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Abstract. The purpose of this paper is to prove the existence of a re-

normalized solution of perturbed elliptic problems

−div
(

a(x, u,∇u) + Φ(u)
)

+ g(x, u,∇u) = f − div F,

in a bounded open set Ω and u = 0 on ∂Ω, in the framework of Orlicz-

Sobolev spaces without any restriction on the M N-function of the Orlicz

spaces, where − div
(

a(x, u,∇u)
)

is a Leray-Lions operator defined from

W 1

0
LM (Ω) into its dual, Φ ∈ C0(R,RN ). The function g(x, u,∇u) is a

non linear lower order term with natural growth with respect to |∇u|,

satisfying the sign condition and the datum µ is assumed to belong to

L1(Ω) +W−1E
M

(Ω).
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1. Introduction

Let Ω be a bounded open set of RN , N ≥ 2, and let M be an N -function.

In the present paper we prove an existence result of a renormalized solution of

the following strongly nonlinear elliptic problem
{
A(u)− div Φ(u) + g(x, u,∇u) = f − div F in Ω,

u = 0 on ∂Ω.
(1.1)
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Here, Φ ∈ C0(R,RN ), while the function g(x, u,∇u) is a non linear lower order

term with natural growth with respect to |∇u| and satisfying the sign condition.

The non everywhere defined nonlinear operator A(u) = −div (a(x, u,∇u)) acts

from its domain D(A) ⊂W 1
0LM (Ω) into W−1LM (Ω). The function a(x, u,∇u)

is assumed to satisfy, among others, a(x, u,∇u) nonstandard growth condition

governed by the N -function M, and the source term f ∈ L1(Ω) and

|F | ∈ EM (Ω), M stands for the conjugate of M .

We use here the notion of renormalized solutions, which was introduced

by R.J. DiPerna and P.-L. Lions in their papers [16, 15] where the authors

investigate the existence of solutions of the Boltzmann equation, by introducing

the idea of renormalized solution. This concept of solution was then adapted

to study (1.1) with Φ ≡ 0, g ≡ 0 and L1(Ω)-data by F. Murat in [29, 28], by

G. Dal Maso et al. in [13] with general measure data and then when f is a

bounded Radon measure datum and g grows at most like |∇u|p−1 by Beta et

al. in [9, 10, 11] with Φ ≡ 0 and by Guibé and Mercaldo in [23, 24] when Φ(u)

behaves at most like |u|p−1. Renormalization idea was then used in [12] for

variational equations and in [30] when the source term is in L1(Ω). Recall that

to get both existence and uniqueness of a solution to problems with L1-data,

two notions of solution equivalent to the notion of renormalized solution were

introduced, the first is the entropy solution by Bénilan et al. [4] and then the

second is the SOLA by Dall’Aglio [14].

The authors in [5] have dealt with the equation (1.1) with g = g(x, u) and

µ ∈W−1EM (Ω), under the restriction that the N -function M satisfies the ∆2-

condition. This work was then extended in [2] for N -functions not satisfying

necessarily the ∆2-condition. Our goal here is to extend the result in [2] solving

the problem (1.1) without any restriction on the N -function M. Recently, a

large number of papers was devoted to the existence of solutions of (1.1). In

the variational framework, that is µ ∈ W−1EM (Ω), an existence result has

been proved in [3], Specific examples to which our results apply include the

following:

− div
(
|∇u|p−2∇u+ |u|su

)
+ u|∇u|p = µ in Ω,

− div
(
|∇u|p−2∇u logβ(1 + |∇u|) + |u|su

)
= µ in Ω,

− div
(M(|∇u|)∇u

|∇u|2
+ |u|su

)
+M(|∇u|) = µ in Ω,

where p > 1, s > 0, β > 0 and µ is a given Radon measure on Ω.

It is our purpose in this paper, to prove the existence of a renormalized

solution for the problem (1.1) when the source term has the form f − div F

with f ∈ L1(Ω) and |F | ∈ EM (Ω), in the setting of Orlicz spaces without

any restriction on the N -functions M . The approximate equations provide a

W 1
0LM (Ω) bound for the corresponding solution un. This allows us to obtain
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a function u as a limit of the sequence un. Hence, appear two difficulties. The

first one is how to give a sense to Φ(u), the second difficulty lies in the need

of the convergence almost everywhere of the gradients of un in Ω. This is done

by using suitable test functions built upon un which make licit the use of the

divergence theorem for Orlicz functions. We note that the techniques we used

in the proof are different from those used in [2, 5, 12, 17, 25].

Let us briefly summarize the contents of the paper. The Section 2 is devoted

to developing the necessary preliminaries, we introduce some technical lemmas.

Section 3 contains the basic assumptions, the definition of renormalized solution

and the main result, while the Section 4 is devoted to the proof of the main

result.

2. Preliminaries

Let M : R+ → R
+ be an N -function, i. e., M is continuous, increasing,

convex, with M(t) > 0 for t > 0, M(t)
t

→ 0 as t → 0, and M(t)
t

→ +∞ as

t→ +∞. Equivalently, M admits the representation:

M(t) =

∫ t

0

a(s) ds,

where a : R+ → R
+ is increasing, right continuous, with a(0) = 0, a(t) > 0 for

t > 0 and a(t) tends to +∞ as t→ +∞.

The conjugate ofM is also anN -function and it is defined byM =

∫ t

0

ā(s) ds,

where ā : R+ → R
+ is the function ā(t) = sup{s : a(s) ≤ t} (see [1]).

An N -function M is said to satisfy the ∆2-condition if, for some k,

M(2t) ≤ kM(t) ∀t ≥ 0, (2.1)

when (2.1) holds only for t ≥ t0 > 0 then M is said to satisfy the ∆2-condition

near infinity. Moreover, we have the following Young’s inequality

st ≤M(t) +M(s), ∀s, t ≥ 0.

Given two N -functions, we write P ≪ Q to indicate P grows essentially less

rapidly than Q; i. e. for each ǫ > 0, P (t)
Q(ǫt) → 0 as t → +∞. This is the case if

and only if

lim
t→∞

Q−1(t)

P−1(t)
= 0.

Let Ω be an open subset of RN . The Orlicz class kM (Ω) (resp. the Orlicz space

LM (Ω) is defined as the set of (equivalence classes of) real valued measurable

functions u on Ω such that
∫

Ω

M(|u(x)|) dx < +∞ (resp.

∫

Ω

M

(
|u(x)|

λ

)
dx < +∞ for some λ > 0).
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The set LM (Ω) is a Banach space under the norm

‖u‖M,Ω = inf
{
λ > 0 :

∫

Ω

M

(
|u(x)|

λ

)
dx ≤ 1

}
,

and kM (Ω) is a convex subset of LM (Ω).

The closure in LM (Ω) of the set of bounded measurable functions with com-

pact support in Ω is denoted by EM (Ω). The dual of EM (Ω) can be identified

with LM (Ω) by means of the pairing

∫

Ω

uv dx, and the dual norm of LM (Ω)

is equivalent to ‖.‖M,Ω. We now turn to the Orlicz-Sobolev space, W 1LM (Ω)

[resp. W 1EM (Ω)] is the space of all functions u such that u and its distribu-

tional derivatives up to order 1 lie in LM (Ω) [resp. EM (Ω)]. It is a Banach

space under the norm

‖u‖1,M,Ω =
∑

|α|≤1

‖Dαu‖M,Ω.

Thus,W 1LM (Ω) andW 1EM (Ω) can be identified with subspaces of product

of N + 1 copies of LM (Ω). Denoting this product by
∏
LM , we will use the

weak topologies σ(
∏
LM ,

∏
EM ) and σ(

∏
LM ,

∏
LM ).

The space W 1
0EM (Ω) is defined as the (norm) closure of the Schwartz space

D(Ω) inW 1EM (Ω) and the spaceW 1
0LM (Ω) as the σ(

∏
LM ,

∏
EM ) closure of

D(Ω) inW 1LM (Ω). We say that un converges to u for the modular convergence

in W 1LM (Ω) if for some λ > 0,

∫

Ω

M

(
Dαun −Dαu

λ

)
dx→ 0 for all |α| ≤ 1.

This implies convergence for σ(
∏
LM ,

∏
LM ). If M satisfies the ∆2 condition

on R
+ (near infinity only when Ω has finite measure), then modular convergence

coincides with norm convergence.

Let W−1LM (Ω) [resp. W−1EM (Ω)] denote the space of distributions on Ω

which can be written as sums of derivatives of order ≤ 1 of functions in LM (Ω)

[resp. EM (Ω)]. It is a Banach space under the usual quotient norm (for more

details see [1]).

A domain Ω has the segment property if for every x ∈ ∂Ω there exists an

open set Gx and a nonzero vector yx such that x ∈ Gx and if z ∈ Ω∩Gx, then

z + tyx ∈ Ω for all 0 < t < 1. The following lemmas can be found in [6].

Lemma 2.1. Let F : R → R be uniformly Lipschitzian, with F (0) = 0. Let M

be an N -function and let u ∈W 1LM (Ω) (resp. W 1EM (Ω)). Then

F (u) ∈ W 1LM (Ω) (resp. W 1EM (Ω)). Moreover, if the set D of discontinuity

points of F ′ is finite, then

∂

∂xi
F (u) =

{
F ′(u) ∂

∂xi
u a.e. in {x ∈ Ω : u(x) /∈ D},

0 a.e. in {x ∈ Ω : u(x) ∈ D}.
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Lemma 2.2. Let F : R → R be uniformly Lipschitzian, with F (0) = 0. We

suppose that the set of discontinuity points of F ′ is finite. Let M be an N -

function, then the mapping F :W 1LM (Ω) →W 1LM (Ω) is sequentially contin-

uous with respect to the weak* topology σ(
∏
LM ,

∏
EM ).

Lemma 2.3. ([21]) Let Ω have the segment property. Then for each

ν ∈ W 1
0LM (Ω), there exists a sequence νn ∈ D(Ω) such that νn converges to ν

for the modular convergence in W 1
0LM (Ω). Furthermore,

if ν ∈W 1
0LM (Ω) ∩ L∞(Ω), then

||νn||L∞(Ω) ≤ (N + 1)||ν||L∞(Ω).

We give now the following lemma which concerns operators of the Nemytskii

type in Orlicz spaces (see [8]).

Lemma 2.4. Let Ω be an open subset of RN with finite measure. Let M,P,Q

be N -functions such that Q ≪ P , and let f : Ω × R → R be a Carathéodory

function such that, for a.e. x ∈ Ω and all s ∈ R:

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω).

Then the Nemytskii operator Nf defined by Nf (u)(x) = f(x, u(x)) is strongly

continuous from P(EM (Ω), 1
k2
) = {u ∈ LM (Ω) : d(u,EM (Ω)) < 1

k2
} into

EQ(Ω).

We will also use the following technical lemma.

Lemma 2.5. ([26]) If {fn} ⊂ L1(Ω) with fn → f ∈ L1(Ω) a.e. in Ω, fn, f ≥ 0

a.e. in Ω and

∫

Ω

fn(x) dx→

∫

Ω

f(x) dx, then

fn → f in L1(Ω).

3. Structural Assumptions and Main Result

Throughout the paper Ω will be a bounded subset of RN , N ≥ 2, satisfying

the segment property. Let M and P be two N -functions such that P ≪ M .

Let A be the non everywhere defined operator defined from its domain

D(Ω) ⊂W 1
0LM (Ω) into W−1LM (Ω) given by

A(u) := − div a(·, u,∇u),

where a : Ω×R×R
N → R

N is a Carathéodory function. We assume that there

exist a nonnegative function c(x) in EM (Ω), α > 0 and positive real constants

k1, k2, k3 and k4, such that for every s ∈ R, ξ ∈ R
N , ξ′ ∈ R

N (ξ 6= ξ′) and for

almost every x ∈ Ω

|a(x, s, ξ)| ≤ c(x) + k1P
−1
M(k2|s|) + k3M

−1
M(k4|ξ|), (3.1)
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(a(x, s, ξ)− a(x, s, ξ′))(ξ − ξ′) > 0, (3.2)

a(x, s, ξ)ξ ≥ αM(|ξ|). (3.3)

Here, g(x, s, ξ) : Ω× R× R
N → R is a Carathéodory function satisfying for

almost every x ∈ Ω and for all s ∈ R, ξ ∈ R
N ,

|g(x, s, ξ)| ≤ b(|s|) (d(x) +M(|ξ|)) , (3.4)

g(x, s, ξ)s ≥ 0, (3.5)

where b : R → R
+ is a continuous and increasing function while d is a given

nonnegative function in L1(Ω).

The right-hand side of (1.1) and Φ : R → R
N , are assumed to satisfy

f ∈ L1(Ω) and |F | ∈ EM (Ω), (3.6)

Φ ∈ C0(R,RN ). (3.7)

Our aim in this paper is to give a meaning to a possible solution of (1.1).

In view of assumptions (3.1), (3.2), (3.3) and (3.6), the natural space in which

one can seek for a solution u of problem (1.1) is the Orlicz-Sobolev space

W 1
0LM (Ω). But when u is only in W 1

0LM (Ω) there is no reason for Φ(u) to be

in (L1(Ω))N since no growth hypothesis is assumed on the function Φ. Thus,

the term div (Φ(u)) may be ill-defined even as a distribution. This hindrance is

bypassed by solving some weaker problem obtained formally trough a pointwise

multiplication of equation (1.1) by h(u) where h belongs to C1
c (R), the class of

C1(R) functions with compact support.

Definition 3.1. A measurable function u : Ω → R is called a renormalized

solution of (1.1) if u ∈W 1
0LM (Ω), a(x, u,∇u) ∈ (LM (Ω))N ,

g(x, u,∇u) ∈ L1(Ω), g(x, u,∇u)u ∈ L1(Ω),

lim
m→+∞

∫

{x∈Ω : m≤|u(x)|≤m+1}

a(x, u,∇u)∇u dx = 0,

and



−div a(x, u,∇u)h(u)− div (Φ(u)h(u)) + h′(u)Φ(u)∇u

+g(x, u,∇u)h(u) = fh(u)− div (Fh(u)) + h′(u)F∇u in D′(Ω),
(3.8)

for every h ∈ C1
c (R).

Remark 3.2. Every term in the problem (3.8) is meaningful in the distribu-

tional sense. Indeed, for h in C1
c (R) and u in W 1

0LM (Ω), h(u) belongs to

W 1LM (Ω) and for ϕ in D(Ω) the function ϕh(u) belongs to W 1
0LM (Ω). Since

(−div a(x, u,∇u)) ∈W−1LM (Ω), we also have

〈−div a(x, u,∇u)h(u), ϕ〉D′(Ω),D(Ω)

= 〈−div a(x, u,∇u), ϕh(u)〉W−1LM (Ω),W 1

0
LM (Ω)

∀ϕ ∈ D(Ω).
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Finally, since Φh and Φh′ ∈ (C0
c (R))

N , for any measurable function u we have

Φ(u)h(u) and Φ(u)h′(u) ∈ (L∞Ω))N and then div (Φ(u)h(u)) ∈ W−1,∞(Ω)

and Φ(u)h′(u) ∈ LM (Ω).

Our main result is the following

Theorem 3.3. Suppose that assumptions (3.1)–(3.7) are fulfilled. Then, prob-

lem (1.1) has at least one renormalized solution.

Remark 3.4. The condition (3.4) can be replaced by the weaker one

|g(x, s, ξ)| ≤ d(x) + b(|s|)M(|ξ|),

with b : R → R
+ a continuous function belonging to L1(R) and d(x) ∈ L1(Ω).

Actually the original equation (1.1) will be recovered whenever h(u) ≡ 1,

but unfortunately this cannot happen in general strong additional requirements

on u. Therefore, (3.8) is to be viewed as a weaker form of (1.1).

4. Proof of the Main Result

From now on, we will use the standard truncation function Tk, k > 0, defined

for all s ∈ R by Tk(s) = max{−k,min{k, s}}.

Step 1: Approximate problems. Let fn be a sequence of L∞(Ω) functions

that converge strongly to f in L1(Ω). For n ∈ N, n ≥ 1, let us consider the

following sequence of approximate equations

−div a(x, un,∇un) + div Φn(un) + gn(x, un,∇un) = fn − div F in D′(Ω),

(4.1)

where we have set Φn(s) = Φ(Tn(s)) and gn(x, s, ξ) = g(x,s,ξ)

1+ 1

n
|g(x,s,ξ)|

. For fixed

n > 0, it’s obvious to observe that

gn(x, s, ξ)s ≥ 0, |gn(x, s, ξ)| ≤ |g(x, s, ξ)| and |gn(x, s, ξ)| ≤ n.

Moreover, since Φ is continuous one has |Φn(t)| ≤ max|t|≤n |Φ(t)|. Therefore,

applying both Proposition 1, Proposition 5 and Remark 2 of [22] one can de-

duces that there exists at least one solution un of the approximate Dirichlet

problem (4.1) in the sense





un ∈W 1
0LM (Ω), a(x, un,∇un) ∈ (LM (Ω))N and∫

Ω

a(x, un,∇un)∇vdx+

∫

Ω

Φn(un)∇vdx

+

∫

Ω

gn(x, un,∇un)vdx = 〈fn, v〉+

∫

Ω

F∇vdx, for every v ∈W 1
0LM (Ω).

(4.2)
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Step 2: Estimation in W 1
0LM (Ω). Taking un as function test in problem

(4.2), we obtain
∫

Ω

a(x, un,∇un)∇undx+

∫

Ω

Φn(un)∇undx

+

∫

Ω

gn(x, un,∇un)undx = 〈fn, un〉+

∫

Ω

F∇undx.
(4.3)

Define Φ̃n ∈ (C1(R))N as Φ̃n(t) =

∫ t

0

Φn(τ)dτ . Then formally

div(Φ̃n(un)) = Φn(un)∇un, un = 0 on ∂Ω, Φ̃n(0) = 0 and by the Divergence

theorem∫

Ω

Φn(un)∇undx =

∫

Ω

div (Φ̃n(un))dx =

∫

∂Ω

Φ̃n(un)
−→n ds = 0,

where −→n is the outward pointing unit normal field of the boundary ∂Ω (ds

may be used as a shorthand for −→n ds). Thus, by virtue of (3.5) and Young’s

inequality, we get
∫

Ω

a(x, un,∇un)∇undx ≤ C1 +
α

2

∫

Ω

M(|∇un|)dx, (4.4)

which, together with (3.3) give
∫

Ω

M(|∇un|)dx ≤ C2. (4.5)

Moreover, we also have
∫

Ω

gn(x, un,∇un)undx ≤ C3. (4.6)

As a consequence of (4.5) there exist a subsequence of {un}n, still indexed by

n, and a function u ∈W 1
0LM (Ω) such that

un ⇀ u weakly in W 1
0LM (Ω) for σ(ΠLM (Ω),ΠEM (Ω)),

un → u strongly in EM (Ω) and a. e. in Ω.
(4.7)

Step 3: Boundedness of (a(x, un,∇un))n in (LM (Ω))N . Let w ∈ (EM (Ω))N

with ‖w‖M ≤ 1. Thanks to (3.2), we can write
(
a(x, un,∇un)− (a(x, un,

w

k4
)
)(

∇un −
w

k4

)
≥ 0,

which implies

1

k4

∫

Ω

a(x, un,∇un)wdx ≤

∫

Ω

a(x, un,∇un)∇undx

+

∫

Ω

a
(
x, un,

w

k4

)( w
k4

−∇un

)
dx.

Thanks to (4.4) and (4.5), one has
∫

Ω

a(x, un,∇un)∇undx ≤ C5.
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Define λ = 1 + k1 + k3. By the growth condition (3.1) and Young’s inequality,

one can write
∣∣∣∣
∫

Ω

a
(
x, un,

w

k4

)( w
k4

−∇un

)
dx

∣∣∣∣

≤
(
1 +

1

k4

)(∫

Ω

M(c(x))dx+ k1

∫

Ω

M P
−1
M(k2|un|)dx

+k3

∫

Ω

M(|w|)dx

)
+

λ

k4

∫

Ω

M(|w|)dx+ λ

∫

Ω

M(|∇un|)dx.

By virtue of [18] and Lemma 4.14 of [20], there exists an N -function Q such

that M ≪ Q and the space W 1
0LM (Ω) is continuously embedded into LQ(Ω).

Thus, by (4.5) there exists a constant c0 > 0, not depending on n, satisfying

‖un‖Q ≤ c0. Since M ≪ Q, we can write M(k2t) ≤ Q( t
c0
), for t > 0 large

enough. As P ≪ M, we can find a constant c1, not depending on n, such

that

∫

Ω

M P
−1
M(k2|un|)dx ≤

∫

Ω

Q
( |un|
c0

)
+ c1. Hence, we conclude that the

quantity

∣∣∣∣
∫

Ω

a(x, un,∇unwdx

∣∣∣∣ is bounded from above for all w ∈ (EM (Ω))N

with ‖w‖M ≤ 1. Using the Orlicz norm we deduce that
(
a(x, un,∇un)

)

n
is bounded in (LM (Ω))N . (4.8)

Step 4: Renormalization identity for the approximate solutions. For

any m ≥ 1, define θm(r) = Tm+1(r) − Tm(r). Observe that by [19, Lemma2]

one has θm(un) ∈W 1
0LM (Ω). The use of θm(un) as test function in (4.2) yields

∫

{m≤|un|≤m+1}

a(x, un,∇un)∇undx ≤ 〈fn, θm(un)〉+

∫

{m≤|un|≤m+1}

F∇undx,

By Hölder’s inequality and 4.5 we have
∫

{m≤|un|≤m+1}

a(x, un,∇un)∇undx ≤ 〈fn, θm(un)〉

+C6

∫

{m≤|un|≤m+1}

M(|F |)dx.

It’s not hard to see that

‖∇θm(un)‖M ≤ ‖∇un‖M .

So that by (4.5) and (4.7) one can deduce that

θm(un)⇀ θm(u) weakly in W 1
0LM (Ω) for σ(ΠLM (Ω),ΠEM (Ω)).

Note that as m goes to ∞, θm(u)⇀ 0 weakly in W 1
0LM (Ω) for

σ(ΠLM (Ω),ΠEM (Ω)), and since fn converges strongly in L1(Ω), by Lebesgue’s

theorem we have

lim
m→∞

lim
n→∞

∫

{m≤|un|≤m+1}

M(|F |)dx = lim
m→∞

lim
n→∞

〈fn, θm(un)〉 = 0.
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By (3.3) we finally have

lim
m→∞

lim
n→∞

∫

{m≤|un|≤m+1}

a(x, un,∇un)∇undx = 0. (4.9)

Step 5: Almost everywhere convergence of the gradients. Define

φ(s) = seλs
2

with λ =
(
b(k)
2α

)2

. One can easily verify that for all s ∈ R

φ′(s)−
b(k)

α
|φ(s)| ≥

1

2
. (4.10)

For m ≥ k, we define the function ψm by




ψm(s) = 1 if |s| ≤ m,

ψm(s) = m+ 1− |s| if m ≤ |s| ≤ m+ 1,

ψm(s) = 0 if |s| ≥ m+ 1.

By virtue of [21, Theorem 4] there exists a sequence {vj}j ⊂ D(Ω) such that

vj → u in W 1
0LM (Ω) for the modular convergence and a.e. in Ω. Let us

define the following functions θjn = Tk(un) − Tk(vj), θ
j = Tk(u) − Tk(vj) and

zjn,m = φ(θjn)ψm(un). Using z
j
n,m ∈W 1

0LM (Ω) as test function in (4.2) we get
∫

Ω

a(x, un,∇un)∇z
j
n,mdx+

∫

Ω

Φn(un)∇φ
(
Tk(un)− Tk(vj)

)
ψm(un)dx

+

∫

{m≤|un|≤m+1}

Φn(un)∇unψ
′
m(un)φ

(
Tk(un)− Tk(vj)

)
dx

+

∫

Ω

gn(x, un,∇un)z
j
n,mdx =

∫

Ω

fnz
j
n,mdx+

∫

Ω

F∇zjn,mdx.

(4.11)

From now on we denote by ǫi(n, j), i = 0, 1, 2, ..., various sequences of real

numbers which tend to zero, when n and j → +∞, i. e.

lim
j→+∞

lim
n→+∞

ǫi(n, j) = 0.

In view of (4.7), we have zjn,m ⇀ φ(θj)ψm(u) weakly in L∞(Ω) for σ∗(L∞, L1)

as n→ +∞, which yields

lim
n→+∞

∫

Ω

fnz
j
n,mdx =

∫

Ω

fφ(θj)ψm(u)dx,

and since φ(θj)⇀ 0 weakly in L∞(Ω) for σ(L∞, L1) as j → +∞, we have

lim
j→+∞

∫

Ω

fφ(θj)ψm(u)dx = 0.

Thus, we write ∫

Ω

fnz
j
n,mdx = ǫ0(n, j).

Thanks to (4.5) and (4.7), we have as n→ +∞,

zjn,m ⇀ φ(θj)ψm(u) in W 1
0LM (Ω) for σ(ΠLM (Ω),ΠEM (Ω)),
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which implies that

lim
n→+∞

∫

Ω

F∇zjn,mdx =

∫

Ω

F∇θjφ′(θj)ψm(u)dx+

∫

Ω

F∇uφ(θj)ψ′
m(u)dx

On the one hand, by Lebesgue’s theorem we get

lim
j→+∞

∫

Ω

F∇uφ(θj)ψ′
m(u)dx = 0,

on the other hand, we write
∫

Ω

F∇θjφ′(θj)ψm(u)dx =

∫

Ω

F∇Tk(u)φ
′(θj)ψm(u)dx

−

∫

Ω

F∇Tk(vj)φ
′(θj)ψm(u)dx,

so that, by Lebesgue’s theorem one has

lim
j→+∞

∫

Ω

F∇Tk(u)φ
′(θj)ψm(u)dx =

∫

Ω

F∇Tk(u)ψm(u)dx.

Let λ > 0 such that M
(

|∇vj−∇u|
λ

)
→ 0 strongly in L1(Ω) as j → +∞ and

M
(

|∇u|
λ

)
∈ L1(Ω), the convexity of the N -function M allows us to have

M
(

|∇Tk(vj)φ
′(θj)ψm(u)−∇Tk(u)ψm(u)|

4λφ′(2k)

)

= 1
4M

(
|∇vj−∇u|

λ

)
+ 1

4

(
1 + 1

φ′(2k)

)
M

(
|∇u|
λ

)
.

Then, by using the modular convergence of {∇vj} in (LM (Ω))N and Vitali’s

theorem, we obtain

∇Tk(vj)φ
′(θj)ψm(u) → ∇Tk(u)ψm(u) in (LM (Ω))N , as j tends to +∞,

for the modular convergence, and then

lim
j→+∞

∫

Ω

F∇Tk(u)φ
′(θj)ψm(u)dx =

∫

Ω

F∇Tk(u)ψm(u)dx.

We have proved that ∫

Ω

F∇zjn,mdx = ǫ1(n, j).

It’s easy to see that by the modular convergence of the sequence {vj}j , one has

lim
j→+∞

lim
n→+∞

∫

{m≤|un|≤m+1}

Φn(un)∇unψ
′
m(un)φ

(
Tk(un)− Tk(vj)

)
dx = 0,

while for the third term in the left-hand side of (4.11) we can write
∫

Ω

Φn(un)∇φ
(
Tk(un)− Tk(vj)

)
ψm(un)dx

=

∫

Ω

Φn(un)∇Tk(un)φ
′(θjn)ψm(un)dx−

∫

Ω

Φn(un)∇Tk(vj)φ
′(θjn)ψm(un)dx.
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Firstly, we have

lim
j→+∞

lim
n→+∞

∫

Ω

Φn(un)∇Tk(un)φ
′(θjn)ψm(un)dx = 0.

In view of (4.7), one has

Φn(un)φ
′(θjn)ψm(un) → Φ(u)φ′(θj)ψm(u),

almost everywhere in Ω as n tends to +∞. Furthermore, we can check that

‖Φn(un)φ
′(θjn)ψm(un)‖M ≤M(cmφ

′(2k))|Ω|+ 1,

where cm = max|t|≤m+1 Φ(t). Applying [27, Theorem 14.6] we get

lim
n→+∞

∫

Ω

Φn(un)∇Tk(vj)φ
′(θjn)ψm(un)dx =

∫

Ω

Φ(u)∇Tk(vj)φ
′(θj)ψm(u)dx.

Using the modular convergence of the sequence {vj}j , we obtain

lim
j→+∞

lim
n→+∞

∫

Ω

Φn(un)∇Tk(vj)φ
′(θjn)ψm(un)dx =

∫

Ω

Φ(u)∇Tk(u)ψm(u)dx.

Then, using again the Divergence theorem we get
∫

Ω

Φ(u)∇Tk(u)ψm(u)dx = 0.

Therefore, we write
∫

Ω

Φn(un)∇φ
(
Tk(un)− Tk(vj)

)
ψm(un)dx = ǫ2(n, j).

Since gn(x, un,∇un)z
j
n,m ≥ 0 on the set {| un |> k} and ψm(un) = 1 on the

set {| un |≤ k}, from (4.11) we obtain
∫

Ω

a(x, un,∇un)∇z
j
n,mdx+

∫

{|un|≤k}

gn(x, un,∇un)φ(θ
j
n)dx ≤ ǫ3(n, j). (4.12)

We now evaluate the first term of the left-hand side of (4.12) by writing
∫

Ω

a(x, un,∇un)∇z
j
n,mdx

=

∫

Ω

a(x, un,∇un)(∇Tk(un)−∇Tk(vj))φ
′(θjn)ψm(un)dx

+

∫

Ω

a(x, un,∇un)∇unφ(θ
j
n)ψ

′
m(un)dx

=

∫

Ω

a(x, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(vj))φ
′(θjn)dx

−

∫

{|un|>k}

a(x, un,∇un)∇Tk(vj)φ
′(θjn)ψm(un)dx

+

∫

Ω

a(x, un,∇un)∇unφ(θ
j
n)ψ

′
m(un)dx,
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and then∫

Ω

a(x, un,∇un)∇z
j
n,mdx

=

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)

(
∇Tk(un)−∇Tk(vj)χ

s
j

)
φ′(θjn) dx

+

∫

Ω

a
(
x, Tk(un),∇Tk(vj)χ

s
j

)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
φ′(θjn) dx

−

∫

Ω\Ωs
j

a(x, Tk(un),∇Tk(un))∇Tk(vj)φ
′(θjn)dx

−

∫

{|un|>k}

a(x, un,∇un)∇Tk(vj)φ
′(θjn)ψm(un)dx

+

∫

Ω

a(x, un,∇un)∇unφ(θ
j
n)ψ

′
m(un)dx,

(4.13)

where by χsj , s > 0, we denote the characteristic function of the subset

Ωsj = {x ∈ Ω : |∇Tk(vj)| ≤ s}.

For fixed m and s, we will pass to the limit in n and then in j in the second,

third, fourth and fifth terms in the right side of (4.13). Starting with the second

term, we have
∫

Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
φ′(θjn)dx

→

∫

Ω

a(x, Tk(u),∇Tk(vj)χ
s
j)
(
∇Tk(u)−∇Tk(vj)χ

s
j

)
φ′(θj)dx,

as n→ +∞. Since by lemma (2.4) one has

a(x, Tk(un),∇Tk(vj)χ
s
j)φ

′(θjn) → a(x, Tk(u),∇Tk(vj)χ
s
j)φ

′(θj),

strongly in (EM (Ω))N as n→ ∞, while by (4.5)

∇Tk(un)⇀ ∇Tk(u),

weakly in (LM (Ω))N . Let χs denote the characteristic function of the subset

Ωs = {x ∈ Ω : |∇Tk(u)| ≤ s}.

As ∇Tk(vj)χ
s
j → ∇Tk(u)χ

s strongly in (EM (Ω))N as j → +∞, one has
∫

Ω

a
(
x, Tk(u),∇Tk(vj)χ

s
j

)
·
(
∇Tk(u)−∇Tk(vj)χ

s
j

)
φ′(θj)dx→ 0,

as j → ∞. Then
∫

Ω

a
(
x, Tk(un),∇Tk(vj)χ

s
j

)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
φ′(θjn)dx = ǫ4(n, j). (4.14)

We now estimate the third term of (4.13). It’s easy to see that by (3.3),

a(x, s, 0) = 0 for almost everywhere x ∈ Ω and for all s ∈ R. Thus, from (4.8)

we have that
(
a(x, Tk(un),∇Tk(un))

)
n
is bounded in (LM (Ω))N for all k ≥ 0.
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Therefore, there exist a subsequence still indexed by n and a function lk in

(LM (Ω))N such that

a(x, Tk(un),∇Tk(un))⇀ lk weakly in (LM (Ω))N for σ(ΠLM ,ΠEM ). (4.15)

Then, since ∇Tk(vj)χΩ\Ωs
j
∈ (EM (Ω))N , we obtain

∫

Ω\Ωs
j

a(x, Tk(un),∇Tk(un))∇Tk(vj)φ
′(θjn)dx→

∫

Ω\Ωs
j

lk∇Tk(vj)φ
′(θj)dx,

as n→ +∞. The modular convergence of {vj} allows us to get

−

∫

Ω\Ωs
j

lk∇Tk(vj)φ
′(θj)dx→ −

∫

Ω\Ωs

lk∇Tk(u)dx,

as j → +∞. This, proves

−

∫

Ω\Ωs
j

a(x, Tk(un),∇Tk(un))∇Tk(vj)φ
′(θjn)dx = −

∫

Ω\Ωs

lk∇Tk(u)dx+ ǫ5(n, j).

(4.16)

As regards the fourth term, observe that ψm(un) = 0 on the subset

{|un| ≥ m+ 1}, so we have

−

∫

{|un|>k}

a(x, un,∇un)∇Tk(vj))φ
′(θjn)ψm(un)dx =

−

∫

{|un|>k}

a(x, Tm+1(un),∇Tm+1(un))∇Tk(vj)φ
′(θjn)ψm(un)dx.

Since

−

∫

{|un|>k}

a(x, Tm+1(un),∇Tm+1(un))∇Tk(vj)φ
′(θjn)ψm(un)dx =

−

∫

{|u|>k}

lm+1∇Tk(u)ψm(u)dx+ ǫ5(n, j),

observing that ∇Tk(u) = 0 on the subset {|u| > k}, one has

−

∫

{|un|>k}

a(x, un,∇un)∇Tk(vj)φ
′(θjn)ψm(un)dx = ǫ6(n, j). (4.17)

For the last term of (4.13), we have

∣∣∣
∫

Ω

a(x, un,∇un)∇unφ(θ
j
n)ψ

′
m(un)dx

∣∣∣

=
∣∣∣
∫

{m≤|un|≤m+1}

a(x, un,∇un)∇unφ(θ
j
n)ψ

′
m(un) dx

∣∣∣

≤ φ(2k)

∫

{m≤|un|≤m+1}

a(x, un,∇un)∇undx.
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To estimate the last term of the previous inequality, we use

(T1(un − Tm(un)) ∈W 1
0LM (Ω)) as test function in (4.2), to get

∫

{m≤|un|≤m+1}

a(x, un,∇un)∇undx+

∫

{m≤|un|≤m+1}

Φn(un)∇undx

+

∫

{|un|≥m}

gn(x, un,∇un)T1(un − Tm(un))dx = 〈fn, T1(un − Tm(un))〉

+

∫

{m≤|un|≤m+1}

F∇undx.

By Divergence theorem, we have
∫

{m≤|un|≤m+1}

Φn(un)∇undx = 0.

Using the fact that gn(x, un,∇un)T1(un − Tm(un)) ≥ 0 on the subset

{|un| ≥ m} and Young’s inequality, we get
∫

{m≤|un|≤m+1}

a(x, un,∇un)∇undx

≤ 〈fn, T1(un − Tm(un))〉+

∫

{m≤|un|≤m+1}

M(|F |)dx.

It follows that
∣∣∣
∫

Ω

a(x, un,∇un)∇unφ(θ
j
n)ψ

′
m(un)dx

∣∣∣

≤ 2φ(2k)
(∫

{m≤|un|}

|fn|dx+

∫

{m≤|un|≤m+1}

M(|F |)dx
)
.

(4.18)

From (4.14), (4.16), (4.17) and (4.18) we obtain
∫

Ω

a(x, un,∇un)∇z
j
n,mdx

≥

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)

(
∇Tk(un)−∇Tk(vj)χ

s
j

)
φ′(θjn)dx

−αφ(2k)
(∫

{m≤|un|}

|fn|dx+

∫

{m≤|un|≤m+1}

M(|F |)dx
)

−

∫

Ω\Ωs

lk · ∇Tk(u)dx+ ǫ7(n, j).

(4.19)

Now, we turn to second term in the left-hand side of (4.12). We have
∣∣∣
∫

{|un|≤k}

gn(x, un,∇un)φ(θ
j
n)dx

∣∣∣

=
∣∣∣
∫

{|un|≤k}

gn(x, Tk(un),∇Tk(un))φ(θ
j
n)dx

∣∣∣

≤ b(k)

∫

Ω

M(|∇Tk(un)|)|φ(θ
j
n)|dx+ b(k)

∫

Ω

d(x)|φ(θjn)|dx

≤
b(k)

α

∫

Ω

an(x, Tk(un),∇Tk(un))∇Tk(un)|φ(θ
j
n)|dx+ ǫ8(n, j).
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Then

∣∣∣
∫

{|un|≤k}

gn(x, un,∇un)φ(θ
j
n)dx

∣∣∣

≤
b(k)

α

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)

(
∇Tk(un)−∇Tk(vj)χ

s
j

)
|φ(θjn)|dx

+
b(k)

α

∫

Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
|φ(θjn)|dx

+
b(k)

α

∫

Ω

an(x, Tk(un),∇Tk(un))∇Tk(vj)χ
s
j |φ(θ

j
n)|dx+ ǫ9(n, j).

(4.20)

We proceed as above to get

b(k)

α

∫

Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
|φ(θjn)|dx = ǫ9(n, j)

and

b(k)

α

∫

Ω

an(x, Tk(un),∇Tk(un))∇Tk(vj)χ
s
j |φ(θ

j
n)|dx = ǫ10(n, j).

Hence, we have

∣∣∣
∫

{|un|≤k}

gn(x, un,∇un)φ(θ
j
n)dx

∣∣∣

≤
b(k)

α

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)

(
∇Tk(un)−∇Tk(vj)χ

s
j

)
|φ(θjn)|dx+ ǫ11(n, j).

(4.21)

Combining (4.12), (4.19) and (4.21), we get

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
(
φ′(θjn)−

b(k)
α

|φ(θjn)|
)
dx

≤

∫

Ω\Ωs

lk∇Tk(u) dx+ αφ(2k)
(∫

{m≤|un|}

|fn|dx+

∫

{m≤|un|≤m+1}

M(|F |)dx
)

+ǫ12(n, j).

By (4.10), we have

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
dx

≤ 2

∫

Ω\Ωs

lk∇Tk(u)dx+ 4αφ(2k)
(∫

{m≤|un|}

|fn|dx+

∫

{m≤|un|≤m+1}

M(|F |)dx
)

+ǫ12(n, j).
(4.22)
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On the other hand we can write
∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χ

s)
)(
∇Tk(un)−∇Tk(u)χ

s
)
dx

=

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
dx

+

∫

Ω

a(x, Tk(un),∇Tk(un))
(
∇Tk(vj)χ

s
j −∇Tk(u)χ

s
)
dx

−

∫

Ω

a(x, Tk(un),∇Tk(u)χ
s)
(
∇Tk(un)−∇Tk(u)χ

s
)
dx

+

∫

Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
dx

We shall pass to the limit in n and then in j in the last three terms of the right

hand side of the above equality. In a similar way as done in (4.13) and (4.20),

we obtain
∫

Ω

a(x, Tk(un),∇Tk(un))
(
∇Tk(vj)χ

s
j −∇Tk(u)χ

s
)
dx = ǫ13(n, j),

∫

Ω

a(x, Tk(un),∇Tk(u)χ
s)
(
∇Tk(un)−∇Tk(u)χ

s
)
dx = ǫ14(n, j),

∫

Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
dx

= ǫ15(n, j).

(4.23)

So that
∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χ

s)
)(
∇Tk(un)−∇Tk(u)χ

s
)
dx

=

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
dx

+ǫ16(n, j).
(4.24)

Let r ≤ s. Using (3.2), (4.22) and (4.24) we can write

0 ≤

∫

Ωr

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

)(
∇Tk(un)−∇Tk(u)

)
dx

≤

∫

Ωs

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

)(
∇Tk(un)−∇Tk(u)

)
dx

=

∫

Ωs

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χ

s)
)(
∇Tk(un)−∇Tk(u)χ

s
)
dx

≤

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χ

s)
)(
∇Tk(un)−∇Tk(u)χ

s
)
dx

=

∫

Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
dx

+ǫ15(n, j)

≤ 2

∫

Ω\Ωs

lk∇Tk(u)dx+ 2αφ(2k)
(∫

{m≤|un|}

|fn|dx+

∫

{m≤|un|≤m+1}

M(|F |)dx
)

+ǫ17(n, j).
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By passing to the superior limit over n and then over j

0 ≤ lim sup
n→+∞

∫

Ωr

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

)(
∇Tk(un)−∇Tk(u)

)
dx

≤ 2

∫

Ω\Ωs

lk∇Tk(u)dx+ 4αφ(2k)
(∫

{m≤|un|}

|f |dx+

∫

{m≤|un|≤m+1}

M(|F |)dx
)
.

Letting s → +∞ and then m → +∞, taking into account that lk∇Tk(u) ∈

L1(Ω), f ∈ L1(Ω), |F | ∈ (EM (Ω))N , |Ω\Ωs| → 0, and |{m ≤ |u| ≤ m+1}| → 0,

one has∫

Ωr

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

)(
∇Tk(un)−∇Tk(u)

)
dx,

(4.25)

tends to 0 as n → +∞. As in [20], we deduce that there exists a subsequence

of {un} still indexed by n such that

∇un → ∇u a. e. in Ω. (4.26)

Therefore, having in mind (4.8) and (4.7), we can apply [27, Theorem 14.6] to

get

a(x, u,∇u) ∈ (LM (Ω))N

and

a(x, un,∇un))⇀ a(x, u,∇u) weakly in (LM (Ω))N for σ(ΠLM ,ΠEM ).

(4.27)

Step 6: Modular convergence of the truncations. Going back to equa-

tion (4.22), we can write
∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)dx

≤

∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(vj)χ
s
jdx

+

∫

Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)(∇Tk(un)−∇Tk(vj)χ

s
j)dx

+2αφ(2k)
(∫

{m≤|un|}

|fn|dx+

∫

{m≤|un|≤m+1}

M(|F |)dx
)

+2

∫

Ω\Ωs

a(x, Tk(u),∇Tk(u))∇Tk(u)dx+ ǫ12(n, j).

By (4.23) we get
∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)dx

≤

∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(vj)χ
s
jdx

+2αφ(2k)
(∫

{m≤|un|}

|fn|dx+

∫

{m≤|un|≤m+1}

M(|F |)dx
)

+2

∫

Ω\Ωs

a(x, Tk(u),∇Tk(u))∇Tk(u)dx+ ǫ18(n, j).
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We now pass to the superior limit over n in both sides of this inequality using

(4.27), to obtain

lim sup
n→+∞

∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)dx

≤

∫

Ω

a(x, Tk(u),∇Tk(u))∇Tk(vj)χ
s
jdx

+2αφ(2k)
(∫

{m≤|u|}

|f |dx+

∫

{m≤|u|≤m+1}

M(|F |)dx
)

+2

∫

Ω\Ωs

a(x, Tk(u),∇Tk(u))∇Tk(u)dx.

We then pass to the limit in j to get

lim sup
n→+∞

∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)dx

≤

∫

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χ
sdx

+2αφ(2k)
(∫

{m≤|u|}

|f |dx+

∫

{m≤|u|≤m+1}

M(|F |)dx
)

+2

∫

Ω\Ωs

a(x, Tk(u),∇Tk(u))∇Tk(u)dx.

Letting s and then m→ +∞, one has

lim sup
n→+∞

∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)dx ≤

∫

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)dx.

On the other hand, by (3.3), (4.5), (4.26) and Fatou’s lemma, we have
∫

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)dx ≤ lim inf
n→∞

∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)dx.

It follows that

lim
n→+∞

∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)dx =

∫

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)dx.

By Lemma 2.5 we conclude that for every k > 0

a(x, Tk(un),∇Tk(un))∇Tk(un) → a(x, Tk(u),∇Tk(u))∇Tk(u), (4.28)

strongly in L1(Ω). The convexity of the N -function M and (3.3) allow us to

have

M
(

|∇Tk(un)−∇Tk(u)|
2

)

≤ 1
2αa(x, Tk(un),∇Tk(un))∇Tk(un) +

1
2αa(x, Tk(u),∇Tk(u))∇Tk(u).

From Vitali’s theorem we deduce

lim
|E|→0

sup
n

∫

E

M
( |∇Tk(un)−∇Tk(u)|

2

)
dx = 0.

Thus, for every k > 0

Tk(un) → Tk(u) in W
1
0LM (Ω),
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for the modular convergence.

Step 7: Compactness of the nonlinearities. We need to prove that

gn(x, un,∇un) → g(x, u,∇u) strongly in L1(Ω). (4.29)

By virtue of (4.7) and (4.26) one has

gn(x, un,∇un) → g(x, u,∇u) a. e. in Ω. (4.30)

Let E be measurable subset of Ω and let m > 0. Using (3.3) and (3.4) we can

write
∫

E

|gn(x, un,∇un)|dx

=

∫

E∩{|un|≤m}

|gn(x, un,∇un)|dx+

∫

E∩{|un|>m}

|gn(x, un,∇un)| dx

≤ b(m)

∫

E

d(x)dx+ b(m)

∫

E

a(x, Tm(un),∇Tm(un))∇Tm(un)dx

+
1

m

∫

Ω

gn(x, un,∇un)un dx.

From (3.5) and (4.6), we deduce that

0 ≤

∫

Ω

gn(x, un,∇un)undx ≤ C3.

So

0 ≤
1

m

∫

Ω

gn(x, un,∇un)undx ≤
C3

m
.

Then

lim
m→+∞

1

m

∫

Ω

gn(x, un,∇un)undx = 0.

Thanks to (4.28) the sequence {a(x, Tm(un),∇Tm(un))∇Tm(un)}n is equi-

integrable. This fact allows us to get

lim
|E|→0

sup
n

∫

E

a(x, Tm(un),∇Tm(un)) · ∇Tm(un)dx = 0.

This shows that gn(x, un,∇un) is equi-integrable. Thus, Vitali’s theorem im-

plies that g(x, u,∇u) ∈ L1(Ω) and

gn(x, un,∇un) → g(x, u,∇u) strongly in L1(Ω).

Step 8: Renormalization identity for the solutions. In this step we prove

that

lim
m→+∞

∫

{m≤|u|≤m+1}

a(x, u,∇u)∇udx = 0. (4.31)
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Indeed, for any m ≥ 0 we can write
∫

{m≤|un|≤m+1}

a(x, un,∇un)∇undx

=

∫

Ω

a(x, un,∇un)(∇Tm+1(un)−∇Tm(un))dx

=

∫

Ω

a(x, Tm+1(un),∇Tm+1(un))∇Tm+1(un)dx

−

∫

Ω

a(x, Tm(un),∇Tm(un))∇Tm(un)dx.

In view of (4.28), we can pass to the limit as n tends to +∞ for fixed m ≥ 0

lim
n→+∞

∫

{m≤|un|≤m+1}

a(x, un,∇un)∇undx

=

∫

Ω

a(x, Tm+1(u),∇Tm+1(u))∇Tm+1(u)dx

−

∫

Ω

a(x, Tm(u),∇Tm(u))∇Tm(u)dx

=

∫

Ω

a(x, u,∇u)(∇Tm+1(u)−∇Tm(u))dx

=

∫

{m≤|u|≤m+1}

a(x, u,∇u)∇udx.

Having in mind (4.9), we can pass to the limit as m tends to +∞ to obtain

(4.31).

Step 9: Passing to the limit. Thanks to (4.28) and Lemma (2.5), we obtain

a(x, un,∇un)∇un → a(x, u,∇u)∇u strongly in L1(Ω). (4.32)

Let h ∈ C1
c (R) and ϕ ∈ D(Ω). Inserting h(un)ϕ as test function in (4.2), we

get
∫

Ω

a(x, un,∇un)∇unh
′(un)ϕdx+

∫

Ω

a(x, un,∇un)∇ϕh(un)dx

+

∫

Ω

Φn(un)∇(h(un)ϕ)dx+

∫

Ω

gn(x, un,∇un)h(un)ϕdx

= 〈fn, h(un)ϕ〉+

∫

Ω

F∇(h(un)ϕ)dx.

(4.33)

We shall pass to the limit as n → +∞ in each term of the equality (4.33).

Since h and h′ have compact support on R, there exists a real number ν > 0,

such that supp h ⊂ [−ν, ν] and supp h′ ⊂ [−ν, ν]. For n > ν, we can write

Φn(t)h(t) = Φ(Tν(t))h(t) and Φn(t)h
′(t) = Φ(Tν(t))h

′(t).

Moreover, the functions Φh and Φh′ belong to
(
C0(R) ∩ L∞(R)

)N
. Observe

first that the sequence {h(un)ϕ}n is bounded in W 1
0LM (Ω). Indeed, let ρ > 0
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be a positive constant such that ‖h(un)∇ϕ‖∞ ≤ ρ and ‖h′(un)ϕ‖∞ ≤ ρ. Using

the convexity of the N−function M and taking into account (4.5) we have
∫

Ω

M

(
| ∇ (h(un)ϕ) |

2ρ

)
dx ≤

∫

Ω

M

(
|h(un)∇ϕ|+ |h′(un)ϕ||∇un|

2ρ

)
dx

≤
1

2
M(1)|Ω|+

1

2

∫

Ω

M(|∇un|)dx

≤
1

2
M(1)|Ω|+

1

2
C2.

This, together with (4.7), imply that

h(un)ϕ ⇀ h(u)ϕ weakly in W 1
0LM (Ω) for σ(ΠLM ,ΠEM ). (4.34)

This enables us to get

〈fn, h(un)ϕ〉 → 〈f, h(u)ϕ〉.

Let E be a measurable subset of Ω. Define cν = max|t|≤ν Φ(t). Let us denote by

‖v‖(M) the Orlicz norm of a function v ∈ LM (Ω). Using strengthened Hölder

inequality with both Orlicz and Luxemburg norms, we get

‖Φ(Tν(un))χE‖(M) = sup
‖v‖M≤1

∣∣∣
∫

E

Φ(Tν(un))vdx
∣∣∣

≤ cν sup
‖v‖M≤1

‖χE‖(M)‖v‖M

≤ cν |E|M−1
( 1

|E|

)
.

Thus, we get

lim
|E|→0

sup
n

‖Φ(Tν(un))χE‖(M) = 0.

Therefore, thanks to (4.7) by applying [27, Lemma 11.2] we obtain

Φ(Tν(un)) → Φ(Tν(u)) strongly in (EM )N ,

which jointly with (4.34) allow us to pass to the limit in the third term of (4.33)

to have ∫

Ω

Φ(Tν(un))∇(h(un)ϕ)dx→

∫

Ω

Φ(Tν(u))∇(h(u)ϕ)dx.

We remark that

|a(x, un,∇un)∇unh
′(un)ϕ| ≤ ρa(x, un,∇un)∇un.

Consequently, using (4.32) and Vitali’s theorem, we obtain
∫

Ω

a(x, un,∇un)∇unh
′(un)ϕdx→

∫

Ω

a(x, u,∇u)∇uh′(u)ϕdx.

and ∫

Ω

F∇unh
′(un)ϕdx→

∫

Ω

F∇uh′(u)ϕdx.

For the second term of (4.33), as above we have

h(un)∇ϕ→ h(u)∇ϕ strongly in (EM (Ω))N ,
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which together with (4.27) give
∫

Ω

a(x, un,∇un)∇ϕh(un)dx→

∫

Ω

a(x, u,∇u)∇ϕh(u)dx

and ∫

Ω

F∇ϕh(un)dx→

∫

Ω

F∇ϕh(u)dx.

The fact that h(un)ϕ ⇀ h(u)ϕ weakly in L∞(Ω) for σ∗(L∞, L1) and (4.29)

enable us to pass to the limit in the fourth term of (4.33) to get
∫

Ω

gn(x, un,∇un)h(un)ϕdx→

∫

Ω

g(x, u,∇u)h(u)ϕdx.

At this point we can pass to the limit in each term of (4.33) to get
∫

Ω

a(x, u,∇u)(∇ϕh(u) + h′(u)ϕ∇u)dx+

∫

Ω

Φ(u)h′(u)ϕ∇udx

+

∫

Ω

Φ(u)h(u)∇ϕdx+

∫

Ω

g(x, u,∇u)h(u)ϕdx

= 〈f, h(u)ϕ〉+
∫
Ω
F (∇ϕh(u) + h′(u)ϕ∇u)dx,

for all h ∈ C1
c (R) and for all ϕ ∈ D(Ω). Moreover, as we have (3.5), (4.6)

and (4.30) we can use Fatou’s lemma to get g(x, u,∇u)u ∈ L1(Ω). By virtue of

(4.7), (4.27), (4.29), (4.31), the function u is a renormalized solution of problem

(1.1).
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