AU - Fath-Tabar, G.H.
AU - Ashrafi, A.R.
TI - The Hyper-Wiener Polynomial of Graphs
PT - JOURNAL ARTICLE
TA - IJMSI
JN - IJMSI
VO - 6
VI - 2
IP - 2
4099 - http://ijmsi.ir/article-1-238-en.html
4100 - http://ijmsi.ir/article-1-238-en.pdf
SO - IJMSI 2
ABĀ - The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are computed.
CP - IRAN
IN -
LG - eng
PB - IJMSI
PG - 67
PT - Research paper
YR - 2011