en jalali 1393 8 1 gregorian 2014 11 1 9 2 online 1 fulltext
en On Generalized Coprime Graphs Paul Erdos defined the concept of coprime graph and studied about cycles in coprime graphs. In this paper this concept is generalized and a new graph called Generalized coprime graph is introduced. Having observed certain basic properties of the new graph it is proved that the chromatic number and the clique number of some generalized coprime graphs are equal. Coprime graph, Semi-perfect, Clique number, Chromatic number. 1 6 http://ijmsi.ir/browse.php?a_code=A-10-332-1&slc_lang=en&sid=1 S. Mutharasu Manonmaniam Sundaranar University skannanmunna@yahoo.com `0031947532846002289` 0031947532846002289 Yes N. Mohamed Rilwan Manonmaniam Sundaranar University rilwan2020@gmail.com `0031947532846002290` 0031947532846002290 No M. K. Angel Jebitha Manonmaniam Sundaranar University angel_jebitha@yahoo.co.in `0031947532846002291` 0031947532846002291 No T. Tamizh Chelvam tamche59@gmail.com `0031947532846002292` 0031947532846002292 No
en Local Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals Let \$(R,fm,k)\$ be a local Gorenstein ring of dimension \$n\$. Let \$H_{I,J}^i(R)\$ be the  local cohomology with respect to a pair of ideals \$I,J\$ and \$c\$ be the \$inf{i|H_{I,J}^i(R)neq0}\$. A pair of ideals \$I, J\$ is called cohomologically complete intersection if \$H_{I,J}^i(R)=0\$ for all \$ineq c\$. It is shown that, when \$H_{I,J}^i(R)=0\$ for all \$ineq c\$, (i) a minimal injective resolution of \$H_{I,J}^c(R)\$ presents like that of a Gorenstein ring (ii) \$Hom_R(H_{I,J}^c(R),H_{I,J}^c(R))simeq R\$, where \$(R,fm)\$ is a complete ring. Also we get an estimate of the  dimension of \$H_{I,J}^i(R)\$. Vanishing, Local cohomology, Gorenstein ring. 7 13 http://ijmsi.ir/browse.php?a_code=A-10-583-1&slc_lang=en&sid=1 A. Pour Eshmanan Talemi poureshmanan@iaurasht.ac.ir `0031947532846002293` 0031947532846002293 Yes A. Tehranian tehranian@srbiau.ac.ir `0031947532846002294` 0031947532846002294 No
en Strongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces. \$I\$-convergence, difference space, Musielak-Orlicz function. 15 35 http://ijmsi.ir/browse.php?a_code=A-10-499-2&slc_lang=en&sid=1 B. Hazarika Rajiv Gandhi University bh_rgu@yahoo.co.in `0031947532846002295` 0031947532846002295 Yes
en The p-median and p-center Problems on Bipartite Graphs Let \$G\$ be a bipartite graph. In this paper we consider the two kind of location problems namely \$p\$-center and \$p\$-median problems on bipartite graphs. The \$p\$-center and \$p\$-median problems asks to find a subset of vertices of cardinality \$p\$, so that respectively the maximum and sum of the distances from this set to all other vertices in \$G\$ is minimized. For each case we present some properties to find exact solutions. Location theory, \$p\$-median, \$p\$-center, Bipartite graphs. 37 43 http://ijmsi.ir/browse.php?a_code=A-10-583-2&slc_lang=en&sid=1 J. Fathali fathali@shahroodut.ac.ir `0031947532846002296` 0031947532846002296 Yes N. Jafari Rad n.jafarirad@shahroodut.ac.ir `0031947532846002297` 0031947532846002297 No S. Rahimi Sherbaf srahimi@shahroodut.ac.ir `0031947532846002298` 0031947532846002298 No
en Chromaticity of Turan Graphs with At Most Three Edges Deleted Let \$P(G,lambda)\$ be the chromatic polynomial of a graph \$G\$. A graph \$G\$ ischromatically unique if for any graph \$H\$, \$P(H, lambda) = P(G,lambda)\$ implies \$H\$ is isomorphic to \$G\$. In this paper, we determine the chromaticity of all Tur'{a}n graphs with at most three edges deleted. As a by product, we found many families of chromatically unique graphs and chromatic equivalence classes of graphs. Chromatic polynomial, Chromatic uniqueness, Turan graph. 45 64 http://ijmsi.ir/browse.php?a_code=A-10-583-3&slc_lang=en&sid=1 G.-C. Lau laugc@johor.uitm.edu.my `0031947532846002299` 0031947532846002299 No Y.-H. Peng yhpeng@fsas.upm.edu.my `0031947532846002300` 0031947532846002300 No S. Alikhani alikhani@yazd.ac.ir `0031947532846002301` 0031947532846002301 Yes
en A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefinite optimization relaxation in polynomial time. Quadratic fractional optimization, Semidefinite optimization relaxation, Global optimization. 65 71 http://ijmsi.ir/browse.php?a_code=A-10-583-4&slc_lang=en&sid=1 M. Salahi salahim@guilan.ac.ir `0031947532846002302` 0031947532846002302 Yes S. Fallahi saeedf808@gmail.com `0031947532846002303` 0031947532846002303 No
en On Some Fractional Systems of Difference Equations This paper deal with the solutions of the systems of difference equations \$\$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},\$\$ where \$mathbb{N}_{0}=mathbb{N}cup left{0right}\$, and initial values \$x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}\$ are non-zero real numbers. System of difference equations, Form of the solutions, Periodicity. 73 86 http://ijmsi.ir/browse.php?a_code=A-10-634-1&slc_lang=en&sid=1 N. Touafek Jijel University nouressadat_touafek@yahoo.com `0031947532846002304` 0031947532846002304 Yes
en Some Results on Convexity and Concavity of Multivariate Copulas This paper provides some results on different types of convexity and concavity in the class of multivariate copulas. We also study their properties and provide several examples to illustrate our results. Componentwise concavity, Copula, Quasi-concavity, Schur-concavity. 87 100 http://ijmsi.ir/browse.php?a_code=A-10-583-5&slc_lang=en&sid=1 A. Dolati adolati@yazd.ac.ir `0031947532846002305` 0031947532846002305 No A. Dehgan Nezhad anezhad@yazd.ac.ir `0031947532846002306` 0031947532846002306 Yes
en Application of the Norm Estimates for Univalence of Analytic Functions By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions. Starlike functions, Differential subordination, Integral operators. 101 108 http://ijmsi.ir/browse.php?a_code=A-10-407-1&slc_lang=en&sid=1 R. Aghalary `0031947532846002307` 0031947532846002307 Yes
en On the Ultramean Construction We use the ultramean construction to prove linear compactness theorem. We also extend the Rudin-Keisler ordering to maximal probability charges and characterize it by embeddings of power ultrameans. Continuous logic, Ultramean, Linear compactness, Rudin-Keisler ordering. 109 119 http://ijmsi.ir/browse.php?a_code=A-10-430-1&slc_lang=en&sid=1 M. Bagheri Tarbiat-Modares bagheri@modares.ac.ir `0031947532846002308` 0031947532846002308 Yes
en ABSTRACTS IN PERSIAN - Vol. 9, No. 2 Please see the full text contains the Pesian abstracts for this volume. 121 131 http://ijmsi.ir/browse.php?a_code=A-10-583-11&slc_lang=en&sid=1 Name of Authors in This Volume `0031947532846002486` 0031947532846002486 Yes