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1. Introduction

The pair of the Lommel functions are introduced by Eugen Von Lommel
(see [17])

sµ,ν(z) =
zµ+1

(µ− ν + 1)(µ+ ν + 1)
1F2

(
1;

1

2
(µ− ν + 3),

1

2
(µ+ ν + 3);−1

4
z2
)

and

Sµ,ν(z) = zµ−1
3F0
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2
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(1− µ− ν);−;− 4
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62 A. Shehata

The differential equation for Lommel function is a non-homogeneous form of
the Bessel differential equation (see [16, 17, 18]):

z2
d2y

dz2
+ z

dy

dz
+ (z2 − ν2)y = zµ+1.

Studies of special matrix polynomials and orthogonal matrix polynomials are
very important by virtue to their applications in particular areas such as
physics, statistics, engineering, Lie groups theory, splines, interpolation and
quadrature, and medical imaging. Because of this study, some mathematicians
have demonstrated that some results in the literature can be extended to ma-
trix functions and matrix polynomials (see for example [8, 9, 10, 11, 13, 15, 20,
21, 23, 24, 25, 26, 29]).

Motivated by the results of Sastre and Jódar [19], Çekim and Altin [2],
Çekim and Erkuş-Duman [3], and Shehata [22, 27, 28], we present in this pa-
per a new class for the pair of the Lommel matrix functions. The organization
of the paper is as follows: We rephrase some results from the previous works
which is used in this study in Section 1. In Section 2, we look back on briefly
some known facts on the hypergeometric matrix functions and derive some of
its properties, prove new interesting properties, a matrix differential equation
and some matrix transformations of the hypergeometric matrix functions are
obtained. We give the generalized hypergeometric matrix functions and derive
some of its properties. Section 3 is devoted to the Lommel matrix functions,
using hypergeometric matrix functions, and this includes a matrix differential
equation of second order, matrix recurrence relations and integral representa-
tion which are satisfied by the Lommel matrix functions. We define a pair of
the modified Lommel matrix functions and some properties related to these
functions are also given in Section 4.

1.1. Preliminaries. Firstly, we will give some basic facts, lemma, definition,
notation or terminology and properties of the matrix functional calculus, used
in the next sections.

During this paper, for a matrix A in CN×N , σ(A) symbolize the spectrum
of the set of all eigenvalues of A. The two-norm is described by

∥A∥ = sup
x̸=0

∥Ax∥2
∥x∥2

,

where ||x||2 = (xHx)
1
2 denotes the well-known Euclidean norm of a vector x

in CN . Furthermore, the identity matrix and the null matrix or zero matrix in
CN×N will be symbolized by I and 0, respectively.

In this work, we symbolize by µ(A) the logarithmic norm of A, which is
defined by [8, 9] as follows:

µ(A) = max

{
z : z eigenvalue of A+AH

2

}
, (1.1)
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where AH denotes the conjugate transpose. We also denote by the number
µ̃(A) as

µ̃(A) = min

{
z : z eigenvalue of A+AH

2

}
. (1.2)

From [9], it follows that ∥eAt∥ ≤ etµ(A) for t ≥ 0. Hence we have

∥tA∥ =

{
tµ(A), if t ≥ 1

tµ̃(A), if 0 ≤ t ≤ 1. (1.3)

Definition 1.1. Let A be a matrix in CN×N . We say that A is a positive
stable matrix if

Re(µ) > 0 ∀ µ ∈ σ(A). (1.4)

Theorem 1.2. [7] If U(z) and V (z) are holomorphic functions in an open set
Ω of the complex plane, and P , Q are commutative matrices in CN×N with
σ(P ) ⊂ Ω and σ(Q) ⊂ Ω, then

U(P )V (Q) = V (Q)U(P ).

Definition 1.3. [12] For a positive stable matrix A in CN×N , the Gamma
matrix function Γ(P ) is described by

Γ(P ) =

∫ ∞

0

e−ttP−Idt; tP−I = exp

(
(P − I) ln t

)
. (1.5)

Definition 1.4. For A in CN×N , the matrix form of the Pochhammer symbol
is given by

(A)n = A(A+ I) . . . (A+ (n− 1)I) = Γ(A+ nI)Γ−1(A), n ∈ N, (A)0 = I,(1.6)

where A + nI is an invertible matrix for every integer n ≥ 0 and Γ(A) is an
invertible matrix, its inverse coincides with Γ−1(A).

Fact 1.1. (Jódar and Cortés [14]) Let us denote the real numbers M(A), m(A)

for A in CN×N such that

M(A) = max{Re(z) : z ∈ σ(A)}, and m(A) = min{Re(z) : z ∈ σ(A)}. (1.7)

Then we get

∥etA∥ ≤ etM(A)
N−1∑
k=0

(∥A∥N 1
2 t)k

k!
, t ≥ 0 (1.8)

and

∥nA∥ ≤ nM(A)
N−1∑
k=0

(∥A∥N 1
2 lnn)k

k!
, n ∈ N. (1.9)
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Theorem 1.5. (Jódar and Cortés [12]) Let A be a positive stable matrix in
CN×N . Thus, one has the following property

Γ(A) = lim
n→∞

(n− 1)![(A)n]
−1nA for n ∈ N. (1.10)

Definition 1.6. [12] For positive stable matrices P and Q in CN×N , the defi-
nition of B(P,Q) Beta matrix function is given by

B(P,Q) =

∫ 1

0

tP−I(1− t)Q−Idt. (1.11)

Lemma 1.7. [12] Let P , Q and P + Q be positive stable matrices in CN×N

satisfy the conditions PQ = QP , and P + nI, Q + nI and P + Q + nI are
invertible matrices for all eigenvalues n ≥ 0. Then we get

B(P,Q) = Γ(P )Γ(Q)Γ−1(P +Q). (1.12)

Also, for a matrix A(k, n) in CN×N for n ≥ 0 and k ≥ 0, the relation is
given by Defez and Jódar [4]

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

n∑
k=0

A(k, n− k). (1.13)

Definition 1.8. Let us take A a matrix in CN×N such that

ν is not a negative integer for every ν ∈ σ(A). (1.14)

Then the Bessel matrix function JA(z) of the first kind of order A was given
in [19] as follows:

JA(z) =

∞∑
k=0

(−1)k

k!
Γ−1(A+ (k + 1)I)

(
1

2
z

)A+2kI

=

(
1

2
z

)A

Γ−1(A+ I) 0F1

(
−;A+ I;−z2

4

)
; |z| < ∞; |arg(z)| < π.

(1.15)

2. Properties of hypergeometric matrix functions

In this section, we firstly give the definitions of hypergeometric matrix func-
tions 1F2 and 3F0.

Definition 2.1. Let A1, B1 and B2 be commutative matrices in CN×N satis-
fying the following condition

B1 + kI and B2 + kI are invertible matrices ∀k ∈ N ∪ {0}. (2.1)

Then we define the first hypergeometric matrix function 1F2 as

1F2(A1;B1, B2; z) =

∞∑
k=0

zk

k!
(A1)k[(B1)k]

−1[(B2)k]
−1. (2.2)
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Now, we find an interesting radius of convergence R of 1F2. For this aim,
with the help of method in [20] and (2.2), then we give

1

R
= lim sup

k→∞
(∥Uk∥)

1
k = lim

k→∞
sup

(∥∥∥∥ (A1)k[(B1)k]
−1[(B2)k]

−1

k!

∥∥∥∥) 1
k

= lim sup
k→∞

[∥∥∥∥k−A1(A1)k
(k − 1)!

(k − 1)!kA1

× k−B1

(k − 1)!
(k − 1)![(B1)k]

−1kB1
k−B2

(k − 1)!
(k − 1)![(B2)k]

−1kB2
1

k!

∥∥∥∥
] 1

k

= lim sup
k→∞

[∥∥∥∥(Γ−1(A1)Γ(B1)Γ(B2)
)
kA1k−B1k−B2

1

(k − 1)!k!

∥∥∥∥
] 1

k

≤ lim sup
k→∞

[∥∥∥∥kA1k−B1k−B2
1

(k − 1)!k!

∥∥∥∥
] 1

k

≤ lim sup
k→∞

[
∥kA1∥∥k−B1∥∥k−B2∥

(k − 1)!k!

] 1
k

.

(2.3)

Substitute from (1.8) and (1.9) into (2.3), one gets

1

R
≤ lim sup

k→∞

{
1

(k − 1)!k!
kM(A1)

(N−1∑
j=0

(∥ A1 ∥ N
1
2 ln k)j

j!

)

× k−m(B1)

(N−1∑
s=0

(∥ B1 ∥ N
1
2 ln k)s

s!

)
k−m(B2)

(N−1∑
r=0

(∥ B2 ∥ N
1
2 ln k)r

r!

)} 1
k

.

(2.4)

By using (1.8), we can write

N−1∑
j=0

(∥ A1 ∥ N
1
2 ln k)j

j!
≤ (N ln k)N−1

N−1∑
j=0

(∥ A1 ∥)j

j!
= (N ln k)N−1e∥A1∥.

Then we have

1

R
≤ lim sup

k→∞

{
kM(A1)k−m(B1)k−m(B2)√

2π(k − 1)(k−1
e )k−1

√
2π k(ke )

k
e∥A1∥e∥B1∥e∥B2∥(N ln k)3N−3

} 1
k

= 0.

Thus, the power series (2.2) is convergent for all complex numbers z. That
is, the function 1F2 is an entire function under the condition in (2.1) of the
definition (2.2).

On the other hand, we take in consideration the differential operator θ =

z d
dz , Dz = d

dz , θzk = kzk. Thus we have

θ (θ I +B1 − I)(θ I +B2 − I) 1F2

=

∞∑
k=1

zk

(k − 1)!
(A1)k[(B1)k−1]

−1[(B2)k−1]
−1.
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Replace k by k + 1, we have
θ (θ I +B1 − I)(θ I +B2 − I) 1F2

=

∞∑
k=0

zk+1

k!
(A1)k+1[(B1)k]

−1[(B2)k]
−1 = z(θ I +A1) 1F2.

Thus, the next result has been obtained:

Theorem 2.2. Let A1, B1 and B2 be commutative matrices in CN×N satisfying
the spectral condition (2.1). Then the function 1F2 is a solution of the following
matrix differential equation of the three order[

θ (θ I +B1 − I)(θ I +B2 − I)− z(θ I +A1)

]
1F2 = 0. (2.5)

Definition 2.3. Let us define the second hypergeometric matrix function 3F0

as

3F0(A1, A2, A3;−; z) =

∞∑
k=0

zk

k!
(A1)k(A2)k(A3)k (2.6)

where A1, A2 and A3 are commutative matrices in CN×N .

Similarly, for 3F0, we have

θ 3F0 =

∞∑
k=1

k zk

k!
(A1)k(A2)k(A3)k =

∞∑
k=1

zk

(k − 1)!
(A1)k(A2)k(A3)k.

Replace k by k + 1, thus we have

θ 3F0 =

∞∑
k=0

zk+1

k!
(A1)k+1(A2)k+1(A3)k+1

= z(θ I +A1)(θ I +A2)(θ I +A3) 3F0.

This result is summarized below.

Theorem 2.4. Suppose that A1, A2 and A3 are commutative matrices in
CN×N . Then the function 3F0 satisfy the matrix differential equation of the
three order [

θ I − z(θ I +A1)(θ I +A2)(θ I +A3)

]
3F0 = 0. (2.7)

To derive interesting relations, we will benefit from the following corollary
given by Defez and Jódar in [5].

Theorem 2.5. [1, 5] Let A and B be matrices in CN×N such that A and B−A

are positive stable matrices with AB = BA and B + nI is an invertible matrix
for n ∈ N ∪ {0}. Then the following identity holds

2F1

(
− nI,A;B; 1

)
= (B −A)n[(B)n]

−1. (2.8)
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Now, we demonstrate that well-known hypergeometric matrix functions 2F1

and 0F1 satisfy various transformation formulaes.

Theorem 2.6. Let A be a matrix in CN×N where A+ nI and (2A− I) + nI

are invertible matrices for n ∈ N ∪ {0}. Then we get

2F1

(
− nI, I −A− nI;A; 1

)
= (2A− I)2n[(A)n]

−1[(2A− I)n]
−1. (2.9)

Proof. Taking A → I −A− nI and B → A in (2.8), we have

2F1(−nI, I −A− nI;A; 1) =(2A+ (n− 1)I)n[(A)n]
−1

=Γ(2A+ (2n− 1)I)Γ−1(2A− I)Γ(2A− I)

× Γ(2A+ (n− 1)I)Γ(A)Γ−1(A+ nI).

(2.10)

By (1.3), we can rewrite the formula

Γ(2A+ (2n− 1)I)Γ−1(2A− I) = (2A− I)2n,

Γ(2A− I)Γ−1(2A+ (n− 1)I) = [(2A− I)n]
−1,

Γ(A)Γ−1(A+ nI) = [(A)n]
−1.

(2.11)

From (2.11) into (2.10), we get (2.6). □

Theorem 2.7. If A is a matrix in CN×N providing the conditions A+ kI and
(2A− I) + kI are invertible matrices for k ∈ N ∪ {0}, then we get

0F1

(
−;A; z

)
0F1

(
−;A; z

)
= 1F2

(
1

2
(2A− I);A, 2A− I; 4z

)
. (2.12)

Proof. From (1.13) and (2.9), we have

0F1

(
−;A; z

)
0F1

(
−;A; z

)
=

∞∑
m=0

m∑
n=0

[(A)m−n]
−1[(A)n]

−1zm

n!(m− n)!

=

∞∑
m=0

m∑
n=0

(I −A−mI)n[(A)n]
−1(−mI)n

n!

[(A)m]−1

m!
zm

=

∞∑
m=0

2F1

(
−mI, I −A−mI;A; 1

)
[(A)m]−1

m!
zm

=

∞∑
m=0

22m
(
1

2
(2A− I)

)
m

[(A)m]−1[(2A− I)m]−1 z
m

m!

= 1F2

(
1

2
(2A− I);A, 2A− I; 4z

)
.

□

Theorem 2.8. If A is a matrix in CN×N providing the conditions A + kI,
A+ (k + 1)I and 2A+ kI are invertible matrices for every integer k ≥ 0, then
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we get

0F1

(
−;A; z

)
0F1

(
−;A+ I; z

)
= 1F2

(
1

2
(2A+ I);A+ I, 2A; 4z

)
. (2.13)

Proof. From (1.13) and (2.9), we have

0F1

(
−;A; z

)
0F1

(
−;A+ I; z

)
=

∞∑
m=0

m∑
n=0

[(A)m−n]
−1[(A+ I)n]

−1zm

n!(m− n)!

=

∞∑
m=0

m∑
n=0

(I −A−mI)n[(A+ I)n]
−1(−mI)n

n!

[(A)m]−1

m!
zm

=

∞∑
m=0

2F1

(
−mI, I −A−mI;A+ I; 1

)
[(A)m]−1

m!
zm

=

∞∑
m=0

(2A)2m[(A+ I)m]−1[(2A)m]−1 [(A)m]−1

m!
zm

=

∞∑
m=0

22m
(
1

2
(2A+ I)

)
m

[(A+ I)m]−1[(2A)m]−1 z
m

m!

= 1F2

(
1

2
(2A+ I);A+ I, 2A; 4z

)
.

□

Theorem 2.9. For A is a matrix in CN×N providing the conditions A ∓ kI

and (2A − I) + kI are invertible matrices for k ∈ N ∪ {0} and |arg(z)| < π,
then the product of two Bessel matrix functions hold the following feature

JA(z)JA+I(z) =

(
z

2

)2A+I

Γ−1(A+ I)Γ−1(A+ 2I)

× 1F2

(
A+

3

2
I;A+ 2I, 2A+ 2I;−z2

)
.

(2.14)

Proof. From (1.15) and (2.13), we obtain (2.14). □

3. Lommel’s matrix functions: Definitions and Properties

In this section, the pair of Lommel’s matrix functions with the help of hy-
pergeometric matrix functions are introduced.

Definition 3.1. Let A and B be matrices in CN×N so

Re(µ) is not an odd negative integer for all µ ∈ σ(A±B). (3.1)
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Then, we define the Lommel matrix functions sA,B(z) of the first kind in the
form:
sA,B(z) =zA+I(A−B + I)−1(A+B + I)−1

× 1F2

(
I;

1

2
(A−B + 3I),

1

2
(A+B + 3I);−1

4
z2
)

=
zA+I

4

∞∑
k=0

(−1)k
(
z

2

)2k

Γ

(
1

2
(A−B + I)

)
Γ

(
1

2
(A+B + I)

)
× Γ−1

(
1

2
(A−B + 3I + 2kI)

)
Γ−1

(
1

2
(A+B + 3I + 2kI)

)
,

(3.2)

where A ± B + I and A ± B + 3I are invertible matrices, AB = BA and
|arg(z)| < π.

Thus, the Lommel matrix function sA,B(z) is an entire function under the
condition (3.1).

Definition 3.2. Let A and B be matrices in CN×N so

Re(µ) is an odd positive integer for all µ ∈ σ(A±B), and AB = BA. (3.3)

Then, we define the Lommel matrix function sA,B(z) of the second kind in the
form

SA,B(z) = zA−I
3F0

(
I,

1

2
(I −A+B),

1

2
(I −A−B);−;− 4

z2

)
, (3.4)

where |arg(z)| ≤ π − δ, δ > 0 for |z| −→ ∞.

Theorem 3.3. Let A, A − I, B and B − I be matrices in CN×N providing
the restriction (3.3), and AB = BA. The matrix recurrence relations and
difference differential equations for Lommel’s matrix functions SA,B(z) are

SA+2I,B(z) = zA+I − [(A+ I)2 −B2]SA,B(z), (3.5)

S′
A,B(z) +

B

z
SA,B(z) = (A+B − I)SA−I,B−I(z), (3.6)

S′
A,B(z)−

B

z
SA,B(z) = (A−B − I)SA−I,B+I(z), (3.7)

2

z
B SA,B(z) = (A+B − I)SA−I,B−I(z)− (A−B − I)SA−I,B+I(z) (3.8)

and

2S′
A,B(z) = (A+B − I)SA−I,B−I(z) + (A−B − I)SA−I,B+I(z), (3.9)

where |arg(z)| ≤ π − δ, δ > 0 for |z| −→ ∞.
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Proof. From (3.4), we have

SA+2I,B(z) = zA+I
∞∑
k=0

(−1)k(I)k

(
1
2 (I −A− 2I +B)

)
k

(
1
2 (I −A− 2I −B)

)
k

k!

(
4

z2

)k

=zA+I

[
I +

∞∑
k=1

(−1)k(I)k

(
1
2 (I −A− 2I +B)

)
k

(
1
2 (I −A− 2I −B)

)
k

k!

(
4

z2

)k]
=zA+I

[
I − 1

z2
((A+ I)−B)(A+ I +B)

×
∞∑
k=0

(−1)k(I)k

(
1
2 (I −A+B)

)
k

(
1
2 (I −A−B)

)
k

k!

(
2

z

)2k]

=zA+I − [(A+ I)2 −B2]zA−I
∞∑
k=0

(−1)k(I)k

(
1
2 (I −A+B)

)
k

(
1
2 (I −A−B)

)
k

k!

(
2

z

)2k

=zA+I − [(A+ I)2 −B2]SA,B(z).

Multiplying (3.4) by zB and taking the derivative with respect to z, we have

d

dz

[
zBSA,B(z)

]
= zA+B−2I

×
∞∑
k=0

(−1)k(I)k(A+B − 2kI − I)

(
1
2 (I −A+B)

)
k

(
1
2 (I −A−B)

)
k

k!

(
2

z

)2k

=2zA+B−2I
∞∑
k=0

(−1)k+1(I)k

(
1
2 (I −A+B)

)
k

(
1
2 (I −A−B)

)
k+1

k!

(
2

z

)2k

=(A+B − I)zA+B−2I
∞∑
k=0

(−1)k(I)k

(
1
2 (I −A+B)

)
k

(
1
2 (I −A−B) + I

)
k

k!

(
2

z

)2k

=(A+B − I)zBSA−I,B−I(z).

Thus, we have

S′
A,B(z) +

B

z
SA,B(z) = (A+B − I)SA−I,B−I(z).
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On the other hand, we can similarly write
d

dz

[
z−BSA,B(z)

]
= 2zA−B−2I

×
∞∑
k=0

(−1)k+1(I)k

(
1
2 (I −A+B) + kI

)(
1
2 (I −A+B)

)
k

(
1
2 (I −A−B)

)
k

k!

(
2

z

)2k

=2zA−B−2I
∞∑
k=0

(−1)k+1(I)k

(
1
2 (I −A+B)

)
k+1

(
1
2 (I −A−B)

)
k

k!

(
2

z

)2k

=(A−B − I)zA−B−2I
∞∑
k=0

(−1)k(I)k

(
1
2 (I −A+B) + I

)
k

(
1
2 (I −A−B)

)
k

k!

(
2

z

)2k

=(A−B − I)z−BSA−I,B+I(z).

Thus, we get

S′
A,B(z)−

B

z
SA,B(z) = (A−B − I)SA−I,B+I(z).

With the help of subtracting and adding operation on these results, we have
the following formulaes

2

z
B SA,B(z) = (A+B − I)SA−I,B−I(z)− (A−B − I)SA−I,B+I(z),

2S′
A,B(z) = (A+B − I)SA−I,B−I(z) + (A−B − I)SA−I,B+I(z).

□

Theorem 3.4. Let A, A− I, B and B− I be matrices in CN×N providing the
restriction (3.1) and AB = BA. Then the sA,B(z) satisfy the following matrix
recurrence relations and difference differential equations

sA+2I,B(z) = zA+I − [(A+ I)2 −B2]sA,B(z), (3.10)

s′A,B(z) +
B

z
sA,B(z) = (A+B − I)sA−I,B−I(z), (3.11)

s′A,B(z)−
B

z
sA,B(z) = (A−B − I)sA−I,B+I(z), (3.12)

2

z
B sA,B(z) = (A+B − I)sA−I,B−I(z)− (A−B − I)sA−I,B+I(z) (3.13)

and
2s′A,B(z) = (A+B − I)sA−I,B−I(z) + (A−B − I)sA−I,B+I(z), (3.14)

where |arg(z)| < π.

Proof. The proof is similar to Theorem 3.1. □
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Corollary 3.5. Let A, B and −B be matrices in CN×N providing (3.3),
AB = BA. Then the SA,B(z) satisfy the following relation

SA,B(z) = SA,−B(z), (3.15)

where |arg(z)| ≤ π − δ, δ > 0.

Proof. Taking −B instead of B in (3.4), we obtain (3.15). □

Corollary 3.6. Let A, B and −B be matrices in CN×N providing the restric-
tion (3.1) and AB = BA. Then the sA,B(z) satisfy the following relation

sA,B(z) = sA,−B(z), (3.16)

where |arg(z)| < π.

Proof. The proof is similar to Corollary 3.1. □

Theorem 3.7. Let A and B be matrices in CN×N satisfying the conditions
(3.3), A±B − I are invertible matrices and AB = BA. Then the sA,B(z) is a
solution of the Lommel matrix differential equation of two order[

z2
d2

dz2
I + z

d

dz
I + (z2I −B2)

]
SA,B(z) = zA+I , (3.17)

where |arg(z)| ≤ π − δ, δ > 0.

Proof. From (3.5), we get

SA−2I,B(z) =
[
(A− I)2 −B2

]−1[
zA−I − SA,B(z)

]
. (3.18)

Replace A by A− I and B by B − I in (3.7), we get

S′
A−I,B−I(z)−

B − I

z
SA−I,B−I(z) = (A−B − I)SA−2I,B(z). (3.19)

Using (3.7) and (3.18), we have

S′
A−I,B−I(z) =

B − I

z
(A+B − I)−1

[
S′
A,B(z) +

B

z
SA,B(z)

]
+ (A−B − I)[(A− I)2 −B2]−1

[
zA−I − SA,B(z)

]
.

(3.20)

Differentiating of (3.6) with respect to z, we get

S′′
A,B(z) +

B

z
S′
A,B(z)−

B

z2
SA,B(z) = (A+B − I)S′

A−I,B−I(z). (3.21)

Taking into account (3.20) in (3.21), we obtain (3.17). □

In a similar manner, we can give the next result.
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Theorem 3.8. Let A and B be matrices in CN×N satisfying the conditions
(3.1), A±B − I are invertible matrices and AB = BA. Then the sA,B(z) is a
solution of the Lommel matrix differential equation of two order[

z2
d2

dz2
I − z

d

dz
− (B2 − z2I)

]
sA,B(z) = zA+I , (3.22)

where |arg(z)| < π.

Naturally, we are ready to give the new integral representations for the
Lommel matrix functions.

Theorem 3.9. Let A and B be matrices in CN×N satisfying (3.3) and AB =

BA. Then the integral representation for Lommel matrix function is

SA,B(z) = zA
∫ ∞

0

e−zt
2F1

(
1

2
(B −A+ I),

1

2
(I −B −A);

1

2
I;−t2

)
dt, (3.23)

where Re(z) > 0, |arg(z)| ≤ π − δ, δ > 0 for |z| −→ ∞.

Proof. From (1.5), one gets the following integral

Γ(2k + 1)

z2k+1
=

∫ ∞

0

e−z tt2kdt, z ̸= 0. (3.24)

Using (3.24) in the left hand side of (3.23), we have the desired result. □

Theorem 3.10. Let A and B be matrices in CN×N providing the restriction
(3.1), A±B + I and A±B +3I are invertible matrices and AB = BA. Then
we have the integral representation for Lommel matrix function sA,B(z)

sA,B(z) =

∫ 1

0

(1− t)
1
2 (A−B−I)

0F1

(
−;

1

2
(A+B + 3I);−1

4
z2t

)
dt

× zA+I(A−B + I)−1(A+B + I)−1

(
1

2
(A−B + I)

) (3.25)

and

sA,B(z) =

∫ 1

0

(1− t)
1
2 (A+B−I)

0F1

(
−;

1

2
(A−B + 3I);−1

4
z2t

)
dt

× zA+I(A−B + I)−1(A+B + I)−1

(
1

2
(A+B + I)

)
,

(3.26)

where |arg(z)| < π.

Proof. By using (1.11) and (1.12), one can obtain the desired result. □

The next theorem can be proved using the similar technique as in Theorem
3.6.
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Theorem 3.11. If A and B are matrices in CN×N providing the conditions
Re(µ) is not an odd positive integer for all µ ∈ σ(A±B) and AB = BA. Then
the integral representations for the Lommel’s matrix function SA,B(z) are given
as

SA,B(z) =zA−I

∫ ∞

0

e−t
2F0

(
1

2
(I −A+B),

1

2
(I −A−B);−;− 4

z2
t

)
dt,

=zA−IΓ−1

(
1

2
(I −A+B)

)∫ ∞

0

e−tt
1
2 (I−A+B)−I

× 2F0

(
I,

1

2
(I −A−B);−;− 4

z2
t

)
dt,

=zA−IΓ−1

(
1

2
(I −A−B)

)∫ ∞

0

e−tt
1
2 (I−A−B)−I

× 2F0

(
I,

1

2
(I −A+B);−;− 4

z2
t

)
dt,

where I −A±B are invertible matrices, |arg(z)| ≤ π− δ, δ > 0 for |z| −→ ∞.

Corollary 3.12. Let A be a matrix in CN×N providing the restriction (3.3).
Then the integral representation for Lommel matrix function is

sA,A(z) = zA
∫ 1

0

sin(zt)(1− t2)A− 1
2 Idt, (3.27)

where |arg(z)| < π.

Proof. This can be proved by using the beta matrix function in (1.12) and
Maclaurian series of functions sin(zt). □

4. Modified Lommel Matrix Functions

With the help of the Lommel matrix functions, the modified Lommel matrix
functions are defined:

tA,B(z) = −iI−AsA,B(iz), (4.1)

where A and B are matrices in CN×N providing the conditions (3.1), AB = BA,
|arg(z)| < π, and

TA,B(z) = −iI−ASA,B(iz), (4.2)

where A and B are matrices in CN×N providing the conditions (3.3), AB = BA

and |arg(z)| ≤ π − δ, δ > 0 for |z| −→ ∞.

Theorem 4.1. The functions tA,B(z) and TA,B(z), respectively, are the solu-
tion of the modified Lommel matrix differential equation of the two orders as
following [

z2
d2

dz2
I + z

d

dz
− (B2 + z2I)

]
tA,B(z) = zA+I , (4.3)
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where |arg(z)| < π, and[
z2

d2

dz2
I + z

d

dz
− (B2 + z2I)

]
TA,B(z) = zA+I , (4.4)

where |arg(z)| ≤ π − δ, δ > 0 for |z| −→ ∞.

Proof. By using (4.1), (4.2), (3.17) and (3.22), we have the desired final result.
□
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