2019-10-15T10:26:30+03:30 http://ijmsi.ir/browse.php?mag_id=21&slc_lang=en&sid=1
21-381 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 The Subtree Size Profile of Bucket Recursive Trees R. Kazemi Kazemi (2014) introduced a new version of bucket recursive trees as another generalization of recursive trees where buckets have variable capacities. In this paper, we get the \$p\$-th factorial moments of the random variable \$S_{n,1}\$ which counts the number of subtrees size-1 profile (leaves) and show a phase change of this random variable. These can be obtained by solving a first order partial differential equation for the generating function correspond to this quantity. Bucket recursive tree Subtree size profile Factorial moments. 2016 4 01 1 11 http://ijmsi.ir/article-1-381-en.pdf 10.7508/ijmsi.2016.01.001
21-430 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 Tangent Bundle of the Hypersurfaces in a Euclidean Space S. Deshmukh shariefd@ksu.edu.sa S. B. Al-Shaikh Let \$M\$ be an orientable hypersurface in the Euclidean space \$R^{2n}\$ with induced metric \$g\$ and \$TM\$ be its tangent bundle. It is known that the tangent bundle \$TM\$ has induced metric \$overline{g}\$ as submanifold of the Euclidean space \$R^{4n}\$ which is not a natural metric in the sense that the submersion \$pi :(TM,overline{g})rightarrow (M,g)\$ is not the Riemannian submersion. In this paper, we use the fact that \$R^{4n}\$ is the tangent bundle of the Euclidean space \$R^{2n}\$ to define a special complex structure \$overline{J}\$ on the tangent bundle \$R^{4n}\$ so that \$% (R^{4n},overline{J}\$,\$leftlangle ,rightrangle )\$ is a Kaehler manifold, where \$leftlangle ,rightrangle \$ is the Euclidean metric which is also the Sasaki metric of the tangent bundle \$R^{4n}\$. We study the structure induced on the tangent bundle \$(TM,overline{g})\$ of the hypersurface \$M\$, which is a submanifold of the Kaehler manifold \$(R^{4n},overline{J}\$,\$% leftlangle ,rightrangle )\$. We show that the tangent bundle \$TM\$ is a CR-submanifold of the Kaehler manifold  \$(R^{4n},overline{J}\$,\$leftlangle ,rightrangle )\$. We find conditions under which certain special vector fields on the tangent bundle \$(TM,overline{g})\$ are Killing vector fields. It is also shown that the tangent bundle \$TS^{2n-1}\$ of the unit sphere \$% S^{2n-1}\$ admits a Riemannian metric \$overline{g}\$ and that there exists a nontrivial Killing vector field on the tangent bundle \$(TS^{2n-1},% overline{g})\$. Tangent bundle Hypersurface Kaehler manifold Almost contact structure Killing vector field CR-Submanifold Second fundamental form Wiengarten map. 2016 4 01 13 26 http://ijmsi.ir/article-1-430-en.pdf 10.7508/ijmsi.2016.01.002
21-451 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 Double Integral Characterization for Bergman Spaces M. Hassanlou m_hasanloo@tabrizu.ac.ir H. Vaezi hvaezi@tabrizu.ac.ir ‎In this paper we characterize Bergman spaces with‎ ‎respect to double integral of the functions \$|f(z)‎ ‎-f(w)|/|z-w|\$,‎ ‎\$|f(z)‎ -‎f(w)|/rho(z,w)\$ and \$|f(z)‎ ‎-f(w)|/beta(z,w)\$,‎ ‎where \$rho\$ and \$beta\$ are the pseudo-hyperbolic and hyperbolic metrics‎. ‎We prove some necessary and sufficient conditions that implies a function to be in Bergman spaces‎. Bergman spaces Pseudo-hyperbolic metric Hyperbolic metric Double integral. 2016 4 01 27 34 http://ijmsi.ir/article-1-451-en.pdf 10.7508/ijmsi.2016.01.003
21-462 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 Convergence of an Approach for Solving Fredholm Functional Integral Equations N. Aghazadeh aghazadeh@iust.ac.ir S. Fathi In this work, we give a product Nyström method for solving a Fredholm functional integral equation (FIE) of the second kind. With this method solving FIE reduce to solving an algebraic system of equations. Then we use some theorems to prove the existence and uniqueness of the system. Finally we investigate the convergence of the method. Functional integral equation Fredholm Product Nyström method Lagrange interpolation Convergence. 2016 4 01 35 46 http://ijmsi.ir/article-1-462-en.pdf 10.7508/ijmsi.2016.01.004
21-482 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 The Representations and Positive Type Functions of Some Homogenous Spaces R. Raisi Tousi raisi@.um.ac.ir F. Esmaeelzadeh esmaeelzadeh@bojnourdiau.ac.ir R. A. Kamyabi Gol kamyabi@.um.ac.ir ‎For a homogeneous spaces ‎\$‎G/H‎\$‎, we show that the convolution on \$L^1(G/H)\$ is the same as convolution on \$L^1(K)\$, where \$G\$ is semidirect product of a closed subgroup \$H\$ and a normal subgroup \$K \$ of ‎\$‎G‎\$‎. ‎Also we prove that there exists a one to one correspondence between nondegenerat \$ast\$-representations of \$L^1(G/H)\$ and representations of \$G/H\$‎. We propose a relation between cyclic representations of \$L^1(G/H)\$ and positive type functions on \$G/H\$‎. We prove that the Gelfand Raikov theorem for \$G/H\$ holds if and only if \$H\$ is normal‎. Homogenous space Semidirect product Convolution Involution Representation Irreducible representation. 2016 4 01 47 56 http://ijmsi.ir/article-1-482-en.pdf 10.7508/ijmsi.2016.01.005
21-587 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 Stability of \$g\$-Frame Expansions A. Abdollahi abdollahi@shirazu.ac.ir E. Rahimi rahimie@shirazu.ac.ir In this paper we investigate the stability of one-sided perturbation to g-frame expansions. We show that if \$Lambda\$ is a g-frame of a Hilbert space \$mathcal{H}\$, \$Lambda_{i}^{a}=Lambda_{i}+Theta_{i}\$ where \$Theta_{i} in mathcal{L}(mathcal{H},mathcal{H}_{i})\$, and \$widetilde{f}=sum_{i in J}Lambda_{i}^{star}widetilde{Lambda}_{i}^{a}f\$, \$widehat{f}=sum_{i in J}(Lambda_{i}^{a})^{star}widetilde{Lambda_{i}}f\$, then \$|widehat{f}-f|leq alpha |f|\$ and \$|f-widetilde{f}|leq beta |f|\$ for some \$alpha\$ and \$beta\$. g-Frames g-Riesz bases g-Orthonormal bases Dual g-frames. 2016 4 01 57 67 http://ijmsi.ir/article-1-587-en.pdf 10.7508/ijmsi.2016.01.006
21-588 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 An Explicit Viscosity Iterative Algorithm for Finding Fixed Points of Two Noncommutative Nonexpansive Mappings H. R. Sahebi sahebi@mail.aiau.ac.ir A. Razani razani@ipm.ir We suggest an explicit viscosity iterative algorithm for finding a common element in the set of solutions of the general equilibrium problem system (GEPS) and the set of all common fixed points of two noncommuting nonexpansive self mappings in the real Hilbert space.   General equilibrium problems Strongly positive linear bounded operator α−Inverse strongly monotone mapping Fixed point Hilbert space. 2016 4 01 69 83 http://ijmsi.ir/article-1-588-en.pdf 10.7508/ijmsi.2016.01.007
21-597 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 On \$(α, β)\$−Linear Connectivity F. Ayatollah Zadeh Shirazi fatemah@khayam.ut.ac.ir A. Hosseini a_hosseini@guilan.ac.ir In this paper we introduce \$(alpha,beta)-\$linear connected spaces for nonzero cardinal numbers \$alpha\$ and \$beta\$. We show that \$(alpha,beta)-\$linear connectivity approach is a tool to classify the class of all linear connected spaces. α−Arc β)−Linear connection degree β)−Linear connectivity Arc β−Separated family Linear connected Path Path connected. 2016 4 01 85 100 http://ijmsi.ir/article-1-597-en.pdf 10.7508/ijmsi.2016.01.008
21-620 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 Coincidence Points and Common Fixed Points for Expansive Type Mappings in \$b\$-Metric Spaces S. Kumar Mohanta smwbes@yahoo.in The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for a pair of self mappings satisfying some expansive type conditions in \$b\$-metric spaces. Finally, we investigate that the equivalence of one of these results in the context of cone \$b\$-metric spaces cannot be obtained by the techniques using scalarization function. Our results extend and generalize several well known comparable results in the existing literature.   b-Metric space Scalarization function Point of coincidence Common fixed point. 2016 4 01 101 113 http://ijmsi.ir/article-1-620-en.pdf 10.7508/ijmsi.2016.01.009
21-645 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 On Harmonic Index and Diameter of Unicyclic Graphs J. Amalorpava Jerline jermaths@gmail.com L. Benedict Michaelraj The Harmonic index \$ H(G) \$ of a graph \$ G \$ is defined as the sum of the weights \$ dfrac{2}{d(u)+d(v)} \$ of all edges \$ uv \$ of \$G\$, where \$d(u)\$ denotes the degree of the vertex \$u\$ in \$G\$. In this work, we prove the conjecture \$dfrac{H(G)}{D(G)} geq dfrac{1}{2}+dfrac{1}{3(n-1)}  \$ given by Jianxi Liu in 2013 when G is a unicyclic graph and give a better bound \$ dfrac{H(G)}{D(G)}geq dfrac{1}{2}+dfrac{2}{3(n-2)}\$, where \$n\$ is the order and \$D(G)\$ is the diameter of the graph \$G\$. Harmonic index Diameter Unicyclic graph. 2016 4 01 115 122 http://ijmsi.ir/article-1-645-en.pdf 10.7508/ijmsi.2016.01.010
21-684 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 Fixed Point Results on \$b\$-Metric Space via Picard Sequences and \$b\$-Simulation Functions M. Demma R. Saadati rsaadati@eml.cc P. Vetro In a recent paper, Khojasteh emph{et al.} [F. Khojasteh, S. Shukla, S. Radenovi'c, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (2015), 1189-–1194] presented a new class of simulation functions, say \$mathcal{Z}\$-contractions, with unifying power over known contractive conditions in the literature. Following this line of research, we extend and generalize their results on a \$b\$-metric context, by giving a new notion of  \$b\$-simulation function. Then, we prove and discuss some fixed point results in relation with existing ones. \$b\$-Metric space Partial order Nonlinear contraction Fixed point \$b\$-Simulation function. 2016 4 01 123 136 http://ijmsi.ir/article-1-684-en.pdf 10.7508/ijmsi.2016.01.011
21-891 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity M. Tavakoli M.tavakoly@Alumni.ut.ac.ir F. Rahbarnia rahbarnia@um.ac.ir A. R Ashrafi ashrafi@kashanu.ac.ir Let \$G\$ be a connected graph on \$n\$ vertices. \$G\$ is called tricyclic if it has \$n + 2\$ edges, and tetracyclic if \$G\$ has exactly \$n + 3\$ edges. Suppose \$mathcal{C}_n\$ and \$mathcal{D}_n\$ denote the set of all tricyclic and tetracyclic \$n-\$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in \$mathcal{C}_n\$ and \$mathcal{D}_n\$. Tricyclic graph Tetracyclic graph Eccentric connectivity index 2016 4 01 137 143 http://ijmsi.ir/article-1-891-en.pdf
21-898 2019-10-15 10.1002
Iranian Journal of Mathematical Sciences and Informatics IJMSI 1735-4463 2008-9473 7 2016 11 1 ABSTRACTS IN PERSIAN - Vol. 11, No. 1 Name of Authors In This Volume fatemh.bardestani@gmail.com Please see the full text contains the Pesian abstracts for this volume. ABSTRACTS PERSIAN Vol. 11 No. 1 2016 4 01 145 157 http://ijmsi.ir/article-1-898-en.pdf