Iranian Journal of Mathematical Sciences and Informatics Vol. 16, No. 2 (2021), pp 25-29 DOI: 10.29252/ijmsi.16.2.25

Erratum "Some Result on Simple Hyper K- Algebras ", Iranian Journal of Mathematical Sciences and Informatics Vol. 3, No. 2 (2008), pp. 29-48

Soodabeh Madadi- Dargahi, Mohammad Ali Nasr-Azadani*

Department of Mathematics, shahed University, Tehran, Iran.

E-mail: s.madadi@shahed.ac.ir E-mail: nasr@shahed.ac.ir

ABSTRACT. In this manuscript, we show that the Theorem 3.28 [2] is not correct and modify it.

Keywords: Hyper *K*-algebras, Simple hyper *K*-algebras, Positive implicative hyper K-ideal.

2000 Mathematics subject classification: 03B47, 06F35, 03G25.

1. INTRODUCTION

The concept of BCK-algebra that is a generalization of set difference and propositional calculi was established by Imai and Iséki [3] in 1966. In [4], Jun et al. applied the hyper structures BCK-algebra. In 1934, Marty [5] introduced for the first time the hyper structure theory in the 8th congress of Scandinavian Mathematicians proceedings. In [1], Borzooei et al. introduced the generalization of BCK-algebra and hyper BCK-algebra, called hyper K-algebra. They studied properties of hyper K-algebra. In [2], Roudbari et al. investigated some properties of simple hyper K-algebras and classificated simple hyper K-algebra of order 4. We show that the Theorem 3.28 [2] is not correct and modify it.

^{*}Corresponding Author

Received 16 September 2017; Accepted 05 November 2018 ©2021 Academic Center for Education, Culture and Research TMU

2. Preliminaries

In this section, we mention theorems of [2] that are needed in the sequel.

Definition 2.1. [1] Let H be a non-empty set containing a constant "0" and " \circ " be a hyperoperation on H. Then H is called a hyper K-algebra if it satisfies in the following properties:

(HK1): $(x \circ z) \circ (y \circ z) < x \circ y$, (HK2): $(x \circ y) \circ z = (x \circ z) \circ y$, (HK3): x < x, (HK4): $x < y, y < x \Longrightarrow x = y$, (HK5): 0 < x.

for all $x, y, z \in H$, where x < y means $0 \in x \circ y$. Moreover for any $A, B \subseteq H$, A < B if $\exists a \in A, \exists b \in B$ such that a < b.

Theorem 2.2. [2] The following statements in a simple hyper K-algebra $(H, \circ, 0)$ hold.

- (1) $a \circ 0 = \{a\}, \forall a \in H \setminus \{0\},$
- (2) $a \in a \circ b$, for all distinct elements $a, b \in H$.

Theorem 2.3. [2] Let $(H, \circ, 0)$ be a simple hyper K-algebra, $|H| = n, a \in H \setminus \{0\}$ and $I = \{0, a\}$ be a PIHKI of type 27(13, 18, 20). Then

- (1) If $0 \in x \circ y$ then $x \circ y = \{0\}$ or $\{0, a\}, \forall x \in H$,
- (2) $a \circ b = \{a\}$ for $b \neq a$ and $b \in H$.

The Theorems 3.22, 3.23, 3.24, 3.25 and 3.26 [2] can be revise as follows:

Theorem 2.4. Let $(H_1, \circ_1, 0_1), (H_2, \circ_2, 0_2)$ be two hyper K-algebras, $H_1 = \{0_1, 1_1, 2_1, 3_1\}, H_2 = \{0_2, 1_2, 2_2, 3_2\}$ and $f : H_1 \to H_2$ is a bijective map. If for all $x, y \in H$, $|x \circ_1 y| \neq |f(x) \circ_2 f(y)|$ then f is not an isomorphism hyper K-algebra

Proof. It is clear.

3. MAIN RESULTS

In this section at first we show that Theorem 3.28 [2] as follows is not true, then we give a correct version of it. The authors in [2] claimed:

Theorem 3.28 [2]: There are 50 non-isomorphism hyper K-algebras of order 4 with simple condition such that they have exactly one positive implicative hyper K-ideal of order 2 and type 27(13, 18, 20).

The following example shows that in the list of hyper K-algebras $(H, \circ_i, 0)$, in [2], if $2 \circ_i 1 = \{1, 2\}$ or $3 \circ_i 1 = \{1, 3\}$, then $(H, \circ_i, 0)$ where (i=4, 7, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 30, 32, 33, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 49, 50) do not have any positive implicative hyper K-ideal of order 2 and type 27(13, 18, 20).

26

Example 3.1. The $(H, \circ, 0)$ with cayley table as follows be a hyper K-algebra,

H	0	1	2	3
0	{0}	{0}	{0}	{ 0}
1	{1}	$\{0,\!1\}$	$\{1\}$	$\{1\}$
2	{2}	$\{2\}$	$\{0\}$	$\{2\}$
3	{3}	$\{1,3\}$	$\{3\}$	$\{0,1\}$

and $I = \{0, 1\}$ is not a positive implicative hyper K-ideal of type 27, because $(3 \circ 1) \circ 1 = \{0, 1, 3\} < I, 1 \circ 1 = \{0, 1\} < I$ but $3 \circ 1 = \{1, 3\} \notin I$. Similarly, $I = \{0, 2\}$ and $I = \{0, 3\}$ are not a positive implicative hyper K-ideal of H.

Theorem 3.2. Let $H = \{0, a, b, c\}$ be a simple hyper K-algebra of order 4 and $I = \{0, a\}$ a positive implicative hyper K-ideal of type 27(13, 18, 20). Then $b \circ x = \{b\}$ such that $b \notin \{0, a\}$ and $x \neq b$.

Proof. By Theorem 2.2(2), $b \in b \circ x$. Let $b \circ x \neq \{b\}$. Then, we have $b \circ x = \{a, b\}, \{a, b, c\}$ or $\{b, c\}$. If $b \circ x = \{a, b\}$ or $\{a, b, c\}$, then $a \in a \circ x \subseteq (b \circ x) \circ x < I$ and $x \circ x < I$ but $b \circ x \nsubseteq I$, which is a contradiction to I is a positive implicative hyper K-ideal of type 27. Also if $b \circ x = \{b, c\}$, then $(b \circ x) \circ b \neq (b \circ b) \circ x$, so HK2 is not satisfied. Because $c \in c \circ b \subseteq (b \circ x) \circ b$ but $b \circ b \subseteq \{0, a\}$ and $c \notin (b \circ b) \circ x \subseteq 0 \circ x \cup a \circ x \subseteq \{0, a\}$. Hence $b \circ x = \{b\}$.

Theorem 3.3. Let H be a hyper K-algebra of order 4, such that has three positive implicative hyper K-ideals of order 2 and type 27(13, 18, 20). Then H is a BCK-algebra.

Proof. Let $H = \{0, 1, 2, 3\}$ hyper K-algebra such that $I_1 = \{0, 1\}, I_2 = \{0, 2\}$ and $I_3 = \{0, 3\}$ are positive implicative hyper K-ideals of order 2 and type 27. By Theorem 2.3(2), we have $a \circ b = \{a\}, \forall 0 \neq a \in I_i, a \neq b; i \in \{1, 2, 3\}.$

On the other, if I be a positive implicative hyper K-ideals of order 2 and type 27, then $x \circ x \subseteq I$. Since $(x \circ 0) \circ x < I$ and $0 \circ x < I$. So, $x \circ x \subseteq I_1 \cap I_2 \cap I_3 = \{0\}$, hence $x \circ x = \{0\}$ and H is a BCK-algebra.

Now we modify Theorem 3.28 [2] as follows:

Theorem 3.4. There are 22 non-isomorphism hyper K-algebras of order 4 with simple condition such that they have exactly one positive implicative hyper K-ideal of order 2 and type 27(13, 18, 20).

Proof. Let $H = \{0, 1, 2, 3\}$ and suppose that the following table shows a probable hyper K-algebra structure of H.

0	0	1	2	3
0	a_{11}	a_{12}	a_{13}	a_{14}
1	a_{21}	a_{22}	a_{23}	a_{24}
2	a_{31}	a_{32}	a_{33}	a_{34}
3	a_{41}	a_{42}	a_{43}	a_{44}

Let $I = \{0,1\}$ be a PIHKI of type 27. Then by Theorem 2.2(1), we have $1 \circ 0 = \{1\}, 2 \circ 0 = \{2\}, 3 \circ 0 = \{3\}$ and by Theorems 2.3(2), 3.2, $1 \circ 2 = 1 \circ 3 = \{1\}, 2 \circ 1 = 2 \circ 3 = \{2\}$ and $3 \circ 1 = 3 \circ 2 = \{3\}$. By HK3 and HK5 we have $0 \in a_{11} \cap a_{12} \cap a_{13} \cap a_{14} \cap a_{22} \cap a_{33} \cap a_{44}$. Also by Theorem 2.3(1), we get the only cases for $a_{11}, a_{12}, a_{13}, a_{14}, a_{22}, a_{33}$ and a_{44} are $\{0\}$ or $\{0, 1\}$. Therefore there is 2^7 hyperoperation on H. By HK2 and Theorems 2.4, 3.3, we get that there are 22 non-isomorphism hyper K-algebras of order 4 with simple condition such that they have exactly one PIHKI of type 27. Morever, if $I = \{0, 2\}$ or $\{0, 3\}$ be a PIHKI of type 27 of $H_i; 1 \le i \le 22$, then $(x \circ 0) \circ x < I$ and $0 \circ x < I$ but $x \circ x \notin I$. Thus $\{0, 1\}$ is the only PIHKI of type 27 of H_i .

E	I_1	0 1	2	3	H_2	0	1	2	3
	0 {	$0\} \{0$	$\{0\}$	{0}	0	{0}	{0}	{0} {	$\{0\}$
	$1 \{$	$1\} \{0, 1\}$	$1\} \{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$ {	$\{1\}$
	$2 \{$	$2\} \{2$	$\{0\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0\}$ {	$\{2\}$
	$3 \{$	$3\} {3}$	$\} \{3\}$	$\{0\}$	3	$\{3\}$	$\{3\}$	$\{3\} \{0\}$	$0,1\}$
H_3	0	1	2	3	H_4	0	1	2	3
0	{0}	$+ \{0\}$	$\{0,1\}$	{0}	0	{0}	{0}	{0}	{0}
1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$	1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$
2	{2}		$\{0\}$	$\{2\}$	2	${2}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	{3}	$\{3\}$	$\{3\}$	$\{0,1\}$	3	{3}	$\{3\}$	$\{3\}$	$\{0\}$
H_5	0	1	2	3	H_6	0	1	2	3
0	{0}	$\{0\}$	$\{0\}$	$\{0,1\}$	0	$\{0\}$	$\{0,1\}$	$\{0\}$	$\{0\}$
1	{1}	$\{0,\!1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,\!1\}$	$\{2\}$
3	{3}	$\{3\}$	$\{3\}$	$\{0\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$
H_7	0	1	2	3	H_8	0	1	2	3
0	{0}	$\{0\}$	$\{0\}$	$\{0\}$	0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0,1\}$
1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	{3}	$\{3\}$	$\{3\}$	$\{0,1\}$	3	{3}	$\{3\}$	$\{3\}$	$\{0,1\}$
H_9	0	1	2	3	H_{10}	0	1	2	3
0	$\{0\}$	$\{0,1\}$	$\{0\}$	$\{0\}$	0	{0}	$\{0,1\}$	{0}	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	{1}	$\{0,\!1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	{3}	$\{3\}$	$\{3\}$	$\{0,1\}$	3	{3}	$\{3\}$	$\{3\}$	$\{0,\!1\}$
H_{11}	0	1	2	3	H_{12}	0	1	2	3
0	{0}	$\{0,1\}$	$\{0,1\}$	$\{0\}$	0	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$
1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$	1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	{3}	$\{3\}$	$\{3\}$	$\{0,1\}$	3	{3}	$\{3\}$	$\{3\}$	$\{0,1\}$

Erratum "Some result on simple hyper K- algebras", Iranian Journal of Mathematical Sciences and Informatics	result on simple hyper K- algebras ", Iranian Journal of Mathematical Sciences and Informat	$tics \cdot 29$
---	---	-----------------

H_{13}	3 0	1	2	3	H_{14}	0	1	2	3
() {0}	{0}	$\{0,1\}$	$\{0,1\}$	0	{0}	{0}	$\{0,1\}$	{0}
1	l {1}	$\{0,1\}$	$\{1\}$	$\{1\}$	1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$
6 2	$2 \{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
ć	$3 \{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	{3}	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{15}	0	1	2	3	H_{16}	0	1	2	3
0	$\{0,1\}$	{0}	{0}	{0}	0	$\{0,1\}$	{0}	{0}	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	{3}	$\{3\}$	$\{3\}$	$\{0,\!1\}$
H_{17}	0	1	2	3	H_{18}	0	1	2	3
0	$\{0,1\}$	{0}	$\{0,1\}$	$\{0,1\}$	0	$\{0,1\}$	$\{0,1\}$	{0}	{0}
1	$\{1\}$	$\{0,\!1\}$	$\{1\}$	$\{1\}$	1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,1\}$	3	{3}	$\{3\}$	$\{3\}$	$\{0,\!1\}$
H_{19}	0	1	2	3	H_{20}	0	1	2	3
0	$\{0,1\}$	$\{0,1\}$	{0}	$\{0,1\}$	0	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	{0}
1	$\{1\}$	$\{0,\!1\}$	$\{1\}$	$\{1\}$	1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,\!1\}$	3	{3}	$\{3\}$	$\{3\}$	$\{0,1\}$
H_{21}	0	1	2	3	H_{22}	0	1	2	3
0	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	0	$\{0,1\}$	{0}	$\{0,1\}$	{0}
1	$\{1\}$	$\{0,\!1\}$	$\{1\}$	$\{1\}$	1	{1}	$\{0,\!1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{2\}$	2	{2}	$\{2\}$	$\{0,1\}$	$\{2\}$
3	$\{3\}$	{3}	{3}	$\{0,1\}$	3	{3}	{3}	{3}	$\{0,1\}$

Acknowledgments

The author would like to thank the anonymous referees for their constructive comments.

References

- R. A. Borzooei, A. Hasankhani, M. M. Zahedi, Y.B. Jun, On hyper K-algebras, *Mathematica Japonicae*, 52(1), (2000), 113–121.
- 2. T. Roudbari, M. M. Zahedi, Some result on simple hyper K- algebras, *Iranian Journal of Mathematical Sciences and Informatics*, **3**(2), (2008), 29-48.
- Y. Imai, K. Iséki, On axiom systems of propositional calculi xiv, Proc. Japan Academi, (42), (1966), 19-22.
- Y. B. Jun, x. L. xin, E. H. Roh, M.M. Zahedi, Strong on hyper BCK-ideals of hyper BCK-algebras, *Math. Japon.*, 51(3), (2000), 493-498.
- F. Marty, Sur une generalization de la notion de groups, 8th congress Math Scandinavies, Stockhholm, (1934), 45-49.