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Abstract. The paper uses a new approach to investigate prime submod-
ules and minimal prime submodules of certain modules such as Artinian
and torsion modules. In particular, we introduce a concrete formula for
the radical of submodules of Artinian modules.
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1. INTRODUCTION

Throughout the article, R is a commutative ring with a nonzero identity and
all modules are unitary. We recall some definitions.

Definition 1.1. Let M be an R-module and N be a submodule of M .
(1) (N :R M) denotes the ideal {r ∈ R | rM ⊆ N} and the annihilator

of M , denoted by AnnR(M), is the ideal (0M :R M). If there is no
ambiguity, we will write (N :M) (resp. Ann(M)) instead of (N :R M)

(resp. AnnR(M)).
(2) N is said to be prime if N ̸= M and whenever rm ∈ N (where r ∈ R

and m ∈ M), then r ∈ (N : M) or m ∈ N . If N is prime, then the
ideal p := (N : M) is a prime ideal of R. In this case, N is said to be
p-prime (see [15, 25]).
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(3) The set of all prime submodules of M is called the prime spectrum of
M and is denoted by Spec(M). Similarly, the collection of all p-prime
submodules of M for any p ∈ Spec(R) is designated by Specp(M).

(4) The set of all prime submodules of M containing N is denoted by
V ∗(N) (see [26]). Following [18], we define V (N) as

{P ∈ Spec(M) | (P :M) ⊇ (N :M)}.

By N ≤ M (resp. N < M) we mean that N is a submodule (resp.
proper submodule) of M . Set Z(M) = {V (N)|N ≤ M}. Then the
elements of the set Z(M) satisfy the axioms for closed sets in a topo-
logical space Spec(M). The resulting topology due to Z(M) is called
the Zariski topology relative to M and denoted by τ (see [18]).

In recent decades, the theory of prime submodules has been widely consid-
ered as a generalization of the theory of prime ideals in commutative rings.
There are many articles that seek to generalize the various properties of the
prime ideals of a ring to the prime submodules of a module (see [5, 7, 9, 11,
12, 13, 15]).

In Section 2, we recall briefly definitions and basic properties of certain
topological spaces. In Section 3, we will characterize prime submodules and
minimal prime submodules of certain modules such as Artinian modules over
arbitrary rings and torsion modules over Dedekind domains (Theorem 3.2).
This is a generalization of [6, Corollary 2.4, Proposition 2.5 and Corollary 2.6].
The prime radical of special submodules of these classes of modules is studied
(Theorem 3.5). In particular, we introduce a concrete formula for the radical of
submodules of Artinian modules. We are going to extend Anderson’s theorem to
minimal prime submodules in some classes of modules (Theorem 3.11). Also,
we will show that any Artinian module contains only finitely many minimal
prime submodules (Proposition 3.15).

2. Preliminaries

In the present section, we recall briefly definitions and basic properties of
certain topological spaces that we shall use.

Remark 2.1. Let M be an R-module and N be a submodule of M .
(1) Note that Spec(0) = ∅ and that Spec(M) may be empty for some

nonzero R-module M . For example, Zp∞ as a Z-module has no prime
submodule for any prime number p (see [17]). Such a module is said
to be primeless.

(2) M is called primeful if either M = (0) or M ̸= (0) and the natu-
ral map ψ : Spec(M) → Spec(R/Ann(M)) defined by ψ(P ) = (P :

M)/Ann(M) for every P ∈ Spec(M), is surjective. Finitely generated
modules and free modules are primeful (see [18, 20]).
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(3) The radical of N , denoted by radM (N) or briefly rad(N), is defined to
be the intersection of all prime submodules of M containing N . In the
case where there are no such prime submodules, rad(N) is defined as
M . If rad(N) = N , we say that N is a radical submodule (see [16, 24]).

(4) We recall that the Zariski radical of N , denoted by zrad(N), is the
intersection of all members of V (N), that is zrad(N) = ∩P∈V (N)P

(see [21, Definitions 1.3]).
(5) M is called weak multiplication if every prime submodule P of M is of

the form IM for some ideal I of R (see [2] and [4]).
(6) For an ideal I of R we recall that the I-torsion submodule of M is

ΓI(M) = {m ∈M | Inm = 0 for some n ∈ N}

and M is said to be I-torsion if M = ΓI(M) (see [8]).
(7) The following statements are equivalent: (1) (Spec(M), τ) is a T0-space;

(2) |Specp(M)| ≤ 1 for every p ∈ Spec(R) (see [18, Theorem 6.1]).

3. Main Results

Lemma 3.1. Let M be an R-module and let P be a p-prime submodule of M
for some prime ideal p of R. Then, for each ideal J of R with J ⊈ p, we have
ΓJ(M) ⊆ P . Hence,

∑
J⊈p ΓJ(M) ⊆ P .

Proof. The proof is easy. □

The next theorem, as one of the main results of the paper, is a generalization
of [6, Corollary 2.4, Proposition 2.5 and Corollary 2.6]. Moreover, it charac-
terizes the prime submodules of the class of Artinian modules over arbitrary
rings and the class of torsion modules over Dedekind domains.

Recall that an R-module M is called catenary if for any prime submodules
P and Q of M with P ⊊ Q, all the saturated chains of the prime submodules
of M starting from P and ending at Q have the same length (see [29]).

Theorem 3.2. Let {mλ}λ∈Λ be a collection of distinct maximal ideals of R
and Mλ be an mλ-torsion R-module for each λ ∈ Λ. Also, let M =

⊕
λ∈ΛMλ.

Then, the following statements hold:
(1) A proper submodule N of M is a prime submodule if and only if (N :

M) = mh for some h ∈ Λ.
(2) M is catenary.
(3) If (Spec(M), τ) is a T0-space, then

Spec(M) = Max(M) = {mλM |λ ∈ Λ, mλM ̸=M}.

Proof.
(1) (⇐) If N is a proper submodule of M such that (N : M) = mh ∈

Max(R), then N is a prime submodule of M by [15, Proposition 2].
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(⇒) Let N be a p-prime submodule of M . Then N ∩Mh ̸= Mh for
some h ∈ Λ. By [26, Lemma 1.6], N ∩Mh ∈ Specp(Mh). Lemma 3.1
implies that

(N :M) = p = mh ∈ Max(R).

(2) Consider a chain of the prime submodules P ⊊ Q of M . Then by (1),
p := (P :R M) is a maximal ideal of R. Let N be a prime submodule
of M such that P ⊆ N ⊆ Q. Then (N :R M) = p and N/P is a
(0)-prime submodule of R/p-vector space M/P . Therefore, any chain
of the prime submodules

P ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Q

of M is a saturated chain if and only if

P/P ⊂ N1/P ⊂ N2 ⊂ · · · ⊂ Q/P

is a saturated chain of R/p-subspaces of M/P . Consequently, the
length of any saturated chain of the prime submodules of M starting
from P and ending at Q is equal to rankR/p(Q/P ).

(3) Clearly Max(M) ⊆ Spec(M). Let P ∈ Spec(M). Then, by (1), there
is a maximal ideal mλ of R such that mλ = (P : M). Suppose that L
is a proper submodule of M such that P ⊆ L. Then

mλ = (P :M) = (L :M).

By [15, p.63, Proposition 4], mλM and L are mλ-prime submodules of
M . Since (Spec(M), τ) is a T0-space, P = L = mλM by Remark 2.1(7).
Consequently, P = mλM ∈ Max(M).

□

An associated prime of a module M over a ring R is a prime ideal of R
that arises as an annihilator of a nonzero element of M . The set of associated
primes is usually denoted by Ass(M). There are well-known types of modules
that satisfy the assumptions of Theorem 3.2. For example, if R is a Noetherian
ring and M is an R-module such that Ass(M) ⊆ Max(R), then it is easy to see
that

M =
⊕

p∈Ass(M)

Γp(M).

For example, this situation happens if R is a Dedekind domain and M is a
torsion R-module. Another examples are Artinian modules. Note that, if M is
an Artinian R-module, then there exist finitely many maximal ideals m1, . . . ,mr

of R such that
M = Γm1(M)⊕ · · · ⊕ Γmr (M)

(see [32, p.166]). We record these examples as a corollary.

Corollary 3.3. Let M be an R-module and one of the following holds:



On the prime spectrum of torsion modules 57

(a) R is a Noetherian ring and Ass(M) ⊆ Max(R).
(b) R is a Dedekind domain and M is torsion.
(c) M is Artinian.

Then the following statements hold:

(1) A proper submodule N of M is a prime submodule of M if and only if
(N :M) ∈ Max(R).

(2) M is catenary.
(3) If (Spec(M), τ) is a T0-space, then

Spec(M) = Max(M) = {mM |m ∈ Ass(M),mM ̸=M}.

Proof. Use Theorem 3.2. □

We remark that prime submodules of Artinian modules are not necessarily
maximal. For example, any finite dimensional vector space is an Artinian
module, in which every proper submodule is (0)-prime but not always maximal
([15, p .62, Result 1]).

Example 3.4. Let N be an R-module and M =
⊕

m∈Max(R) Hom(R/m, N).
For each m ∈ Max(R), Hom(R/m, N) is certainly an m-torsion R-module be-
cause it is an R/m-module. By Theorem 3.2, a proper submodule P of M is
prime if and only if (P :M) ∈ Max(R).

Regarding the radical of a submodule, it is defined in the algebra textbook
of Zariski and Samuel [35, p. 252]. In 1986, McCasland and Moore adjusted
the definition to the M -radical given in [23, p. 37]. Afterward, an extensive
study of radical theory for modules was begun, which has continued with the
more recent work [1, 16, 20, 22, 24, 28, 31]. Many algebraists (for example see
[10], [20] and [30]) tried to find a relationship between rad(N) and

√
(N :M),

where N is a submodule of an R-module M . For example, in [30], it is shown if
F is a free R-module and I any ideal of R, then rad(IF ) =

√
IF . In [20], some

conditions have been obtained under which rad(N) =
√

(N :M)M , for each
submodule N of M . Finding an explicit formula for the radical of submodule
is an interesting subject of many papers (see [1, 10, 19, 28]). In the sequel we
introduced some expressions for the radical of special submodules of certain
modules.

Theorem 3.5. Let {mλ}λ∈Λ be a collection of distinct maximal ideals of R
and Mλ be an mλ-torsion R-module for each λ ∈ Λ. Also, let M =

⊕
λ∈ΛMλ.

For each ideal I of R, we have

rad(IM) =
∩

mλ⊇I

mλM.
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Proof. If V ∗(IM) = ∅, then by [15, p.63, Proposition 4], mλM = M for any
maximal ideal mλ ⊇ I. Hence,

rad(IM) =M =
∩

mλ⊇I

mλM.

Thus, we suppose that V ∗(IM) ̸= ∅. Let P ∈ V ∗(IM). Then, mλ = (P : M)

for some λ ∈ Λ by Theorem 3.2(1). This implies that

IM ⊆ mλM ⊆ P ̸=M.

Again by [15, p.63, Proposition 4], mλM is a prime submodule of M . So, mλM

is a minimal element of Specmλ
(M). Therefore, rad(IM) =

∩
mλ⊇I(mλM). □

Corollary 3.6. Let R be a Noetherian ring and M be an R-module such that
Ass(M) ⊆ Max(R) (e.g. R is a Dedekind domain and M is torsion). Then,
for each ideal I of R, we have

rad(IM) =
∩

m∈Ass(M)∩V (I)

mM.

In particular,
rad(0) =

∩
m∈Ass(M)

mM.

Proof. Use Theorem 3.5 □

As a consequence of Theorem 3.5, we introduce a concrete formula for the
radical of submodules of Artinian modules.

Corollary 3.7. Let M be an Artinian R-module and let N be a submodule of
M . Then there are finitely many maximal ideals m1, . . . ,mr ∈ Ass(M) such
that

rad(N) =

r∩
i=1

(miM +N).

In particular, M/rad(IM) is a Noetherian R-module for each ideal I of R.

Proof. By assumption, M/N is Artinian and so there exist finitely many max-
imal ideals m1, . . . ,mr of R such that M/N = Γm1

(M/N)⊕ · · · ⊕ Γmr
(M/N).

Hence, Theorem 3.5 implies that

rad(N)/N = rad(0M/N ) =

r∩
i=1

(mi(M/N)) =

r∩
i=1

miM +N

N
.

Therefore, rad(N) =
∩r

i=1(miM+N). For the second assertion, it is enough for
us to set N := IM . Then there are finitely many maximal ideals m1, . . . ,mr ∈
Ass(M) ∩ V (I) such that

rad(IM) =

r∩
i=1

miM.
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This implies thatM/rad(IM) is annihilated by mλ1
· · ·mλt

. Therefore, M/rad(IM)

is a Noetherian R-module. □

The next proposition is a generalization of [28, Theorem 1.8].

Proposition 3.8. Let I be an ideal of R with
√
I ∈ Spec(R) and let M be a flat

R-module. Then rad(IM) =
√
IM . Moreover, if M is a nonzero primeful flat

R-module, then for any primary ideal q of R, rad(qM) is a prime submodule.
In particular, for each primary submodule Q of M , rad((Q :M)M) is a prime
submodule.

Proof. Let p :=
√
I ∈ Spec(R). If V ∗(IM) = ∅, then by assumption and [15,

p.66, Theorem 3], pM =
√
IM =M . So, in this case we have

rad(IM) =M =
√
IM.

Now, suppose that P ∈ V ∗(IM). Then

IM ⊆ pM ⊆ (P :M)M ⊆ P ̸=M.

Since M is flat, pM is a prime submodule of M by [15, p.66, Theorem 3].
Therefore,

rad(IM) = pM =
√
IM.

Now, suppose that M is primeful. Let q be a p-primary ideal of R. Then
rad(qM) = pM . Note that by [20, Corollary 3.3], pM ̸= M whence pM is a
prime submodule of M . □

If q is an m-primary ideal of R, where m ∈ Max(R), then we can omit the
flatness of the R-module M in Proposition 3.8.

Proposition 3.9. Let q be an m-primary ideal of R, where m ∈ Max(R). Then
for any nonzero R-module M we have rad(qM) = mM . Moreover, if M is a
nonzero primeful R-module, then rad(qM) is a prime submodule.

Proof. If V ∗(qM) = ∅, then according to [15, Proposition 2], mM =M . So, in
this case we have rad(qM) = mM . Now, suppose that P ∈ V ∗(qM). Then

qM ⊆ mM ⊆ (P :M)M ⊆ P ̸=M.

Again by [15, Proposition 2], mM is a prime submodule of M . Therefore,
rad(qM) = mM . □

The notion of minimal prime submodule was investigated by many authors
[14, 19, 24, 34]. McCasland and Smith [27] showed that any Noetherian module
M contains only finitely many minimal prime submodules. D. D. Anderson [3]
generalized the well-known counterpart of this result for commutative rings, i.e.,
he abandoned the Noetherianness and showed that if every prime ideal minimal
over an ideal I is finitely generated, then R contains only finitely many prime
ideals minimal over I. We are going to extend Anderson’s Theorem to minimal
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prime submodules in some classes of modules (see Theorem 3.11). Also, we
show that any Artinian module M contains only finitely many minimal prime
submodules.

Lemma 3.10. Let M be a primeful R-module and let {p1, . . . , pt} be a subset
of minimal elements of V (Ann(M)). If p1 · · · ptM ⊆ rad(0), then p1, . . . , pt are
the only minimal elements of V (Ann(M)).

Proof. Suppose that p is a minimal element of V (Ann(M)). Since M is prime-
ful, there exists a prime submodule P of M such that (P : M) = p. By
assumption we have

p1 · · · ptM ⊆ rad(0) ⊆ P.

Indeed, p1 · · · pt ⊆ (P : M) = p. By minimality of p, p = pj for some j ∈
{1, . . . , t}. □

Theorem 3.11. Let M be a primeful R-module such that every minimal prime
submodule of M is of the form pM , for some minimal element p of V (Ann(M)).
If every minimal prime submodule of M is finitely generated, then M has only
finitely many minimal prime submodules.

Proof. We define

Y := {p1 · · · ptM | t ∈ N, pi is a minimal element of V (Ann(M))}.

Suppose that for any element A of Y we have A ⊈ rad(0). Let

Z = {I | I ⊇ Ann(M) is an ideal of R such that IM contains no element of Y }.

Then Z is a non-empty set, since (rad(0) : M) ∈ Z. Let ∆ be a non-empty
totally ordered subset of Z. Set H =

∪
I∈∆ I. Assume on the contrary that

H ̸∈ Z. Then there are minimal elements p1, . . . , ps of V (Ann(M)), for some
s ∈ N, such that p1 · · · psM ⊆ HM .

We claim that piM is a minimal prime submodule of M for each i ∈
{1, . . . , s}. Fix i ∈ {1, . . . , s}. Since M is primeful, there exists a prime sub-
module Pi of M such that (Pi :M) = pi. If Pi is a minimal prime submodule of
M , then by assumption Pi := qM for some minimal element q of V (Ann(M)).
So, piM ⊆ Pi = qM . Hence, pi ⊆ (qM : M) = q by [20, Corollary 3.3]. The
minimality of q implies that Pi = qM = piM . On the other hand, if Pi is not
a minimal prime submodule of M , then by [16, Proposition 1], Pi contains a
minimal prime submodule L of M . By assumption, L := q′M , where q′ is a
minimal element of V (Ann(M)). So,

Ann(M) ⊆ q′ ⊆ (Pi :M) = pi.

Therefore, pi = q′, by minimality of pi. Thus piM = L is a minimal prime
submodule of M .

Hence, by assumption, piM is finitely generated for each i ∈ {1, . . . , s}.
Therefore, p1 · · · psM is finitely generated (see, for example [33]). This shows
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that there exists an element K ∈ ∆ such that p1 · · · psM ⊆ KM , a contradic-
tion. Hence, by Zorn’s lemma, we infer that Z has a maximal element q, say.
We claim that q is a prime ideal of R. For this, suppose that a and b are two el-
ements of R such that a ̸∈ q, b ̸∈ q and ab ∈ q. Thus q+Ra ̸∈ Z and q+Rb ̸∈ Z.
Hence, there are minimal elements p1, . . . , pr and p′1, . . . , p

′
l of V (Ann(M)), for

some r, l ∈ N, such that p1 · · · prM ⊆ (q+Ra)M and p′1 · · · p′lM ⊆ (q+Rb)M .
Therefore,

p1 · · · prp′1 · · · p′lM ⊆ qM,

a contradiction. This yields that q is a prime ideal of R. Since Ann(M) ⊆ q,
there is a minimal element q′ of V (Ann(M)) such that q′M ⊆ qM . This is a
contradiction, because q belongs to Z. Therefore, there exists an element A of
Y such that A ⊆ rad(0). By Lemma 3.10, we conclude that M has only finitely
many minimal prime submodules. □

Remark 3.12. At first sight, it seems that our assumptions on M in Theo-
rem 3.11 are very strange. But, in the next example we show that the class
of such modules is not empty. Also, note that there exists an R-module N
such that every minimal prime submodule of N is of the form pN , for some
prime ideal p of R. For example consider the R-module N :=

⊕
λ∈ΛMλ, where

{mλ}λ∈Λ is a collection of distinct maximal ideals of R and Mλ is an mλ-torsion
R-module for each λ ∈ Λ. According to Theorem 3.2, if Q is a minimal p-prime
submodule of N , then p ∈ Max(R). By [15, p.63, Proposition 4], pN is a
p-prime submodules of N . Since pN ⊆ Q, by minimality of Q, we infer that
Q = pN , as desired.

Example 3.13. Let N be an Artinian R-module and consider the R-module
M := N/rad(0N ). By Corollary 3.7, M is Noetherian and there are finitely
many maximal ideals m1, . . . ,mt such that rad(0N ) = ∩t

i=1miN . Therefore, M
is primeful and its annihilator is equal to

Ann(M) = (rad(0N ) : N) =

t∩
i=1

mi.

Hence, V (Ann(M)) = {m1, . . . ,mt}. Suppose that P := P/rad(0N ) is a mini-
mal prime submodule of (the finite length R-module) M . As we mentioned in
Remark 3.12, P = pM , for some p ∈ V (Ann(M)). Consequently, M is primeful
and every minimal prime submodule of M is of the form pM , for some minimal
element p ∈ V (Ann(M)).

Corollary 3.14. (Anderson’s Theorem) If all the prime ideals minimal over
an ideal I of any ring R are finitely generated, then there are only finitely many
prime ideals minimal over I.

Proof. Set M := R and use Theorem 3.11. □

�����
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Proposition 3.15. Let M be an Artinian R-module. Then M has only finitely
many minimal prime submodules.

Proof. We may assume that Spec(M) ̸= ∅. Let S denote the collection of
submodules of M which are finite intersections of minimal prime submodules.
By hypothesis and Remark 3.12, S has a minimal member which has the form
m1M ∩ · · · ∩mnM for some maximal ideals mi. We claim that m1M, . . . ,mnM

are the only minimal prime submodules of M . To see this, suppose that Q is
a minimal prime submodule of M . Then by Remark 3.12, Q = mM for some
maximal ideal m of R. We have

m1M ∩ · · · ∩mnM = m1M ∩ · · · ∩mnM ∩mM.

Thus, (m1 ∩ · · · ∩mn)M ⊆ mM . This implies that

m1 ∩ · · · ∩mn ⊆ ((m1 ∩ · · · ∩mn)M :M) ⊆ (mM :M) = m.

Therefore, Q = mjM for some 1 ≤ j ≤ n. This completes the proof. □
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