TY - JOUR
JF - IJMSI
JO - IJMSI
VL - 17
IS - 1
PY - 2022
Y1 - 2022/4/01
TI - New Large (n, r)-arcs in PG(2, q)
TT -
N2 - An $(n, r)$-arc is a set of $n$ points of a projective plane such that some $r$, but no $r+1$ of them, are collinear. The maximum size of an $(n, r)$-arc in $PG(2, q)$ is denoted by $m_r(2,q)$. In this paper we present a new $(184,12)$-arc in PG$(2,17),$ a new $(244,14)$-arc and a new $(267,15$)-arc in $PG(2,19).$
SP - 125
EP - 133
AU - Daskalov, R.
AD - Department of Mathematics and Informatics, Technical University of Gabrovo, Bulgaria
KW - Finite projective plane
KW - $(n
KW - r)$-arc in a projective plane
KW - $(l
KW - t)$-blocking set in a projective plane
KW - Maximum size of an $(n
KW - r)$-arc
KW - Linear codes.
UR - http://ijmsi.ir/article-1-1360-en.html
DO - 10.52547/ijmsi.17.1.125
ER -