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ABSTRACT. In this paper, we first introduce the concepts of G-systems,
quotient G-systems and isomorphism theorems on G-systems of n-ary
semihypergroups. Also we consider the Green’s equivalences on G-systems
and further investigate some of their properties. A number of n-ary semi-

hypergroups are constructed and presented as examples in this paper.
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1. INTRODUCTION

The concept of Green relation introduced by Green [9] and have played a
fundamental role in the development of semigroup theory. The Green’s rela-
tions provide the necessary tools for using similar arguments on the monoid.
The Green’s relations are well known, and presented in deep detail in several
places. The concept of an n-group was introduced by Dérnte in [7]. This con-
cept is a natural generalization of a group. Since then there are numbers of
papers concerning various n-ary algebras in the literature. It is noted that the
algebraic hyperstructures are suitable generalizations of the classical algebraic
structures. In a classical algebraic structure, the composition of two elements
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is an element, while in an algebraic hyperstructure, the composition of two
elements is not necessarily an element but is a system. The notion of the
hypergroup was introduced in 1934 by Marty [13] at the 8" Congress of Scan-
dinavian Mathematicians. He then published some notes on hypergroups,using
them in different contexts such as algebraic functions,rational actions, non com-
mutative groups. Since then, hundreds of research papers and several mono-
graphs have been published in this topic and several kind of hypergroups have
been particularly studied, such as regular hypergroups, reversible regular hy-
pergroups, canonical hypergroups, cogroups, cyclic hypergroups, associativity
hypergroups, for example see ([2] and [3]). ( the monograph by P. Corsini and
V.Leoreanu )

A recent monograph on hyperstructures [5] points out on their applications
in fuzzy and rough set theory, cryptography, codes, automata, probability, ge-
ometry, lattices, binary relations, graphs and hypergraphs. Moreover, Davvaz
and Vougiouklis [6] have established a connection between the two do mains in
the form of an extension of the concept of n-ary groups to the concept of n-ary
hypergroups. They determined some connections between this hypergroupoid
and Ivo Rosenberg s hypergroupoid associated with a binary relation. In [4]
Cristea and Stefanescu, associated a hypergroupoid (H,®,) with an n-ary re-
lation p defined on a non-empty set H.The n-ary hyperoperations studied by
many researchers, for example, see [2, 3, 4, 6, 10, 11, 12, 14, 15].

These Green’s relations on a semigroup were first defined and studied by
Green [9] dated back to 1951. These Green’s relations on a semigroup played a
fundamental role in the development of semigroup theory. In particular, Chin-
ram and Siammai have considered and studied extensively the Green’s relations
on the I'-semigroups and reductive I'-semigroups [1]. Also, the Green’s rela-
tions and congruences on n-ary semigroups were studied and are investigated
by Sioson in 1967 [16].

In this paper, we define the left and right G-systems in the context of n-
ary semihypergroups and introduce the concept of regular relation on the G-
systems. Also, we consider the Green’s equivalence relations on the G-systems
and find some of their properties.

2. BASIC DEFINITION

In this section, we present some definitions concerning the n-ary semihyper-
groups as a generalization of the n-ary semigroups and semigroups.

Let G be a non-empty set and f a mapping f : G x G — p*(G), where
©*(G) is the set of all non-empty subsets of G. Then, we call f is a binary hyper-
operation on the set G. We denote by G™ the Cartesian product G x G.... X G,
where G appears n times. The couple (G, f) is now called a hypergroupoid. For
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any two non-empty subsets G and G2 of G, we define
GioGy= ] @giog
91€G1,92€G2
A hypergroupoid (G, f) is called a semihypergroup if for all g1, g2, g3 of G, we

have (g1 0 g2) 0 g3 = g1 0 (92 © g3).
In general, f : G — p*(G) is called an n-ary hyperoperation on G and we
call (G, f) an n-ary hypergroupoid.(see [3]).

Let G1, Ga,...,G,, be a non-empty subsets of G. Then, we define
F(G1,Ga, s Gr) = | J{F (91,92, 9n) 1 g € Gii € {1,2,...,n}}.

The sequence g;, gi+1, ---, gj+1 Will be denoted by gf For j < 1, gf is a empty set.

Definition 2.1. [8] The n-ary hypergroupoid (G, f) is called an n-ary semi-

hypergroup if for any 4,7 € {1,2,...,n} and g%”fl,

B 3 i * .
F L Far T, g2 = Flot s Flaf ), 6205,

We call G an n-ary semihypergroup with identity if there is an element e € G
such that
z€E€f (e(i_l),x,e("_i)) .

Let (G, f) be an n-ary semihypergroup and H be a non-empty subset of G.
Then, H is an n-ary subhypergroup of G if it is closed under the n-ary hyperop-
eration f, i.e., for every (hy, ha, ..., h,) € H™ implies that f(h1,ha, ..., h,) C H.

The n-ary semihypergroup (G, f) with the equation g € f (gi_l,zi,ggﬂrl)
has the solution z; € G for any gifl,xi,g?_‘_l € G and 1 <14 < n, is called an
n-ary hypergroup.

An n-ary semihypergroup (G, f) is commutative if for all g7 € G and for any
permutation o of {1,2,...,n}, we have

f(gil) = f(go(l)ago(2)7 "'7go(n))'

Let (G1, f1) and (Ga, f2) be two n-ary semihypergroups. Then, a mapping
¢ : G1 — Gq is called a homomorphism if for all 27 € G we have

@(f1($1,1?27 7xn)) = f2(90(x1)7 (P($2), L @(xn))

when G; and G are n-ary semihypergroups with a scaler identity, ¢(e;) = es.

The following examples are easy examples of n-ary hypergroup.
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EXAMPLE 2.2. Let (G, +) be a semihypergroup and f an n-ary hyperoperation
on G defined by

n
g =3 gi, Vgl € G,

i=1
Then, we can verify that (G, f) is an n-ary semihypergroup.
ExAMPLE 2.3. Let G be a group and < z,y > a subgroup generated by z,y.
Define

f(gla g2, ..., gn) =< 91,92, -, 9n >,

on GG. Then, one can verify that (G, f) is an n-ary hypergroup.

EXAMPLE 2.4. Let G be a semigroup and N a normal subsemigroup of G. For
all g7 € G, define f(91,92,---,9n) = 9192...gnH. Then, obviously, (G, f) is an
n-ary semihypergroup.

EXAMPLE 2.5. Let D be an integral domain and F be its field of fractions.
Denote by U the group of the invertible elements of D. Define the following
n-ary hyperoperation on F/U. For all g;, with 1 <4 <mn,

f(@1,92,.,9n) ={g: Fuy €U", g = w191 + u2g2 + ... + ungn}.
Then, we can easily verify that (F/U, f) is an n-ary semihypergroup.

We now construct the following non-trivial n-ary semihypergroups.

EXAMPLE 2.6. Let V be a vector space over an ordered field F and x4, x», ..., x, €
V. Then, we define

f(xl,:cg, ,’I‘n) = {)\1(131 + Xoxo + oo + ATy 2 A > o, E?:l)\i = 1} .
Hence, (V, f) is an n-ary semihypergroup.

EXAMPLE 2.7. Let G be a semigroup and {A,}4c¢ be a collection of non-empty

distinct sets and S = |J Agy. For every z1,x2,...,z, € S, we define

geG
f($17$2, 7xn) = A9192;-~7gn7

where z; € Ay, for some 1 <7 <n. Then, S is an n-ary semihypergroup.
3. (G-SYSTEMS AND REGULAR RELATIONS

In this section, we define the G-systems, the regular relations and prove the
isomorphism theorems for G-systems.

Let (G, f) be an n-ary semihypergroup with identity and X be a non-empty
set. We say that X is a left G-system if there is an action h: G" ! x X — X
with the properties:

h(gt ™tk (upt ) = h(F(gr ™t ua), Flor ™ ua), oo f(7 T tno1), @)

h (e”_l,x) =z,
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2n—1 | n

for every x € X and ¢g7" ' u? ! € G.

Dually, we call a non-empty set X is a right G-system if there is an action
XxG! —X,

h (h (Jf, u?_l) 79?_1) =h (Jf, f (u?_lagl) af (u?_lﬁ.QQ) PR} f (u?_lﬁgn—l)) .
h (ac, e"_l) =z.
We first state the G-systems and discuss the G-systems.

ExaMPLE 3.1. Let G be an n-ary semihypergroup with identity and X be an
n-ary sub-semihypergroup of G. We define

h:G"'xX — X.

(g?il,x) — e,

where e is an identity and g{“l € G and x € X. Then, X is a G-system.

EXAMPLE 3.2. Let G = |J,,»¢ 4n, 40 = {0}, A, = [n,n+1) and X = Z7.
Then, we define
f:G" — P*(G)
(91) > Ag,
where t = max{my,ma,...,my} and g; € A,,,. Then, (G, f) is an n-ary semi-
hypergroup. Also,

h:GMlxX —X
(9Pt x) s max{my,mg,....mu_1,x}.

Then, X is a G-system.

Let G and H be n-ary semihypergroups. Then, we say that X is a (G, H)-
system if it is a left G-system by action h; : G"™! x X — X and a right
H-system by action hy : X x H" ' — X and

h2(h1 (gl 717 3?), t?il) = hl (9?717 h2($7 t?il))a

where g7t € G» 1"t € H" ' and z € X.
Let X and Y be left G-systems and hq : G" ™! x X — X and hy : G*7 ! x
Y — Y. Then, a map ¢ : X — Y is a morphism when

¢ (h1 (g7 ) = ha (g7, () .

Let Mor(X,Y) be the set of all G-morphism from X into Y and X, Y are
left G-systems such that h; : G" ' x X — X and hy : G* ' xY — Y.
Then, we define

h:G" 1 x Mor(X,Y) — Mor(X,Y)
G ) —
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where @ : X — Y and () = hs (97", ¢(x)). Hence
?(h1 (9771 2) = ha (91" e(ha (971 2)))
= ha (g7 " ha (917 ()
= hy (g7, p(2)) .

This implies that € Mor(X,Y). Moreover, we have the following equalities :

hgi " h (k771 9) (m) =ho (k170 (91 7 0) (2)
= hy (k" b (977", 0(@)))
- h2 (f (k?_lvgl) 7"'7f (k?_lagnfl) ,QD(ZL')) .

Then,

h(gr ™ h (k7™ 0)) = h (f (K7 g1) s f (KT gnm1) 5 90)
Hence Mor(X,Y) is a left G-system.

It is clear that the cartesian product X x Y of a left Gi-system X and a
right Ga-system Y become (G1, G2)-system by the following definitions:

ha(gr ™" (@) = (h(gi ™, 2),y),

EQ((xay)vt?il) = (mahQ(y,t?il)a
wherex € X, ye€Y, g€ Grandt; € Gy, for 1 <i<nand1<j<n.

Let G be an n-ary semihypergroup and X be a left G-system. A relation p
on the left G-system is called left regular if

V1,22 € X, g7 € G, zipra = h (g7 " 21) p h(g7 " 22)
when X is a right G-system and
Vri, 20 € X, g’f_l € G, xipro = h (xl,g?_l) ph (xg,g?_l) ,

then, X is a right reqular relation. Now, we simply call a relation p is a regular
relation if it is both a left and a right regular relation.

Let X be a left G-system and p be a regular relation on X. Then, [X : p] =
{p(x) : x € X} is a left G-system by the following map:

h:G" I x[X:p —[X:p]
(917" p(@) = p(h (977 2)).
Let X7 and X5 be left G-systems and ¢ : X; — X5 be a morphism. Then,

we call a relation ker(p) = {(z1,22) € X x X : p(x1) = p(z2)} the kernel of
. This relation is obviously a left regular relation.
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In the following theorem, we describe the morphism on a left G-system .

Theorem 3.3. Let G be an n-ary semihypergroup, X be a left G-system and
v : X1 — Xy be a morphism. Then, [X : (kerly)] & Imep.

Proof. Suppose that K = ker(y) and ¢ : [X : K] — Imyp defined by
Y(K(z)) = ¢(z). Then the map v is well-defined and one to one. Indeed,we
have the following equalities.:

K(z) = K(y) <= ¢(x) = ¢(y) <= (K (2)) = »(K(y)).
On the other hand, we have

¢ (h(g7 " K(2)) = (K (h(gi ™" 2))) = ep(h(gi ™, 2))

This completes the proof. O

The following lemma is a crucial lemma of the morphisms on left G-systems.

Lemma 3.4. Let p be a regular relation on a left G-system X andp: X —Y
be a morphism such that p C ker(yp). Then, there is a unique morphism @ :
[X : p] — Y such that Im(p) = Im(p) and om = ¢, wherew : X — [X : p]
is a natural morphism.

Proof. Suppose that @ : [X : p] — Y defined by ®(p(x)) = ¢(x), where
x € X. Then, ¥ is well-defined, since, for all z1,z5 € X

p(x1) = p(2) = (21,22) € p C kerp = @(x1) = p(z2).
Also 1 o ™ = ¢. The uniqueness of % is clear. ]

Let p; and ps be regular relations on the left G-system X, where p; C ps.
By Theorem 3.4, there is a morphism @ : [X : p1] — [X : po], such that
Pom = mg, where mp : X — [X : p1] and m : G — [X : po] are nutural
maps. The morphism  is given by

?(p1(x)) = p2(z), v € X.

Also, the regular relation ker(®) on [X : p1] given by

kerg = {(p1(z1), p1(x2)) € [X : p1] X [X : p1] & (w1, 22) € pa2}.

For the regular relations on the left G-system X, we have the following the-
orem.
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Theorem 3.5. Let p; and ps be reqular relations on a left G-system X such
that p1 C po. Then,

[p1 2 p2] = {(p2(a1), p2(a2)) € [X : pa] x [X : po] : (a1, a2) € p1},
is reqular on [X : p1] and [[X : p1] : [p1: p2]] Z [X : pa].

Proof. The proof is straightforward and is hence omitted.
O

Suppose that X is a (G, G)-system such that hy : G"71 x X — X, hy :
X x G"! — X and p is an equivalence relation on X. We define

p* = {(hl (9?717h2(.’17,t?71)) 7h1 (g?ilahQ (%t?il))) : g?ilat?il € G7 (I‘,y) S p} .

For the (G, G)-systems, we have the following propositions.

Proposition 3.6. Let G be an n-ary semigroup and X be a (G,G)-system
such that p is an equivalence relation on X. Then, p* is the smallest reqular
relation containing p.

Proof. Tt is clear that p C p*. To show that p* is a left regular, suppose that
(Z,7) € p* and k7! € G. Hence there are g7 ',t""! € G and z,y € X such
that

T = hl (971171’ hQ(‘rat?il)) 9 ? = hl (9?717 hQ(yvt?il)) .

Also, we deduce the following equalities:

o (k747) =k (K74 (g0 ha(a, 8771))
=h1 (FE7™91)s ey (BT Y, gmn)s ha(z, t77)
and
(k071 7) = ho (K771 B (907 ha(y,t171))
=h1 (FOEY ™ g1)s ey FRTTY gnon)s ha(y, t771))
This implies that (hy (71, Z), hi (k1. 7)) € p*.
By using the same arguments, we obtain the following equalities:
ha (F R = o (i (g7 (2 007)) K )
= ha (ha (h1 (g7 7% ), t77Y) L kEY)
=ho (h1 (g7 " 2) F (67 k) f (B ko) o f (87 nt))

and
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ho (b (g7~ ha (3, 1771)) k)
= hy (ha (ha (g7 y) 177 1)  RE)
ho (h (070 y) o (67 k) o F (870 K)o (67 B
which implies that (hs (Z,k7™") , ho (7,57 ™")) € p*. Let o be a left and right
regular containing p. Then, for every g7~ 1, #77! € G and (z,y) € p,
(h1 (gffl,hg(xj?*l)) ,ht (g?il7h2(y7t§“1))) €o.
Therefore, p* C 0. (]

For the equivalences on the G-systems,we have the following proposition.

Proposition 3.7. Let p; and py be equivalence relations on X. Then,
1. p1 C po implies that p] C p3,
2. (p1Up2)" = piUp;

Proof. The proof is straightforward and is hence omitted.
O

Proposition 3.8. Let p be an equivalence on X and G be an n-ary semigroup.
Then,

po = {(xay) EXxX: Vg?_lat?_l € G7 (hl (g?_lvha(x)t?l’b_l)) ahl (g?_la hQ(yat?_l))) € p} )
is the largest reqular relation on X contained in p.

Proof. Suppose that (z,y) € p° and k=" € G. Then for every g7, " € G,
we have
(P (g7~ H bz, t77) s ha (97 haly, 6771))) € p.
Hence
ha (g7 " ha(h (KDY 2) 8071 = hy (g7 " ha(BY ™ ko (2, 8771))

= hl (f(g?717kl)a "'af(g?717kn71)7h2 (.’lf,t?il)) .

In a same way,

ha (g7 " ha(hy (K71 y) o807 = ha (g7 (kP ho (3, 877Y))

=1 ({97 K)oy F(G7 7 Rna), ha (1,87 71)) -
This implies that (hy (K71, z), hi (K771, y)) € p°. In a same way, we can see
(har, K1), oy, K2 )) € .
Let R be a regular relation on X contained in p. Then,
(wy)€p =Vl T EG, (ha (2,8]71) ha (y#177)) €R
= (h1 (g7 " ho (2, t77Y)) s ha (87 he (w87 7h))) € R
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This implies that p° € R. g

4. THE GREEN’S RELATIONS

In this section, we introduce the Green’s relations on a G-system and prove
some properties.

Let G be an n-ary semihypergroup and X a (G, G)-system. Then, we define
the relations L and R on the G-system G as follows:

(r,y) € L <~ 13 g?_l,t?_l ceG: h (g?_l,x) =y, hl(t?_l,y) =z.
(x7y) € R+~ 3 k?_lﬂg?_l S G : h?(:’-ﬁk?_l) =, hQ('ras?_l) =Y.

The following Proposition is a basic result of the regular relations on a
(G, G)-systems.

Proposition 4.1. Let G be an n-ary semihypergroup and X be a (G,G)-
system. Then, the relation R is a left reqular relation and the relation L is a
right reqular relation.

Proof. Suppose that (x,y) € L and k7'~' € G. Then,
hi (977 2) =y, (7™ y) = =,
where g7, t""! € G. We have the following equalities:
ho (2, k7Y = ho (ha (87" y), k7Y
= hy (77" ha(y, k7 7Y))
In a same way, we can see ho (y, kf_l) =hy (g’f_l, ho (y, k:?_l)).

These results lead that L is a right regular relation. By using similar argu-
ments, we can show that R is a left regular relation. (]

Corollary 4.2. Let G be a commutative n-ary semihypergroup. Then, R and
L are reqular relations.

For the n-ary semihypergroups, we have the following proposition.

Proposition 4.3. Let G be an n-ary semihypergroup and X be a (G, G)-system.
Then, Lo R= Ro L.

Proof. Suppose that G be an ary-semihypergroup and (z,y) € L o R. Then,
there exists z € X such that (z,2) € L and (z,y) € R. Hence there exist
gt kYT st € G osuch that

h1 (g{“l,m) =2z, h (t?fl,z) =z,

ho (z,k{‘_l) =y, hg(y,s?_l) = z.
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Let w = ho (hl(ﬂl_l, z), k{b_l). Then,

ho (w,s77") = ho (ho (Ra(t7 7, 2), k77 877

ho (ha (87 ho (2, k771)) 77
= hg (h1 (t’ll_l,y) ,s?_l)
hy (677 2 (y:577))

I (

and
ho (2, k7)) = ho (hy (8771, 2) k7Y = w.
Hence zRw. Moreover, we have

(67 0) = (65 (1)) = i (e (,2) ) =

and
b (g7 w) = (g7 ke (a (8777, 2)  KTTY)
=M (g7 b (2,57 71)
= ha (b (97" @) K77
= ho (z,k{“l) =y
Hence wLy. We deduce that (x,y) € Ro L. This implies that Lo R C Ro L.
The reverse inclusion follows in a similar way. O

Let G be an n-ary semihypergroup and X be a (G, G)-system and D = LoR.
We define a relation ¢ on X as follows:

(z,y) € ( <=1 g?_l,t?_l,k?_l,s?_l €qG:

h1 (9?_17}12 (x,til_l)) =y, (k?_lv}@ (y, S71L_1)) -

It is easy to see that L C ( and R C (. Hence D = Lo R C (. It is easy to see
that D is the smallest equivalence containing L and R.
Finally, we state the main theorem of this paper.

Theorem 4.4. Let G be an n-ary semihypergroup, X be a (G, G)-system and
a,b € X such that (a,b) € R and g}, t""* € G such that hy (a,g’f‘l) =b
and hs (b7 tT_l) = a. Then, there exist Pygr—1 X — X and Pyn-t X —X
such that Pygr—1 li(a) and Pyn=1 liwy are mutually inverse R-classes preserving
from L(a) onto L(b) and L(b) onto L(a).

Proof. Suppose that (a,b) € R. Then, by the definition of R, there exists
g 177" € G such that hy (a,g7 ") = b and hy (b,t7") = a. We define

pgzﬁl X — X
x — ho (x,g{‘_l) .
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Hence, pn-1(a) = ha (a,g7"") = b. Since L is regular, this implies that for
every © € R(a),

hao (Jc,g{“l) L hs (a, g{“l) =b.

Hence pgn— (L(a)) € L(b). In a similar way, we can define

pn-1: X — X
1
T +—> ha (x,trf_l)

and p,n-1(b) = ho (b,t""1) = a. Thus, for every = € L(a),
£ 1
ho (z,877") L hy (b,t77") = 0.

This implies that pt?—l(L(b)) C L(a) and Pyn=1 0 Pyn-1 L(a) — L(a). Let
z € L(a). Then, there exists u} ' € G such that x = hy (u} ™', a). Hence

m,g{L—l) ,t?_l)
hl (u?ilaa) Jg?il) 7t?71)

pt?fl e} pg?71(l‘) = pt?—l (hg (m,g{b_l)) = hg (hz

Thus, Pin=10pgn— is the identity map and we can show in a closely similar way
that Pyn=1© pyn=1 is the identity map on L(b). This completes the proof. [

5. CONCLUSION

The Green’s relations provide the necessary tools for using similar arguments
on the monoid. When working in language theory using automata, several tools
comes naturally into play. A typical example is the use of the decomposition
of the graph of the automaton into strongly connected components, and the
use of the connected components for driving an induction in a proof. Since
the Green relation used in automata theory we introduced this concept on n-
ary semihypergroup. In future works, we consider and used of G-systems and
Green relation for solving automata related questions.
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