Iranian Journal of Mathematical Sciences and Informatics
Vol. 10, No. 1 (2015), pp 131-137
DOI: 10.7508/ijmsi.2015.01.010

On the 2-absorbing Submodules

Sh. Payrovi*, S. Babaei
Imam Khomieni International University, Postal Code: 34149-1-6818, Qazvin, Iran.
E-mail: shpayrovi@sci.ikiu.ac.ir
E-mail: sbabaei@edu.ikiu.ac.ir

Abstract

Let R be a commutative ring and M be an R-module. In this paper, we investigate some properties of 2 -absorbing submodules of M. It is shown that N is a 2 -absorbing submodule of M if and only if whenever $I J L \subseteq N$ for some ideals I, J of R and a submodule L of M, then $I L \subseteq N$ or $J L \subseteq N$ or $I J \subseteq N:_{R} M$. Also, if N is a 2-absorbing submodule of M and M / N is Noetherian, then a chain of 2 -absorbing submodules of M is constructed. Furthermore, the annihilation of $E(R / \mathfrak{p})$ is studied whenever 0 is a 2 -absorbing submodule of $E(R / \mathfrak{p})$, where \mathfrak{p} is a prime ideal of R and $E(R / \mathfrak{p})$ is an injective envelope of R / \mathfrak{p}.

Keywords: 2-absorbing ideal, 2-absorbing submodule, A chain of 2-absorbing submodule.

2000 Mathematics subject classification: 13C99.

1. Introduction

Throughout this paper R is a commutative ring with non-zero identity and M is an unitary R-module. We defined a submodule N of M is 2 -absorbing whenever $a b m \in N$ for some $a, b \in R, m \in M$, then $a m \in N$ or $b m \in N$ or $a b \in N:_{R} M$, see for instance $[1,3,4,6,7,9,10]$. It is well known that, a submodule N of M is prime if and only if $I L \subseteq N$ for an ideal I of R and

[^0]a submodule L of M, then either $L \subseteq N$ or $I \subseteq N:_{R} M$. This statement persuaded us to prove that, a submodule N of M is 2 -absorbing if and only if $I J L \subseteq N$ for some ideals I, J of R and a submodule L of M, then $I L \subseteq N$ or $J L \subseteq N$ or $I J \subseteq N:_{R} M$. As a corollary of this theorem, it is shown that $L=\{m \in M: \mathfrak{p} \subseteq r(N: m)\}$ is a 2 -absorbing submodule of M, where N is a 2-absorbing submodule of M with $r\left(N:_{R} M\right)=\mathfrak{p} \cap \mathfrak{q}$ for some prime ideals $\mathfrak{p}, \mathfrak{q}$ of R. Also, it is shown that if M / N is Noetherian, then there exists a chain of 2-absorbing submodules of M that begins with N. Assume that $E(R / \mathfrak{p})$ is an injective envelope of R / \mathfrak{p}, it is shown that if 0 is a 2 -absorbing submodule of $E(R / \mathfrak{p})$, then $r\left(0:_{R} E(R / \mathfrak{p})\right)=\mathfrak{p}$ and $0:_{R} x$ is determined for all nonzero element x of $E(R / \mathfrak{p})$.

Now, we define the concepts that we will use later. For a submodule L of M let $L:_{R} M$ denote the ideal $\{r \in R: r M \subseteq L\}$. Similarly, for an element $m \in M$ let $L:_{R} m$ denote the ideal $\{r \in R: r m \in L\}$. If I is an ideal of R, then $r(I)$ denotes the radical of I. We say that $\mathfrak{p} \in \operatorname{Spec}(R)$ is an associated prime ideal of M if there exists $m \in M$ with $0:_{R} m=\mathfrak{p}$. The set of associated prime ideals of M is denoted by $\operatorname{Ass}_{R}(M)$, the set of integers is denoted by \mathbb{Z}.

2. 2-AbSorbing Submodules

Let N be a proper submodule of M. We say that N is a 2-absorbing submodule of M if whenever $a, b \in R, m \in M$ and $a b m \in N$, then $a m \in N$ or $b m \in N$ or $a b \in N:_{R} M$.

Lemma 2.1. Let I be an ideal of R and N be a 2-absorbing submodule of M. If $a \in R, m \in M$ and $\operatorname{Iam} \subseteq N$, then am $\in N$ or $\operatorname{Im} \subseteq N$ or $I a \subseteq N:_{R} M$.

Proof. Let $a m \notin N$ and $I a \nsubseteq N:_{R} M$. Then there exists $b \in I$ such that $b a \notin N:_{R} M$. Now, bam $\in N$ implies that $b m \in N$, since N is a 2 -absorbing submodule of M. We have to show that $\operatorname{Im} \subseteq N$. Let c be an arbitrary element of I. Thus $(b+c) a m \in N$. Hence, either $(b+c) m \in N$ or $(b+c) a \in N:_{R} M$. If $(b+c) m \in N$, then by $b m \in N$ it follows that $c m \in N$. If $(b+c) a \in N:_{R} M$, then $c a \notin N:_{R} M$, but cam $\in N$. Thus $c m \in N$. Hence, we conclude that $I m \subseteq N$.

Lemma 2.2. Let I, J be ideals of R and N be a 2-absorbing submodule of M. If $m \in M$ and $I J m \subseteq N$, then $I m \subseteq N$ or $J m \subseteq N$ or $I J \subseteq N:_{R} M$.

Proof. Let $I \nsubseteq N:_{R} m$ and $J \nsubseteq N:_{R} m$. We have to show that $I J \subseteq N:_{R} M$. Assume that $c \in I$ and $d \in J$. By assumption there exists $a \in I$ such that am $\notin N$ but $a J m \subseteq N$. Now, Lemma 2.1 shows that $a J \subseteq N:_{R} M$ and so $\left(I \backslash N:_{R} m\right) J \subseteq N:_{R} M$, similarly there exists $b \in J \backslash N:_{R} m$ such that $I b \subseteq N:_{R} M$ and also $I\left(J \backslash N:_{R} m\right) \subseteq N:_{R} M$. Thus we have $a b \in N:_{R} M$, $a d \in N:_{R} M$ and $c b \in N:_{R} M$. By $a+c \in I$ and $b+d \in J$ it follows that $(a+c)(b+d) m \in N$. Therefore, $(a+c) m \in N$ or $(b+d) m \in N$ or
$(a+c)(b+d) \in N:_{R} M$. If $(a+c) m \in N$, then $c m \notin N$ hence, $c \in I \backslash N:_{R} m$ which implies that $c d \in N:_{R} M$. Similarly by $(b+d) m \in N$, we can deduce that $c d \in N:_{R} M$. If $(a+c)(b+d) \in N:_{R} M$, then $a b+a d+c b+c d \in N:_{R} M$ and so $c d \in N:_{R} M$. Therefore, $I J \subseteq N:_{R} M$.

Theorem 2.3. Let N be a proper submodule of M. The following statement are equivalent:
(i) N is a 2-absorbing submodule of M;
(ii) If $I J L \subseteq N$ for some ideals I, J of R and a submodule L of M, then $I L \subseteq N$ or $J L \subseteq N$ or $I J \subseteq N:_{R} M$.

Proof. $(i i) \Rightarrow(i)$ is obvious. To prove $(i) \Rightarrow(i i)$, assume that $I J L \subseteq N$ for some ideals I, J of R and a submodule L of M and $I J \nsubseteq N:_{R} M$. Then by Lemma 2.2 for all $m \in L$ either $I m \subseteq N$ or $J m \subseteq N$. If $I m \subseteq N$, for all $m \in L$ we are done. Similarly if $J m \subseteq N$, for all $m \in L$ we are done. Suppose that $m, m^{\prime} \in L$ are such that $I m \nsubseteq N$ and $J m^{\prime} \nsubseteq N$. Thus $J m \subseteq N$ and $I m^{\prime} \subseteq N$. Since $I J\left(m+m^{\prime}\right) \subseteq N$ we have either $I\left(m+m^{\prime}\right) \subseteq N$ or $J\left(m+m^{\prime}\right) \subseteq N$. By $I\left(m+m^{\prime}\right) \subseteq N$, it follows that $I m \subseteq N$ which is a contradiction, similarly by $J\left(m+m^{\prime}\right) \subseteq N$ we get a contradiction. Therefore either $I L \subseteq N$ or $J L \subseteq N$.

A submodule N of M is called strongly 2-absorbing if it satisfies in condition (ii), see [5]. Therefore, Theorem 2.3 shows that N is a 2 -absorbing submodule of M if and only if N is a strongly 2-absorbing submodule of M.

Corollary 2.4. Let M be an R-module and N be a 2-absorbing submodule of M. Then $N:_{M} I=\{m \in M: I m \subseteq N\}$ is a 2-absorbing submodules of M for all ideal I of R. Furthermore $N:_{M} I^{n}=N:_{M} I^{n+1}$, for all $n \geq 2$.

Proof. Let I be an ideal of $R, a, b \in R, m \in M$ and $a b m \in N:_{M} I$. Thus $I a b m \subseteq N$. Hence, Im $\subseteq N$ or $I a b \subseteq N:_{R} M$ or $a b m \in N$, by Lemma 2.2. If $I m \subseteq N$ we are done. If $I a b \subseteq N:_{R} M$, then $a b \in\left(N:_{R} M\right):_{R} I=\left(N:_{M}\right.$ $I):_{R} M$. If $a b m \in N$, then $a m \in N$ or $b m \in N$ or $a b \in N:_{R} M$. Thus $I a m \subseteq N$ or $I b m \subseteq N$ or $I a b \subseteq N:_{R} M$ which complete the proof.

For the second statement, it is enough to show that $N:_{M} I^{2}=N:_{M} I^{3}$. It is clear that $N:_{M} I^{2} \subseteq N:_{M} I^{3}$. Let $m \in N:_{M} I^{3}$. Then $I^{3} m \subseteq N$. Now, by Lemma 2.2, we have $I^{2} m \subseteq N$ or $I m \subseteq N$ or $I^{3} \subseteq N:_{R} M$. If $I^{2} m \subseteq N$ or Im $\subseteq N$, we are done. If $I^{3} \subseteq N:_{R} M$, then $I^{2} \subseteq N:_{R} M$ since $N:_{R} M$ is a 2 -absorbing ideal of R by [9, Theorem 2.3].

It is clear that, $n \mathbb{Z}$ is a 2 -absorbing ideal of \mathbb{Z} if and only if $n=0, p, p^{2}, p q$, where p, q are distinct prime integers. It is easy to see that $4 \mathbb{Z}: \mathbb{Z} 6 \mathbb{Z}=2 \mathbb{Z}$ but $4 \mathbb{Z}: \mathbb{Z} 36 \mathbb{Z}=\mathbb{Z}$. Hence, the equality mentioned in the Corollary 2.4 , is not necessarily true for $n=1$.

Theorem 2.5. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R} M\right)=$ $\mathfrak{p} \cap \mathfrak{q}$ where \mathfrak{p} and \mathfrak{q} are the only distinct prime ideals of R that are minimal over $N:_{R} M$. Then $L=\left\{m \in M: \mathfrak{p} \subseteq r\left(N:_{R} m\right)\right\}$ is a 2-absorbing submodule of M containing N. Also, either $r\left(L:_{R} M\right)=\mathfrak{q}$ or $r\left(L:_{R} M\right)=\mathfrak{p}^{\prime} \cap \mathfrak{q}$, where \mathfrak{p}^{\prime} is a prime ideal of R containing \mathfrak{p}.

Proof. It is clear that L is a submodule of M containing N. Assume that $a, b \in R, m \in M$ and $a b m \in L$. We have to show that $a m \in L$ or $b m \in L$ or $a b \in L:_{R} M$. Since $\mathfrak{p} \subseteq r\left(N:_{R} a b m\right)$, thus $\mathfrak{p}^{2} a b m \subseteq N$, by [9, Theorem 2.4] and [2, Theorem 2.4]. Therefore, by Lemma 2.1, we have $a b m \in N$ or $\mathfrak{p}^{2} m \subseteq N$ or $\mathfrak{p}^{2} a b \subseteq N:_{R} M$. If $a b m \in N$, then $a m \in N$ or $b m \in N$ or $a b \in N:_{R} M$ which implies that $a m \in L$ or $b m \in L$ or $a b \in L: M$. If $\mathfrak{p}^{2} m \subseteq N$, then $\mathfrak{p}^{2} \subseteq N:_{R} m$ and so $\mathfrak{p} \subseteq r\left(N:_{R} m\right)$ thus $m \in L$ and we are done. If $\mathfrak{p}^{2} a b \subseteq N:_{R} M$, then by [2, Theorem 2.13], we have $\mathfrak{p}^{2} a \subseteq N:_{R} M$ or $\mathfrak{p}^{2} b \subseteq N:_{R} M$ or $a b \in N:_{R} M$. In the first case we conclude that $\mathfrak{p}^{2} \subseteq N:_{R} a m$ and so $a m \in L$. By a similar argument in the second case we can deduced that $b m \in L$. If $a b \in N:_{R} M$, then $a b \in L:_{R} M$. Therefore, the result follows.

For the second statement, first we show that $r\left(N:_{R} M\right)=r\left(L:_{R} M\right) \cap \mathfrak{p}$. It is clear $r\left(N:_{R} M\right) \subseteq r\left(L:_{R} M\right) \cap \mathfrak{p}$. Assume that $a \in\left(L:_{R} M\right) \cap \mathfrak{p}$. Thus $a M \subseteq L$ and so, by definition of $L, \mathfrak{p} \subseteq r\left(N:_{R} a m\right)$, for all $m \in M$. Hence, [2, Theorem 2.4] shows that $\mathfrak{p}^{2} \subseteq N:_{R} a m$, for all $m \in M$. Therefore, $a^{3} \in N:_{R} m$, for all $m \in M$. So that $a^{3} \in N:_{R} M$ and then $a \in r\left(N:_{R} M\right)$. Thus $r\left(L:_{R} M\right) \cap \mathfrak{p} \subseteq r\left(N:_{R} M\right)$. Now, $L:_{R} M$ is a 2-absorbing ideal of R, therefore either $r\left(L:_{R} M\right)=\mathfrak{p}^{\prime}$ or $r\left(L:_{R} M\right)=\mathfrak{p}^{\prime} \cap \mathfrak{q}^{\prime}$, for some prime ideals $\mathfrak{p}^{\prime}, \mathfrak{q}^{\prime}$ of R. In the first case we have $r\left(N:_{R} M\right)=\mathfrak{p} \cap \mathfrak{p}^{\prime}$ which implies that $\mathfrak{p}^{\prime}=\mathfrak{q}$ and in the second case we have $r\left(N:_{R} M\right)=\mathfrak{p} \cap \mathfrak{p}^{\prime} \cap \mathfrak{q}^{\prime}$ which implies that either $\mathfrak{p}^{\prime}=\mathfrak{q}$ or $\mathfrak{q}^{\prime}=\mathfrak{q}$.
Corollary 2.6. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R}\right.$ $M)=\mathfrak{p} \cap \mathfrak{q}$ where \mathfrak{p} and \mathfrak{q} are the only distinct prime ideals of R that are minimal over $N:_{R} M$. If M / N is a Noetherian R-module, then
(i) there exists a chain $N=L_{0} \subseteq L_{1} \subseteq \cdots \subseteq L_{n-1} \subseteq L_{n}=M$ of 2absorbing submodules of M. Furthermore, $\operatorname{Ass}(M) \subseteq \operatorname{Ass}\left(M / L_{n-1}\right) \cup$ $\operatorname{Ass}\left(L_{n-1} / L_{n-2}\right) \cup \operatorname{Ass}\left(L_{n-2} / L_{n-3}\right) \cup \cdots \cup \operatorname{Ass}\left(L_{1} / N\right)$, where $\operatorname{Ass}\left(L_{i} / N\right)$ is the union of at most two totally ordered set, for all i.
(ii) there exists a chain $N \subseteq L_{n} \subseteq L_{n-1} \subseteq \cdots \subseteq L_{1} \subseteq L_{0}=M$ of submodules of M such that L_{i} is a 2-absorbing submodule of L_{i+1}, for all $0 \leq i \leq n-1$.

Proof. (i) Let $L_{1}=\left\{m \in M: \mathfrak{p} \subseteq r\left(N:_{R} m\right)\right\}$. Then by Corollary 2.4, L_{1} is a 2-absorbing submodule of M and so either $r\left(L_{1}:_{R} M\right)=\mathfrak{q}$ or $r\left(L_{1}:_{R} M\right)=$ $\mathfrak{p}_{1} \cap \mathfrak{q}$, where \mathfrak{p}_{1} is a prime ideal of R containing \mathfrak{p}. If $r\left(L_{1}:_{R} M\right)=\mathfrak{q}$, then choose $L_{2}=\left\{m \in M: \mathfrak{q} \subseteq r\left(L_{1}:_{R} m\right)\right\}=M$. Hence, $N \subseteq L_{1} \subseteq L_{2}=M$ is requested chain. If $r\left(L_{1}:_{R} M\right)=\mathfrak{p}_{1} \cap \mathfrak{q}$, set $L_{2}=\left\{m \in M: \mathfrak{p}_{1} \subseteq r\left(L_{1}:_{R} m\right)\right\}$
and so either $r\left(L_{2}:_{R} M\right)=\mathfrak{q}$ or $r\left(L_{2}:_{R} M\right)=\mathfrak{p}_{2} \cap \mathfrak{q}$, where \mathfrak{p}_{2} is a prime ideal of R containing \mathfrak{p}_{1}. Proceeding in this way, we can achieve $N \subseteq L_{0} \subseteq L_{1} \subseteq$ $\cdots \subseteq L_{n-1} \subseteq L_{n}=M$ of 2-absorbing submodules of M. The last statement is obvious, by [9, Theorem 2.6].
(ii) Let $L_{1}=\left\{m \in M: \mathfrak{p} \subseteq r\left(N:_{R} m\right)\right\}$. Then N is a 2-absorbing submodule of L_{1}. So that either $r\left(N:_{R} L_{1}\right)=\mathfrak{p}_{1}$ or $r\left(N:_{R} L_{1}\right)=\mathfrak{p}_{1} \cap \mathfrak{q}_{1}$, for some prime ideals $\mathfrak{p}_{1}, \mathfrak{q}_{1}$ of R. If $r\left(N:_{R} L_{1}\right)=\mathfrak{p}_{1}$, then choose $L_{2}=\left\{x \in L_{1}\right.$: $\left.\mathfrak{p}_{1} \subseteq r\left(N:_{R} x\right)\right\}=N$. Hence, in this case $N \subseteq L_{1} \subseteq L_{0}=M$ is the requested chain. If $r\left(N:_{R} L_{1}\right)=\mathfrak{p}_{1} \cap \mathfrak{q}_{1}$, then set $L_{2}=\left\{x \in L_{1}: \mathfrak{p}_{1} \subseteq r\left(N:_{R} x\right)\right\}$ and continue the same way to achieve the chain $N \subseteq L_{n} \subseteq L_{n-1} \subseteq \cdots \subseteq L_{1} \subseteq$ $L_{0}=M$ of 2-absorbing submodules of M.

Theorem 2.7. Let N be a 2-absorbing submodule of M. Then $N:_{R} M$ is a prime ideal of R if and only if $N:_{R} m$ is a prime ideal of R for all $m \in M \backslash N$.

Proof. Assume that $a, b \in R, m \in M \backslash N$ and $a b \in N:_{R} m$. Then $a b m \subseteq N$. We have $a m \in N$ or $b m \in N$ or $a b \in N:_{R} M$ since N is a 2 -absorbing submodule of M. If $a m \in N$ or $b m \in N$ we are done. If $a b \in N:_{R} M$, then by assumption either $a \in N:_{R} M$ or $b \in N:_{R} M$. Thus either $a \in N:_{R} m$ or $b \in N:_{R} m$. So $N:_{R} m$ is a prime ideal.

Conversely, suppose that $a b \in N:_{R} M$ for some $a, b \in R$ and assume that there exist $m, m^{\prime} \in M$ such that $a m \notin N$ and $b m^{\prime} \notin N$. By $a b m, a b m^{\prime} \in N$ it follows that $b m \in N$ and $a m^{\prime} \in N$ since $N:_{R} m$ and $N:_{R} m^{\prime}$ are prime ideals of R. If $m+m^{\prime} \in N$, then $a m \in N$ which is a contradiction. Thus $m+m^{\prime} \notin N$. Now by $a b\left(m^{\prime}+m^{\prime \prime}\right) \in N$ we have $a\left(m^{\prime}+m^{\prime \prime}\right) \in N$ or $b\left(m^{\prime}+m^{\prime \prime}\right) \in N$ which is a contradiction. Thus $a M \subseteq N$ or $b M \subseteq N$ which implies that $N:_{R} M$ is prime.

Corollary 2.8. Let N be a 2-absorbing submodule of M. Then $N:_{R} M$ is a prime ideal of R if and only if $N:_{R} K$ is a prime ideal of R for all submodules K of M containing N.

Proof. By Theorem 2.7 and [9, Theorem 2.6] it follows that $\left\{N:_{R} x: x \in K \backslash\right.$ $N\}$ is a totally ordered set of prime ideals of R. Hence, $N:_{R} K=\cap_{x \in K} N:_{R} x$ is a prime ideal of R.

Theorem 2.9. Let \mathfrak{p} be a prime ideal of R and $E(R / \mathfrak{p})$ be an injective envelop of R / \mathfrak{p}. If 0 is a 2-absorbing submodule of $E(R / \mathfrak{p})$, then
(i) $\mathfrak{p}^{2} \subseteq 0:_{R} E(R / \mathfrak{p}) \subseteq \mathfrak{p}$ so that $r\left(0:_{R} E(R / \mathfrak{p})\right)=\mathfrak{p}$.
(ii) $\mathfrak{p}^{2} \subseteq 0:_{R} x \subset 0:_{R}$ ax $=\mathfrak{p}$, for all non-zero element x of $E(R / \mathfrak{p})$ and all $a \in \mathfrak{p} \backslash 0:_{R} x$.
(iii) $\mathfrak{p}^{2} \subseteq 0:_{R} x=0:_{R} a^{n} x \subseteq \mathfrak{p}$, for all $a \notin \mathfrak{p}$.

Proof. (i) We have $r\left(0:_{R} x\right)=\mathfrak{p}$ for all non-zero element x of $E(R / \mathfrak{p})$, by [8, Theorem 18.4]. Also it is obvious $0:_{R} E(R / \mathfrak{p}) \subseteq 0:_{R} x$. Thus $0:_{R} E(R / \mathfrak{p}) \subseteq \mathfrak{p}$.

Now, assume that $a \in \mathfrak{p}^{2}$ and x is a non-zero element of $E(R / \mathfrak{p})$. Since 0 is a 2-absorbing submodule of $M, 0:_{R} x$ is a 2-absorbing ideal of R, by $[9$, Theorem 2.4]. Therefore we have \mathfrak{p}^{2} is a subset of $0:_{R} x$, by [2, Theorem 2.4]. Hence, $a x=0$ and therefore $a E(R / \mathfrak{p})=0$ and $\mathfrak{p}^{2} \subseteq 0:_{R} E(R / \mathfrak{p})$.
(ii) Let x be a non-zero element of $E(R / \mathfrak{p})$. Then we have $\mathfrak{p}^{2} \subseteq 0:_{R} x \subseteq \mathfrak{p}$. Assume that $a \in \mathfrak{p} \backslash 0:_{R} x$. Thus $a x \neq 0$ but $a^{2} x=0$ which shows that $0:_{R} x \subset 0:_{R} a x$. If $b \in \mathfrak{p}$, then $a b \in \mathfrak{p}^{2}$ and $a b x=0$. Thus $b \in 0:_{R} a x$ and so $\mathfrak{p} \subseteq 0:_{R} a x$.
(iii) Assume that $a \notin \mathfrak{p}$. It is obvious that $0:_{R} x \subseteq 0:_{R} a^{n} x$, for all $n \in \mathbb{N}$. Let $b \in \operatorname{Ann}_{R}\left(a^{n} x\right)$. Thus $b a^{n} x=0$. But multiplication by a^{n} is an automorphism on $E(R / \mathfrak{p})$, so that $b x=0$ and $b \in 0:_{R} x$. Therefore, $0:_{R} x=0:_{R} a^{n} x$.

Corollary 2.10. Let R be a principal ideal domain and \mathfrak{p} is a prime ideal of R. If 0 is a 2-absorbing submodule of $E(R / \mathfrak{p})$, then for all non-zero element x of $E(R / \mathfrak{p})$ either $0:_{R} x=\mathfrak{p}^{2}$ or $0:_{R} x=\mathfrak{p}$.

Proof. Let $\mathfrak{p}=(a)$. Then $\mathfrak{p}^{2}=\left(a^{2}\right)$. Let x be a non-zero element of $E(R / \mathfrak{p})$. Then $\mathfrak{p}^{2} \subseteq 0:_{R} x=(b) \subseteq \mathfrak{p}$ by Theorem 2.9(ii). Thus $a^{2}=b c$ and $b=a e$ for some $c, e \in R$. Hence, $a^{2}=a e c$. So $a=e c \in \mathfrak{p}$. Therefore, either $c \in \mathfrak{p}$ or $e \in \mathfrak{p}$. If $c \in \mathfrak{p}$, then $c=a c^{\prime}$ and so $a=e a c^{\prime}$ which implies that $1=e c^{\prime}$ and $a=b c^{\prime}$ thus $0:_{R} x=\mathfrak{p}$. If $e \in \mathfrak{p}$, then $e=a e^{\prime}$ and so $a=a e^{\prime} c$ which implies that $1=e^{\prime} c$ and $b=a^{2} e^{\prime}$ thus $0:_{R} x=\mathfrak{p}^{2}$.

The following example shows that the condition " 0 is a 2 -absorbing submodule of $E(R / \mathfrak{p}) "$ is essential. It is well-known that $E(\mathbb{Z} / p \mathbb{Z})=\mathbb{Z}\left(p^{\infty}\right)=$ $\{m / n+\mathbb{Z}: m, n \in \mathbb{Z}, n \neq 0\}$, where p is a prime integer. But neither $p^{2} \mathbb{Z}=0: \mathbb{Z} 1 / p^{3}+\mathbb{Z}$ nor $0: \mathbb{Z} 1 / p^{3}+\mathbb{Z}=p \mathbb{Z}$. Hence, 0 is not a 2 -absorbing submodule of $E(\mathbb{Z} / p \mathbb{Z})$. Also, this example shows that if 0 is a 2 -absorbing submodule of M, then it is not necessarily a 2-absorbing submodule of $E(M)$.

Acknowledgments

We would like to thank the referee for a careful reading of our article.

References

1. D. F. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, (2011), 1646-1672.
2. A. Badawi, On 2-absorbing ideals of commutavie rings, Bull. Austral. Math. Soc., 75, (2007), 417-429.
3. A. Badawi, A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39 (2), (2013), 441-452.
4. A. Y. Darani, E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum, 86, (2013), 83-91.
5. A. Y. Darani, F. Soheilnia, On n-absorning submodules, Math. Commun., 17, (2012), 547-557.
6. A. Y. Darani, F. Soheilnia, 2-Absorning and weakly 2-Absorbing submodules, Thai J. of Math., $\mathbf{9},(2011), 577-584$.
7. R. Jahani-Nezhad, The Dual of a Strongly Prime Ideal, Iranian Journal of Mathematical Sciences and Informatics, 5, (2010), 19-26.
8. H. Matsumura, Commutative Rings Theory, Second edition, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989.
9. Sh. Payrovi, S. Babaei, On 2-absorbing submodules, Algebra Collq., 19, (2012), 913-920.
10. Sh. Payrovi, S. Babaei, On the 2-absorbing ideals, Int. Math. Forum, 7, (2012), 265-271.

[^0]: * Corresponding Author

 Received 30 October 2013; Accepted 09 September 2014
 (c)2015 Academic Center for Education, Culture and Research TMU

