ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
5
1
2010
5
1
Linear Functions Preserving Multivariate and Directional Majorization
1
5
EN
A.
Armandnejad
H. R.
Afshin
10.7508/ijmsi.2010.01.001
Let V and W be two real vector spaces and let ;sim be a relation on both V and W. A linear function T : V → W is said to be a linear preserver (respectively strong linear preserver) of ;sim if Tx ;sim Ty whenever x ;sim y (respectively Tx ;sim Ty if and only if x ;sim y). In this paper we characterize all linear functions T : M_{n,m} → M_{n,k} which preserve or strongly preserve multivariate and directional majorization.
Doubly Stochastic matrices, Directional majorization, Multivariate majorization, Linear preserver.
http://ijmsi.ir/article-1-105-en.html
http://ijmsi.ir/article-1-105-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
5
1
2010
5
1
Clifford Wavelets and Clifford-valued MRAs
7
18
EN
A.
Askari Hemmat
Z.
Rahbani
10.7508/ijmsi.2010.01.002
In this paper using the Clifford algebra over R4 and its matrix representation, we construct Clifford scaling functions and Clifford wavelets. Then we compute related mask functions and filters, which arise in many applications such as quantum mechanics.
Clifford Wavelets, Clifford algebra, Multiresolution Analysis, Wavelets.
http://ijmsi.ir/article-1-106-en.html
http://ijmsi.ir/article-1-106-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
5
1
2010
5
1
The Dual of a Strongly Prime Ideal
19
26
EN
Reza
Jahani-Nezhad
10.7508/ijmsi.2010.01.003
Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{;minus1} is a ring. In fact, it is proved that P^{;minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertible, then R = (P : P) and P is a principal ideal of R.
Strongly prime ideal, Divided ideal, Valuation domain.
http://ijmsi.ir/article-1-107-en.html
http://ijmsi.ir/article-1-107-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
5
1
2010
5
1
On the Smoothness of Functors
27
39
EN
A.
Bajravani
A.
Rastegar
10.7508/ijmsi.2010.01.004
In this paper we will try to introduce a good smoothness notion for a functor. We consider properties and conditions from geometry and algebraic geometry which we expect a smooth functor should has.
Abelian Category, First Order Deformations, Multicategory, Tangent Category, Topologizing Subcategory.
http://ijmsi.ir/article-1-110-en.html
http://ijmsi.ir/article-1-110-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
5
1
2010
5
1
On Generalization of Cebysev Type Inequalities
41
48
EN
Mehmat Zeki
Sarikaya
Aziz
Saglam
Huseyin
Yildirim
10.7508/ijmsi.2010.01.005
In this paper, we establish new Cebysev type integral inequalities involving functions whose derivatives belong to L_{p} spaces via certain integral identities.
Hölder\'s integral inequality, Cebysev type inequality, L_{p} spaces.
http://ijmsi.ir/article-1-108-en.html
http://ijmsi.ir/article-1-108-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
5
1
2010
5
1
C*-Algebra numerical range of quadratic elements
49
53
EN
M. T.
Heydari
10.7508/ijmsi.2010.01.006
It is shown that the result of Tso-Wu on the elliptical shape of the numerical range of quadratic operators holds also for the C*-algebra numerical range.
C*-algebra, Numerical range, Quadratic element, Faithful representation.
http://ijmsi.ir/article-1-111-en.html
http://ijmsi.ir/article-1-111-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
5
1
2010
5
1
Quantum Error-Correction Codes on Abelian Groups
55
67
EN
Massoud
Amini
10.7508/ijmsi.2010.01.007
We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.
Quantum error correction, Qunatum Fourier transform, Quantum channel.
http://ijmsi.ir/article-1-104-en.html
http://ijmsi.ir/article-1-104-en.pdf