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Abstract. Let R be a commutative ring with identity, and A(R) be the
set of ideals with non-zero annihilator. The annihilating-ideal graph of R
is defined as the graph AG(R) with the vertex set A(R)∗ = A(R)\{0} and
two distinct vertices I and J are adjacent if and only if IJ = 0. In this
paper, conditions under which AG(R) is either Eulerian or Hamiltonian
are given.
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1. Introduction

Assigning a graph to an algebraic structure make a bridge between two dif-
ferent worlds of mathematics. Usually study of such graphs lead to arising
interesting algebraic and combinatorics problems and one may find a new per-
ception of algebraic structures. Therefore, the study of graphs associated with
rings has attracted many researchers in recent years. There are a lot of papers
in this field; for instance see [2, 3, 5, 8].

Throughout this paper, all rings are assumed to be commutative with iden-
tity. The set of all ideals of a ring R is denoted by I(R). For a subset T of
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a ring R we let T ∗ = T \ {0}. Furthermore, if I is an ideal of R, by Ann(I),
we mean the annihilator of I. An ideal I of R is called an annihilating-ideal if
there exists a non-zero ideal J such that IJ = 0. The notation A(R) is used to
denote the set of all annihilating-ideals of R. The socle of a ring R, denoted by
soc(R), is the sum of all minimal ideals of R. If there are no minimal ideals,
this sum is defined to be zero. A ring R is said to be local if it has a unique
maximal ideal. A local ring R with maximal ideal m is presented by (R,m).
Let (R,m) be a local ring. The associated degree of R is n if it is the smallest
positive integer such that mn = 0. If mn ̸= 0, for every n ≥ 1, then we say that
the associated degree of R is ∞. For any undefined notation or terminology in
ring theory, we refer the reader to [4].

We now recall some basic graph theoretic facts: Let G be a graph with the
vertex set V (G). The size of G is denoted by e(G). We write u−v, to denote an
edge with ends u, v. Also, a complete graph of order n is denoted by Kn. For
any x ∈ V (G), NG(x) represents the set of neighbors of x in G and |NG(x)| =
degG(x). Let G1 and G2 be two disjoint graphs. The join of G1 and G2, denoted
by G1 ∨G2, is a graph with the vertex set V (G1 ∨G2) = V (G1) ∪ V (G2) and
edge set E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {uv |u ∈ V (G1), v ∈ V (G2)}. An
Eulerian circuit in an undirected graph is a circuit that uses each edge exactly
once. If such a circuit exists, then the graph is called Eulerian. It is well-known
that a connected graph G is Eulerian if and only if every vertex of G has even
degree. Similarly, a Hamiltonian cycle is a cycle that visits each vertex exactly
once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.
For any undefined notation or terminology in graph theory, we refer the reader
to [9].

Let R be a ring. The annihilating-ideal graph of R, denoted by AG(R), is a
graph with the vertex set A(R)∗ and two distinct vertices I and J are adjacent
if and only if IJ = 0. The annihilating-ideal graph was first introduced in [6],
and some of the properties of the annihilating-ideal graph have been studied.
Further results on annihilating-ideal graphs may be found in [1, 7] and [10].
This paper is devoted to study Eulerian and Hamiltonian annihilating-ideal
graphs.

2. Eulerianity of AG(R)

Throughout this section R = R1 × R2 is a decomposable ring, |I(R1)| = t1
and |I(R2)| = t2, where t1, t2 are two positive integers. The main goal of this
section is study the relations between the Eulerianity of AG(R) and Eulerianity
of AG(Ri), for i = 1, 2. First we need to compute the size of AG(R).

Theorem 2.1. Let R be a ring. Then e(AG(R)) = 2(x + a)(y + b) + (m +

1)x+ (1 + n)y − ab+ bn+ am, where a = t1 − 1, b = t2 − 1, e(AG(R1)) = x,
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e(AG(R2)) = y, n is the number of non-trivial ideals I of R1 with I2 = 0 and
m is the number of non-trivial ideals J of R2 with J2 = 0.

Proof. Suppose that (I, J) is a vertex of AG(R), where I ∈ I(R1) and J ∈
I(R2). To prove the theorem the following cases are considered:

Case 1. Let I = R1 and J ̸= 0, R2.
(i) If J2 ̸= 0, then degAG(R)(I, J) = degAG(R2)(J), as

NAG(R)((I, J)) = {(0, J ′) | J ′ ∈ NAG(R2)(J)}.
(ii) If J2 = 0, then degAG(R)(I, J) = degAG(R2)(J) + 1, since

NAG(R)((I, J)) = {(0, J ′) | J ′ ∈ NAG(R2)(J)} ∪ {(0R1 , J)}.
Case 2. Let I ̸= 0, R1 and J = R2.
(i) If I2 ̸= 0, then degAG(R)(I, J) = degAG(R1)(I).

(ii) If I2 = 0, then degAG(R)(I, J) = degAG(R1)(I) + 1.

Case 3. Let I ̸= 0, R1 and J ̸= 0, R2.
(i) If I2 ̸= 0 and J2 ̸= 0, then

degAG(R)(I, J) = (degAG(R1)(I) + 1)(degAG(R2)(J) + 1)− 1,

as

NAG(R)((I, J)) = {(I ′, J ′) | I ′ ∈ {0R1
}∪NAG(R1)(I), J

′ ∈ {0R2
}∪NAG(R2)(J)}\{(0R1

, 0R2
)}.

(ii) If I2 = 0 and J2 ̸= 0, then

degAG(R)(I, J) = (degAG(R1)(I) + 2)(degAG(R2)(J) + 1)− 1,

since

NAG(R)((I, J)) = {(I ′, J ′) | I ′ ∈ {0R1 , I}∪NAG(R1)(I), J
′ ∈ {0R2}∪NAG(R2)(J)}\{(0R1 , 0R2)}.

(iii) If I2 ̸= 0 and J2 = 0, then

degAG(R)(I, J) = (degAG(R1)(I) + 1)(degAG(R2)(J) + 2)− 1.

(iv) If I2 = 0 and J2 = 0, then

degAG(R)(I, J) = (degAG(R1)(I) + 2)(degAG(R2)(J) + 2)− 2.

Case 4. Let I = 0 and J ̸= 0, R2.
(i) If J2 ̸= 0, then

degAG(R)(I, J) = t1(degAG(R2)(J) + 1)− 1 = t1degAG(R2)(J) + t1 − 1,

since

NAG(R)((I, J)) = {(I ′, J ′) | I ′ ∈ I(R1), J
′ ∈ {0R2}∪NAG(R2)(J)}\{(0R1 , 0R2)}.
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(ii) If J2 = 0, then

degAG(R)(I, J) = t1(degAG(R2)(J) + 2)− 2,

as

NAG(R)((I, J)) = {(I ′, J ′) | I ′ ∈ I(R1), J
′ ∈ {0R2

, J}∪NAG(R2)(J)}\{(0R1
, 0R2

), (0R1
, J)}.

Case 5. Let I ̸= 0, R1 and J = 0.
(i) If I2 ̸= 0, then degAG(R)(I, J) = t2(degAG(R1)(I)+1)−1 = t2degAG(R1)(I)+

t2 − 1.

(ii) If I2 = 0, then degAG(R)(I, J) = t2(degAG(R1)(I) + 2)− 2.

Case 6. Let I = 0 and J = R2. Then

degAG(R)(I, J) = t1 − 1,

since NAG(R)((I, J)) = {(I ′, 0R2) | I ′ ∈ I(R1)} \ {(0R1 , 0R2)}.
Case 7. Let I = R1 and J = 0. Then degAG(R)(I, J) = t2 − 1.

Since the sum of the degrees of the vertices in the graph AG(R) is twice the
number of edges of AG(R), the total number of edges of AG(R) is

e(AG(R)) = 2(x+ a)(y + b) + (m+ 1)x+ (1 + n)y − ab+ bn+ am,

where a = t1 − 1, b = t2 − 1, e(AG(R1)) = x, e(AG(R2)) = y, n is the number
of non-trivial ideals I of R1 with I2 = 0 and m is the number of non-trivial
ideals J of R2 with J2 = 0. □

In light of Theorem 2.1, we have the following corollary.

Corollary 2.2. The graph AG(Zn) is not Eulerian, for every positive integer
n.

Proof. If n ≤ 5, then there is nothing to prove. Hence assume that n ≥ 6.
If (Zn,m) is a local ring of associated degree l ≥ 3, then deg(m) = 1, as
N(m) = {ml−1}. If m2 = 0, clearly n = p2, for some prime number p. So
AG(Zn) = K1. Thus AG(Zn) is not Eulerian. Now, suppose that Zn is not
local. If Zn = F1 × · · · × Fk, where every Fi is a field, then deg(F1 × · · · ×
Fk−1 × 0) = 1 and so AG(Zn) is not Eulerian. Therefore, we may assume that
Zn = R1 × R2, where (R1,m) is local which is not a field. To complete the
proof, it is enough to show that deg(m, R2) = 1. If m2 ̸= 0, then by (i) of
Case 2 in the proof of Theorem 2.1, deg(m, R2) = deg(m) = 1. If m2 = 0, then
by (ii) of Case 2 in the proof of Theorem 2.1, deg(m, R2) = deg(m) + 1 = 1, as
desired. □

To prove Theorem 2.7, the following lemmas are needed.

Lemma 2.3. Suppose that I ∈ I(R1) and I2 = 0. If AG(R) is Eulerian, then
AG(R1) is not Eulerian.
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Proof. Suppose that AG(R) is Eulerian. Then degAG(R)(I,R2) = degAG(R1)(I)+

1 is even (by (ii) of Case 2 in the proof of Theorem 2.1). Thus degAG(R1)(I) is
odd and hence AG(R1) is not Eulerian. □

The converse of Lemma 2.3 is not true in general, see the following example.

Example 2.4. Let R1 = Z16. Obviously, AG(R1) is not Eulerian (AG(R1) =

K1,2). Moreover, if we let R = Z16 × Z3, then AG(R) is not Eulerian too, as
degAG(R)(Z16, 0R2

) = 1.

By a similar argument, one may prove the following lemma.

Lemma 2.5. Suppose that J ∈ I(R2) and J2 = 0. If AG(R) is Eulerian, then
AG(R2) is not Eulerian.

Remark 2.6. Let (I, J) be a vertex of AG(R), where I ∈ I(R1) and J ∈ I(R2).
By Lemmas 2.3 and 2.5, if either I2 = 0 or J2 = 0, then the Eulerianity of
AG(R) does not imply the Eulerianity of AG(Ri), for i = 1, 2. Thus we suppose
that I2 ̸= 0 and J2 ̸= 0. It is worthy to mention that if I2 ̸= 0 and J2 ̸= 0,
then by Theorem 2.1, the degrees of the vertices are in the following forms:

(1) t1degAG(R2)(J) + t1 − 1 and t2degAG(R1)(I) + t2 − 1.
(2) t1 − 1 and t2 − 1.
(3) degAG(R2)(J) and degAG(R1)(I).
(4) (degAG(R1)(I) + 1)(degAG(R2)(J) + 1)− 1.

Theorem 2.7. Let AG(R) be Eulerian and I2 ̸= 0, J2 ̸= 0, for every vertex
(I, J) of AG(R). Then both of AG(R1) and AG(R2) are Eulerian.

Proof. Let AG(R) be Eulerian. Then the degree of every vertex of AG(R) is
even and so by form (3) in Remark 2.6, degAG(R1)(I) and degAG(R2)(J) are
even (for non-trivial ideals I of R1 and J of R2). Hence both of AG(R1) and
AG(R2) are Eulerian. □

The converse of Theorem 2.7 is not true in general. For example, suppose
that t1 and t2 are even. If AG(R1) and AG(R2) are Eulerian, then forms (3)

and (4) in Remark 2.6 are even but forms (1) and (2) are odd and hence AG(R)

is not Eulerian.
The last result of this section gives a condition under which the Eulerianity

of AG(R1) and AG(R2) implies the Eulerianity of AG(R).

Theorem 2.8. Let AG(Ri) be Eulerian, for i = 1, 2. Then AG(R) is Eulerian
if and only if t1 and t2 are odd.

Proof. First suppose that t1 and t2 are odd and (I, J) is a vertex of AG(R).
Since AG(R1) and AG(R2) are Eulerian, we deduce that degAG(R1)(I) and
degAG(R2)(J) are even and hence forms (3) and (4) in Remark 2.6 are even. By
the hypothesis, t1 and t2 are odd and so a simple check shows that forms (1)

and (2) are even. Therefore, AG(R) is Eulerian.
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Conversely, suppose that AG(R) is Eulerian. Then form (2) is even, i.e., t1
and t2 are odd. □

3. Hamiltonicity of AG(R)

In this section Hamiltonian annihilating-ideal graphs are investigated. It
is assumed that, in this section, R is Artinian and hence every ideal of R is
annihilating. First it is shown that annihilating-ideal graph of a decomposable
ring is not Hamiltonian.

Theorem 3.1. If R is a decomposable ring, then AG(R) is not Hamiltonian.

Proof. Let R = R1 × R2, where R1 and R2 are two rings. We consider the
following cases:

Case 1. Suppose |I(R1)| = |I(R2)| = 2. Then AG(R) = K2 and so it is not
Hamiltonian.

Case 2. Suppose |I(R1)| ⩾ 3 and |I(R2)| = 2. Then NAG(R)((R1 × 0)) =

{0 × R2} and so degAG(R)(R1 × 0) = 1. Hence AG(R) does not contain a
Hamiltonian cycle.

Case 3. Suppose |I(R1)| ⩾ 3 and |I(R2)| ⩾ 3. Set

A = {I ×R2 | I ◁R1}, B = {J × 0 | 0 ̸= J ◁R1}.
It is clear that A ∪B ⊆ V (AG(R)) and |A| = |B|. Suppose to the contrary,

C is a Hamiltonian cycle of AG(R). Thus every vertex of A is between two
vertices of B (in C). Since V (AG(R)) \ (A∪B) ̸= ∅, we deduce that |A| < |B|,
a contradiction. Hence AG(R) is not Hamiltonian. □

By Theorem 3.1, to find Hamiltonian annihilating ideal graphs we have to
study local rings.

Remark 3.2. Let (R,m) be a local ring of associated degree n. If m is prin-
cipal, then by [4, Proposition 8.8], I(R) = {0, R,m,m2, . . . ,mn−1} and so
degAG(R)(m) = 1, i.e., AG(R) is not Hamiltonian. If we remove m from AG(R),
then AG(R) \ {m} contains exactly one Hamiltonian cycle; see the next result.

Theorem 3.3. Let (R,m) be a local ring of associated degree n. Then the
following statements are equivalent:

(1) m is principal and |I(R)| ≥ 6.
(2) If n is odd, then mn−1 −m2 −mn−2 − · · · −m[n/2] −mn−[n/2] −mn−1 is

the only Hamiltonian cycle of AG(R)\{m} and if n is even, then mn−1−m2−
mn−2 − · · · −m[n/2] −mn−1 is the only Hamiltonian cycle of AG(R) \ {m}.

(3) I(R) = {0, R,m,m2, . . . ,mn−1}, n ≥ 6.

We note that the condition |I(R)| ≥ 6 in Theorem 3.3 is necessary. If
|I(R)| ≤ 5, then it is not hard to check that AG(R) is one of K1,K2 or K1,2

and so it is not Hamiltonian.
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Corollary 3.4. The following statements hold:
(1) The graph AG(Zn) is not Hamiltonian, for every positive integer n.
(2) Let m be a positive integer. Then AG(Zpm) \ {m} has a Hamiltonian

cycle if and only if m ≥ 6.

Let R be a ring and I be an ideal of R. We denote by A(I) the set of all
ideals of R which are contained in I.

Theorem 3.5. Let (R,m) be a local ring. Then the following statements are
equivalent:

(1) AG(R) = Kn ∨Km for some non-negative integers n,m.
(2) For every ideal I of R, either Ann(I) ⊆ Soc(R) ∪ I or Ann(I) = m.

Proof. (1) =⇒ (2) Let AG(R) = Kn ∨ Km. If m = 0, then AG(R) is a
complete graph. Thus for every ideal of R say, I, Ann(I) ⊆ Soc(R) (note that
in this case Soc(R) = m). So let m ̸= 0 and I be a vertex of AG(R). Since
AG(R) = Kn∨Km, I ∈ V (Kn) or I ∈ V (Km). If I ∈ V (Kn), then I is adjacent
to every other vertex and thus IJ = (0) for every I(R) \{I}. This implies that
Ann(I)∪ I = m. Hence I ⊆ Ann(I) or Ann(I) ⊆ I. If Ann(I) ⊆ I, then I = m

and hence m is adjacent to every other vertex. This means that m = Ann(m).
Thus AG(R) is a complete graph, a contradiction. So I ⊆ Ann(I) and hence
Ann(I) = m. If I ∈ V (Km), then Ann(I) ∈ V (Kn) ∪ {I}. To complete the
proof, we show that V (Kn) = A(Soc(R)). If I ∈ A(Soc(R)), then Ann(I) = m

and thus I is adjacent to every other vertex. This implies that I ∈ V (Kn) and
hence A(Soc(R)) ⊆ V (Kn). Now, let I ∈ V (Kn). Since I is adjacent to every
other vertex, we can easily get Ann(I) = m and so I ∈ A(Soc(R)).

(2) =⇒ (1) If we put |A(Soc(R))| = n and |A(R)∗ \ A(Soc(R))| = m, then
AG(R) = Kn ∨Km. □

Corollary 3.6. Let (R,m) be a local ring and AG(R) = Kn ∨Km, for some
non-negative integers n,m. Then AG(R) is Hamiltonian if and only if n ≥ m.

We close this paper with the following example.

Example 3.7. (1) If R =
Z2[x, y]

(x, y)2
, then AG(R) = K4 ∨ K0. Since 4 > 0,

AG(R) is Hamiltonian.
(2) If R = Z16, then AG(R) = K1 ∨ K2. Since 2 > 1, AG(R) is not

Hamiltonian.
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