AU - Daghigh, H.
AU - Bahramian, M.
TI - Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves
PT - JOURNAL ARTICLE
TA - IJMSI
JN - IJMSI
VO - 4
VI - 2
IP - 2
4099 - http://ijmsi.ir/article-1-88-en.html
4100 - http://ijmsi.ir/article-1-88-en.pdf
SO - IJMSI 2
ABĀ - Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q &minus 1, using generalized jacobian of E.
CP - IRAN
IN -
LG - eng
PB - IJMSI
PG - 55
PT - Research paper
YR - 2009