K-ideal.
2000 Mathematics subject classification: 03B47, 06F35, 03G25.

1. Introduction

The concept of BCK-algebra that is a generalization of set difference and propositional calculi was established by Imai and Iséki [3] in 1966. In [4], Jun et al. applied the hyper structures BCK-algebra. In 1934, Marty [5] introduced for the first time the hyper structure theory in the 8th congress of Scandinavian Mathematicians proceedings. In [1], Borzooei et al. introduced the generalization of BCK-algebra and hyper BCK-algebra, called hyper Kalgebra. They studied properties of hyper K-algebra. In [2], Roudbari et al. investigated some properties of simple hyper K-algebras and classificaied simple hyper K-algebra of order 4 . We show that the Theorem 3.28 [2] is not correct and modify it.

[^0]
2. Preliminaries

In this section, we mention theorems of [2] that are needed in the sequel.
Definition 2.1. [1] Let H be a non-empty set containing a constant " 0 " and " - " be a hyperoperation on H. Then H is called a hyper K-algebra if it satisfies in the following properties:
(HK1): $(x \circ z) \circ(y \circ z)<x \circ y$,
(HK2): $(x \circ y) \circ z=(x \circ z) \circ y$,
(HK3): $x<x$,
(HK4): $x<y, y<x \Longrightarrow x=y$,
(HK5): $0<x$.
for all $x, y, z \in H$, where $x<y$ means $0 \in x \circ y$. Moreover for any $A, B \subseteq H$, $A<B$ if $\exists a \in A, \exists b \in B$ such that $a<b$.

Theorem 2.2. [2] The following statements in a simple hyper K-algebra (H,, 0) hold.
(1) $a \circ 0=\{a\}, \forall a \in H \backslash\{0\}$,
(2) $a \in a \circ b$, for all distinct elements $a, b \in H$.

Theorem 2.3. [2] Let $(H, \circ, 0)$ be a simple hyper K-algebra, $|H|=n, a \in$ $H \backslash\{0\}$ and $I=\{0, a\}$ be a PIHKI of type 27(13, 18, 20). Then
(1) If $0 \in x \circ y$ then $x \circ y=\{0\}$ or $\{0, a\}, \forall x \in H$,
(2) $a \circ b=\{a\}$ for $b \neq a$ and $b \in H$.

The Theorems $3.22,3.23,3.24,3.25$ and 3.26 [2] can be revise as follows:
Theorem 2.4. Let $\left(H_{1}, \circ_{1}, 0_{1}\right),\left(H_{2}, \circ_{2}, 0_{2}\right)$ be two hyper K-algebras, $H_{1}=$ $\left\{0_{1}, 1_{1}, 2_{1}, 3_{1}\right\}, H_{2}=\left\{0_{2}, 1_{2}, 2_{2}, 3_{2}\right\}$ and $f: H_{1} \rightarrow H_{2}$ is a bijective map. If for all $x, y \in H,\left|x \circ_{1} y\right| \neq\left|f(x) \circ_{2} f(y)\right|$ then f is not an isomorphism hyper K-algebra

Proof. It is clear.

3. Main Results

In this section at first we show that Theorem 3.28 [2] as follows is not true, then we give a correct version of it. The authors in [2] claimed:
Theorem 3.28 [2]: There are 50 non-isomorphism hyper K-algebras of order 4 with simple condition such that they have exactly one positive implicative hyper K-ideal of order 2 and type $27(13,18,20)$.

The following example shows that in the list of hyper K-algebras $\left(H, \circ_{i}, 0\right)$, in [2], if $2 \circ_{i} 1=\{1,2\}$ or $3 \circ_{i} 1=\{1,3\}$, then $\left(H, \circ_{i}, 0\right)$ where $(\mathrm{i}=4,7,10,12$, $13,15,16,17,18,19,20,21,23,24,26,28,30,32,33,35,37,38,39,40,41$, $43,44,46,47,49,50)$ do not have any positive implicative hyper K-ideal of order 2 and type $27(13,18,20)$.

Example 3.1. The ($H, \circ, 0$) with cayley table as follows be a hyper K-algebra,

H	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0\}$	$\{2\}$
3	$\{3\}$	$\{1,3\}$	$\{3\}$	$\{0,1\}$

and $I=\{0,1\}$ is not a positive implicative hyper K-ideal of type 27 , because $(3 \circ 1) \circ 1=\{0,1,3\}<I, 1 \circ 1=\{0,1\}<I$ but $3 \circ 1=\{1,3\} \nsubseteq I$. Similarly, $I=\{0,2\}$ and $I=\{0,3\}$ are not a positive implicative hyper K-ideal of H.

Theorem 3.2. Let $H=\{0, a, b, c\}$ be a simple hyper K-algebra of order 4 and $I=\{0, a\}$ a positive implicative hyper K-ideal of type 27(13, 18, 20). Then $b \circ x=\{b\}$ such that $b \notin\{0, a\}$ and $x \neq b$.

Proof. By Theorem 2.2(2), $b \in b \circ x$. Let $b \circ x \neq\{b\}$. Then, we have $b \circ x=$ $\{a, b\},\{a, b, c\}$ or $\{b, c\}$. If $b \circ x=\{a, b\}$ or $\{a, b, c\}$, then $a \in a \circ x \subseteq(b \circ x) \circ x<I$ and $x \circ x<I$ but $b \circ x \nsubseteq I$, which is a contradiction to I is a positive implicative hyper K-ideal of type 27. Also if $b \circ x=\{b, c\}$, then $(b \circ x) \circ b \neq(b \circ b) \circ x$, so HK2 is not satisfied. Because $c \in c \circ b \subseteq(b \circ x) \circ b$ but $b \circ b \subseteq\{0, a\}$ and $c \notin(b \circ b) \circ x \subseteq 0 \circ x \cup a \circ x \subseteq\{0, a\}$. Hence $b \circ x=\{b\}$.
Theorem 3.3. Let H be a hyper K-algebra of order 4, such that has three positive implicative hyper K-ideals of order 2 and type 27(13, 18, 20). Then H is a BCK-algebra.

Proof. Let $H=\{0,1,2,3\}$ hyper K-algebra such that $I_{1}=\{0,1\}, I_{2}=\{0,2\}$ and $I_{3}=\{0,3\}$ are positive implicative hyper K-ideals of order 2 and type 27 . By Theorem 2.3(2), we have $a \circ b=\{a\}, \forall 0 \neq a \in I_{i}, a \neq b ; i \in\{1,2,3\}$.
On the other, if I be a positive implicative hyper K-ideals of order 2 and type 27 , then $x \circ x \subseteq I$. Since ($x \circ 0$) $\circ x<I$ and $0 \circ x<I$. So, $x \circ x \subseteq I_{1} \cap I_{2} \cap I_{3}=\{0\}$, hence $x \circ x=\{0\}$ and H is a BCK-algebra.

Now we modify Theorem 3.28 [2] as follows:
Theorem 3.4. There are 22 non-isomorphism hyper K-algebras of order 4 with simple condition such that they have exactly one positive implicative hyper K-ideal of order 2 and type 27(13, 18, 20).

Proof. Let $H=\{0,1,2,3\}$ and suppose that the following table shows a probable hyper K-algebra structure of H .

\circ	0	1	2	3
0	a_{11}	a_{12}	a_{13}	a_{14}
1	a_{21}	a_{22}	a_{23}	a_{24}
2	a_{31}	a_{32}	a_{33}	a_{34}
3	a_{41}	a_{42}	a_{43}	a_{44}

Let $I=\{0,1\}$ be a PIHKI of type 27 . Then by Theorem $2.2(1)$, we have $1 \circ 0=\{1\}, 2 \circ 0=\{2\}, 3 \circ 0=\{3\}$ and by Theorems $2.3(2), 3.2,1 \circ 2=1 \circ 3=$ $\{1\}, 2 \circ 1=2 \circ 3=\{2\}$ and $3 \circ 1=3 \circ 2=\{3\}$. By HK3 and HK5 we have $0 \in a_{11} \cap a_{12} \cap a_{13} \cap a_{14} \cap a_{22} \cap a_{33} \cap a_{44}$. Also by Theorem $2.3(1)$, we get the only cases for $a_{11}, a_{12}, a_{13}, a_{14}, a_{22}, a_{33}$ and a_{44} are $\{0\}$ or $\{0,1\}$. Therefore there is 2^{7} hyperoperation on H. By HK2 and Theorems 2.4, 3.3, we get that there are 22 non-isomorphism hyper K-algebras of order 4 with simple condition such that they have exactly one PIHKI of type 27. Morever, if $I=\{0,2\}$ or $\{0,3\}$ be a PIHKI of type 27 of $H_{i} ; 1 \leq i \leq 22$, then $(x \circ 0) \circ x<I$ and $0 \circ x<I$ but $x \circ x \nsubseteq I$. Thus $\{0,1\}$ is the only PIHKI of type 27 of H_{i}.

H_{1}	0	1	2	3	H_{2}	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{3}	0	1	2	3	H_{4}	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0\}$	0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0\}$
H_{5}	0	1	2	3	H_{6}	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0,1\}$	0	$\{0\}$	$\{0,1\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{7}	0	1	2	3	H_{8}	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{9}	0	1	2	3	H_{10}	0	1	2	3
0	$\{0\}$	$\{0,1\}$	$\{0\}$	$\{0\}$	0	$\{0\}$	$\{0,1\}$	$\{0\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{11}	0	1	2	3	H_{12}	0	1	2	3
0	$\{0\}$	$\{0,1\}$	$\{0,1\}$	$\{0\}$	0	$\{0\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$

H_{13}	0	1	2	3	H_{14}	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$	0	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{15}	0	1	2	3	H_{16}	0	1	2	3
0	$\{0,1\}$	$\{0\}$	$\{0\}$	$\{0\}$	0	$\{0,1\}$	$\{0\}$	$\{0\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{17}	0	1	2	3	H_{18}	0	1	2	3
0	$\{0,1\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$	0	$\{0,1\}$	$\{0,1\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{19}	0	1	2	3	H_{20}	0	1	2	3
0	$\{0,1\}$	$\{0,1\}$	$\{0\}$	$\{0,1\}$	0	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{21}	0	1	2	3	H_{22}	0	1	2	3
0	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	0	$\{0,1\}$	$\{0\}$	$\{0,1\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$

Acknowledgments

The author would like to thank the anonymous referees for their constructive comments.

References

1. R. A. Borzooei, A. Hasankhani, M. M. Zahedi, Y.B. Jun, On hyper K-algebras, Mathematica Japonicae, 52(1), (2000), 113-121.
2. T . Roudbari, M. M. Zahedi, Some result on simple hyper K- algebras, Iranian Journal of Mathematical Sciences and Informatics, 3(2), (2008), 29-48.
3. Y. Imai, K. Iséki, On axiom systems of propositional calculi xiv, Proc. Japan Academi, (42), (1966), 19-22.
4. Y. B. Jun, x. L. xin, E. H. Roh, M.M. Zahedi, Strong on hyper BCK-ideals of hyper BCK-algebras, Math. Japon., 51(3), (2000), 493-498.
5. F. Marty, Sur une generalization de la notion de groups, 8th congress Math Scandinavies, Stockhholm, (1934), 45-49.

[^0]: * Corresponding Author

 Received 16 September 2017; Accepted 05 November 2018
 ©2021 Academic Center for Education, Culture and Research TMU

