AU - Shiu, W.-C.
AU - Lau, G.-C.
AU - Lee, S.-M.
TI - On (Semi-) Edge-primality of Graphs
PT - JOURNAL ARTICLE
TA - IJMSI
JN - IJMSI
VO - 12
VI - 2
IP - 2
4099 - http://ijmsi.ir/article-1-924-en.html
4100 - http://ijmsi.ir/article-1-924-en.pdf
SO - IJMSI 2
ABĀ - Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an edge-prime (or a semi-edge-prime) labeling is called an edge-prime (or a semi-edge-prime) graph. In this paper we determine the necessary and/or sufficient condition for the existence of (semi-) edge-primality of many family of graphs.
CP - IRAN
IN - KM12, Jalan Muar, Segamat, Johor, Malaysia
LG - eng
PB - IJMSI
PG - 1
PT - Research
YR - 2017