Linear Functions Preserving Multivariate and Directional Majorization

A. Armandnejad* and H. R. Afshin
Department of Mathematics, Vali-e-Asr University of Rafsanjan
P. O. Box: 7713936417, Rafsanjan, Iran
E-mail: armandnejad@mail.vru.ac.ir
E-mail: afshin@mail.vru.ac.ir

Abstract

Let V and W be two real vector spaces and let \sim be a relation on both V and W. A linear function $T: V \rightarrow W$ is said to be a linear preserver (respectively strong linear preserver) of \sim if $T x \sim T y$ whenever $x \sim y$ (respectively $T x \sim T y$ if and only if $x \sim y)$. In this paper we characterize all linear functions $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, k}$ which preserve or strongly preserve multivariate and directional majorization.

Keywords: Doubly stochastic matrices, Directional majorization, Multivariate majorization, Linear preserver.

2000 Mathematics subject classification: $15 \mathrm{~A} 03,15 \mathrm{~A} 04,15 \mathrm{~A} 510$.

1. Introduction

Let $\mathbf{M}_{n, m}$ be the vector space of all real $n \times m$ matrices. An $n \times n$ matrix $D=\left[d_{i j}\right]$ is called doubly stochastic provided that the entries of D are all nonnegative and $\sum_{k=1}^{n} d_{i k}=\sum_{k=1}^{n} d_{k j}=1$ for every $i, j \in\{1, \cdots, n\}$. Let X and Y belong to $\mathbf{M}_{n, m}$, we say X is multivariate majorized by Y (written $X \prec_{m} Y$) if $X=D Y$ for some $n \times n$ doubly stochastic matrix D. A generalized concept of multivariate majorization was introduced in [3]. For X and Y belong

[^0]Received 10 July 2009; Accepted 29 January 2010
(c)2010 Academic Center for Education, Culture and Research TMU
to $\mathbf{M}_{n, m}$, it is said that X is directional majorized by Y (written $X \prec_{d} Y$) if for every $a \in \mathbb{R}^{m}$ there exists a doubly stochastic matrix D_{a} such that $X a=$ $D_{a} Y a$. When $m=1$, the definition of multivariate majorization and directional majorization reduce to the classical concept of vector majorization. Vector majorization is a much studied concept in linear algebra and its applications, for more details about vector majorization see [1] and [5]. Some of our notations are explained next.
\mathcal{P}_{n}; The set of all $n \times n$ permutation matrices.
\mathbf{J}; The $n \times n$ matrix with all entries equal to 1 .
$X=\left[x_{1}|\cdots| x_{m}\right] ;$ An $n \times m$ matrix with $x_{j} \in \mathbb{R}^{n}$ as the $j^{t h}$ column of X.
$\operatorname{tr} x$; The summation of all components of a vector $x \in \mathbb{R}^{n}$.
About linear functions preserving multivariate and directional majorization on $\mathbf{M}_{n, m}$, Li and Poon obtained the following interesting result in [4].

Proposition 1.1. Let T be a linear operator on $\boldsymbol{M}_{n, m}$. Then T preserves multivariate majorization if and only if T preserves directional majorization if and only if one of the following holds:
(a) There exist $A_{1}, \cdots, A_{m} \in \boldsymbol{M}_{n, m}$ such that $T(X)=\sum_{j=1}^{m}\left(\operatorname{tr} x_{j}\right) A_{j}$.
(b) There exist $R, S \in M_{m}$ and $P \in \mathcal{P}_{n}$ such that $T(X)=P X R+J X S$.

The above proposition is in fact a generalization of the following proposition which has been proved by Ando in [2].

Proposition 1.2. A linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserves vector majorization if and only if one of the following holds:
(i) $T x=(\operatorname{tr} x)$ a for some $a \in \mathbb{R}^{n}$.
(ii) $T x=\alpha P x+\beta(\operatorname{tr} x) e=\alpha P x+\beta \boldsymbol{J} x$ for some $\alpha, \beta \in \mathbb{R}$ and $P \in \mathcal{P}_{n}$.

Our main result is a generalization of Proposition 1.1. In fact, we prove the following theorem.

Theorem 1.3. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, k}$ be a linear function. Then T preserves multivariate majorization if and only if T preserves directional majorization if and only if one of the following holds:
(a) There exist $A_{1}, \cdots, A_{m} \in \boldsymbol{M}_{n, k}$ such that $T X=\sum_{i=1}^{m}\left(\operatorname{tr} x_{i}\right) A_{i}$.
(b) There exist $P \in \mathcal{P}_{n}$ and $R, S \in \boldsymbol{M}_{m, k}$ such that $T X=P X R+\boldsymbol{J} X S$.

2. Main Result

We state the following statements to prove the main theorem. The following proposition is proved in [4].

Proposition 2.1. Let $T_{1}, T_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be two linear preservers of vector majorization which satisfy :

$$
\begin{equation*}
T_{1} Q y+\gamma T_{2} Q y \prec T_{1} y+\gamma T_{2} y \quad \forall \gamma \in \mathbb{R}, \forall y \in \mathbb{R}^{n}, \forall Q \in \mathcal{P}_{n} \tag{2.1}
\end{equation*}
$$

Then T_{1}, T_{2} are either of the form (i) or (ii) in Proposition 1.2 with the same P.

First, we prove a special case of Theorem 1.3, in which $k=1$.
Lemma 2.2. A linear function $T: \boldsymbol{M}_{n, m} \rightarrow \mathbb{R}^{n}$ preserves multivariate majorization if and only if one of the following holds:
(i) There exist $a_{1}, \cdots, a_{m} \in \mathbb{R}^{n}$ such that $T X=\sum_{j=1}^{m}\left(\operatorname{tr} x_{j}\right) a_{j}$.
(ii) There exist $a, b \in \mathbb{R}^{m}$ and $P \in \mathcal{P}_{n}$ such that $T X=P X a+\boldsymbol{J X b}$.

Proof. Define $T^{\prime}: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ by $T^{\prime} X=[T X \mid 0]$ where 0 denotes the $n \times(m-1)$ zero matrix. Clearly T^{\prime} is a linear operator which preserves multivariate majorization. Then by Proposition [4], T^{\prime} has one of the following forms; (a) $T^{\prime}(X)=\sum_{i=1}^{m}\left(\operatorname{tr} x_{i}\right) B_{i}$ for some $B_{1}, \cdots, B_{m} \in \mathbf{M}_{n, m}$. So $T X=\sum_{j=1}^{m}\left(\operatorname{tr} x_{j}\right) a_{j}$, where a_{j} is the first column of B_{j} for any $j(1 \leq j \leq n)$ and hence (i) holds. (b) $T^{\prime}(X)=P X R^{\prime}+J X S^{\prime}$ for some $P \in \mathcal{P}_{n}$ and some $R^{\prime}, S^{\prime} \in \mathbf{M}_{m}$. So $T X=P X a+\mathbf{J} X b$ where a and b are the first columns of R and S respectively, and hence (ii) holds.

Lemma 2.3. Let $T_{1}, T_{2}: \boldsymbol{M}_{n, m} \rightarrow \mathbb{R}^{n}$ be two linear functions. If $T: \boldsymbol{M}_{n, m} \rightarrow$ $\boldsymbol{M}_{n, 2}$ defined by $T X=\left[T_{1} X \mid T_{2} X\right]$ preserves multivariate majorization, then T_{1}, T_{2} are both either of the form (i) or (ii) in Lemma 2.2 with the same P.

Proof. If $m=1$ then T_{1}, T_{2} satisfy the conditions of Proposition 2.1 and hence T_{1}, T_{2} are either of the form (i) or $(i i)$ in Proposition 1.2 with the same P. If $m \geq 2$, define $T^{\prime}: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ by $T^{\prime}(X)=[T X \mid 0]$ where 0 denotes the $n \times(m-2)$ zero matrix. Clearly T^{\prime} is an operator which preserves multivariate majorization. Therefore by Proposition 1.1, either $T^{\prime}(X)=\sum_{i=1}^{m}\left(\operatorname{tr} x_{i}\right) B_{i}$, for some $B_{1}, \cdots, B_{m} \in \mathbf{M}_{n, m}$ and hence $T(X)=\sum_{i=1}^{m}\left(\operatorname{tr} x_{i}\right) A_{i}$ where $B_{i}=\left[A_{i} \mid *\right]$ and $*$ is an $n \times(m-2)$ block for every $i(1 \leq i \leq m)$, or $T^{\prime}(X)=P X R^{\prime}+J X S^{\prime}$ for some $P \in P_{n}, R^{\prime}, S^{\prime} \in \mathbf{M}_{m}$ and hence $T(X)=P X R+J X S$ where $R^{\prime}=$ $\left[R \mid *_{1}\right], S^{\prime}=\left[S \mid *_{2}\right]$ and $*_{1}, *_{2}$ are two $n \times(m-2)$ blocks.

Proof of Theorem 1.3. If T satisfies (a) or (b), trivially T preserves multivariate and directional majorization. Conversely, let T be a linear preserver of multivariate majorization. Then there exist linear functions $T_{i}: \mathbf{M}_{n, m} \rightarrow \mathbb{R}^{n}$, $i=1, \cdots, k$ such that $T X=\left[T_{1} X|\cdots| T_{k} X\right]$. It is easy to see that T_{i} preserves multivariate majorization for every $i(1 \leq i \leq k)$. By Lemma 2.2 and Lemma 2.3, either every T_{i} satisfies condition (i) or (ii) of Lemma 2.2. If for every $i(1 \leq i \leq k) T_{i}(X)=\sum_{j=1}^{m}\left(\operatorname{tr} x_{j}\right) a_{j}^{i}$ for some $a_{1}^{i}, \cdots, a_{m}^{i} \in \mathbb{R}^{n}$, then $T(X)=\left[\sum_{j=1}^{m}\left(t r x_{j}\right) a_{j}^{1}\left|\sum_{j=1}^{m}\left(\operatorname{tr} x_{j}\right) a_{j}^{2}\right| \cdots \mid \sum_{j=1}^{m}\left(\operatorname{tr} x_{j}\right) a_{j}^{m}\right]=\sum_{j=1}^{m}\left(\operatorname{tr} x_{j}\right) A_{j}$, for some $A_{j} \in \mathbf{M}_{n, k}$. Hence T satisfies condition (i). If for every $i(1 \leq i \leq k)$, $T_{i}(X)=P X a_{i}+J X b_{i}$ for some $a_{i}, b_{i} \in \mathbb{R}^{m}$ and $P \in \mathcal{P}_{n}$. Then $T X=\left[P X a_{i}+\right.$ $\left.J X b_{i}|\cdots| P X a_{k}+J X b_{k}\right]=P X\left[a_{1}|\cdots| a_{k}\right]+J X\left[b_{1}|\cdots| b_{k}\right]=P X R+J X S$ for some $R, S \in \mathbf{M}_{m, k}$. Thus T satisfies condition (ii). If T preserves directional
majorization it is easy to see that the following condition holds:

$$
\begin{equation*}
T X \prec_{d} T Y \quad \text { whenever } \quad X \prec_{m} Y . \tag{2.2}
\end{equation*}
$$

Now, if one replace multivariate majorization preserving by condition (2.2) in the previous lemmas, all proofs are valid. Then T satisfies conditions (a) or (b).

Now, we state the following lemma to characterize all strong linear preserver of multivariate and directional majorization from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$

Lemma 2.4. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, k}$ be a linear function of the form $T(X)=$ $D X R+J X S$, for some $R, S \in \mathbf{M}_{m, k}$ and invertible doubly stochastic $D \in \mathbf{M}_{n}$. Then T is injective if and only if R and $(R+n S)$ are full-rank matrices.

Proof. Without loss of generality we may assume that $D=I$. Since $\operatorname{dim}(\operatorname{Ker} T)+$ $\operatorname{rank}(T)=n m$, if $k<m$ then $\operatorname{dim}(\operatorname{Ker} T) \geq 1$. Therefore T is not injective. If $k \geq m$, the matrix representation of T with respect to the standard bases of $\mathbf{M}_{n, m}$ and $\mathbf{M}_{n, k}$ is similar to the following block matrix:

$$
\left(\begin{array}{cccc}
R+n S & & & * \tag{2.3}\\
& R & & \\
& & \ddots & \\
0 & & & R
\end{array}\right) \in \mathbf{M}_{n k, n m}
$$

Therefore T is injective if and only if R and $(R+n S)$ are full-rank matrices.
Theorem 2.5. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, k}$ be a linear function. Then T strongly preserves multivariate majorization if and only if T strongly preserves directional majorization if and only if there exist $P \in \mathcal{P}_{n}$ and $R, S \in M_{m, k}$ such that $R,(R+n S)$ are full-rank matrices and $T X=P X R+J X S$.

Proof. It is clear that every strong linear preserver of multivariate majorization is injective. So by Theorem 1.3 and Lemma 2.4, $T X=P X R+\mathbf{J} X S$ for some $R, S \in M_{m, k}$ such that $R,(R+n S)$ are full-rank matrices. The other side is trivial.

Acknowledgement. We are grateful to the referee for their valuable suggestions. This research has been supported by Vali-e-Asr university of Rafsanjan.

References

[1] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra Appl., 199 (1994), 17-67.
[2] T. Ando, Majorization, Doubly stochastic matrices, and comparision of eigenvalues, Linear Algebra Appl., 118 (1989), 163-248.
[3] A. Armandnejad, A. Salemi, The structure of linear preservers of gs-majorization, Bull. Iranian Math. Soc., 32 (2) (2006), 31-42.
[4] C.K. Li, E. Poon, Linear operators preserving directional majorization, Linear Algebra Appl., 325 (2001), 15-21.
[5] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1972.

[^0]: * Corresponding Author

