Iranian Journal of Mathematical Sciences and Informatics Vol. 14, No. 1 (2019), pp 95-119 DOI: 10.7508/ijmsi.2019.01.009

Renormalized Solutions of Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

Mostafa EL MOUMNI

Department of Mathematics, Faculty of Sciences El Jadida, University Chouaib Doukkali, P. O. Box 20, 24000 El Jadida, Morocco.

E-mail: mostafaelmoumni@gmail.com

Abstract. The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems

 $-\text{div}\left(a(x, u, \nabla u) + \Phi(u)\right) + g(x, u, \nabla u) = f - \text{div } F,$

in a bounded open set Ω and $u = 0$ on $\partial\Omega$, in the framework of Orlicz-Sobolev spaces without any restriction on the M N-function of the Orlicz spaces, where $-\text{div}\left(a(x, u, \nabla u)\right)$ is a Leray-Lions operator defined from $W_0^1 L_M(\Omega)$ into its dual, $\Phi \in C^0(\mathbb{R}, \mathbb{R}^N)$. The function $g(x, u, \nabla u)$ is a non linear lower order term with natural growth with respect to $|\nabla u|$, satisfying the sign condition and the datum μ is assumed to belong to $L^1(\Omega) + W^{-1} E_{\overline{M}}(\Omega).$

Keywords: Elliptic equation, Orlicz-Sobolev spaces, Renormalized solution.

2000 Mathematics subject classification: 35J15, 35J20.

1. INTRODUCTION

Let Ω be a bounded open set of \mathbb{R}^N , $N \geq 2$, and let M be an N-function. In the present paper we prove an existence result of a renormalized solution of the following strongly nonlinear elliptic problem

$$
\begin{cases}\nA(u) - \text{div }\Phi(u) + g(x, u, \nabla u) = f - \text{div } F & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.\n\end{cases}
$$
\n(1.1)

Received 30 July 2016; Accepted 12 August 2017

c 2019 Academic Center for Education, Culture and Research TMU

Here, $\Phi \in C^0(\mathbb{R}, \mathbb{R}^N)$, while the function $g(x, u, \nabla u)$ is a non linear lower order term with natural growth with respect to $|\nabla u|$ and satisfying the sign condition. The non everywhere defined nonlinear operator $A(u) = -\text{div}(a(x, u, \nabla u))$ acts from its domain $D(A) \subset W_0^1 L_M(\Omega)$ into $W^{-1} L_{\overline{M}}(\Omega)$. The function $a(x, u, \nabla u)$ is assumed to satisfy, among others, $a(x, u, \nabla u)$ nonstandard growth condition governed by the N-function M, and the source term $f \in L^1(\Omega)$ and $|F| \in E_{\overline{M}}(\Omega)$, \overline{M} stands for the conjugate of M.

We use here the notion of renormalized solutions, which was introduced by R.J. DiPerna and P.-L. Lions in their papers [16, 15] where the authors investigate the existence of solutions of the Boltzmann equation, by introducing the idea of renormalized solution. This concept of solution was then adapted to study (1.1) with $\Phi \equiv 0$, $g \equiv 0$ and $L^1(\Omega)$ -data by F. Murat in [29, 28], by G. Dal Maso et al. in [13] with general measure data and then when f is a bounded Radon measure datum and g grows at most like $|\nabla u|^{p-1}$ by Beta et al. in [9, 10, 11] with $\Phi \equiv 0$ and by Guibé and Mercaldo in [23, 24] when $\Phi(u)$ behaves at most like $|u|^{p-1}$. Renormalization idea was then used in [12] for variational equations and in [30] when the source term is in $L^1(\Omega)$. Recall that to get both existence and uniqueness of a solution to problems with L^1 -data, two notions of solution equivalent to the notion of renormalized solution were introduced, the first is the entropy solution by Bénilan et al. $[4]$ and then the second is the SOLA by Dall'Aglio [14].

The authors in [5] have dealt with the equation (1.1) with $g = g(x, u)$ and $\mu \in W^{-1}E_{\overline{M}}(\Omega)$, under the restriction that the N-function M satisfies the Δ_2 condition. This work was then extended in $[2]$ for N-functions not satisfying necessarily the Δ_2 -condition. Our goal here is to extend the result in [2] solving the problem (1.1) without any restriction on the N-function M. Recently, a large number of papers was devoted to the existence of solutions of (1.1). In the variational framework, that is $\mu \in W^{-1}E_{\overline{M}}(\Omega)$, an existence result has been proved in [3], Specific examples to which our results apply include the following:

$$
-\operatorname{div} \left(|\nabla u|^{p-2} \nabla u + |u|^s u \right) + u |\nabla u|^p = \mu \text{ in } \Omega,
$$

$$
-\operatorname{div} \left(|\nabla u|^{p-2} \nabla u \log^{\beta} (1 + |\nabla u|) + |u|^s u \right) = \mu \text{ in } \Omega,
$$

$$
-\operatorname{div} \left(\frac{M(|\nabla u|) \nabla u}{|\nabla u|^2} + |u|^s u \right) + M(|\nabla u|) = \mu \text{ in } \Omega,
$$

where $p > 1$, $s > 0$, $\beta > 0$ and μ is a given Radon measure on Ω .

It is our purpose in this paper, to prove the existence of a renormalized solution for the problem (1.1) when the source term has the form $f - \text{div } F$ with $f \in L^1(\Omega)$ and $|F| \in E_{\overline{M}}(\Omega)$, in the setting of Orlicz spaces without any restriction on the N -functions M . The approximate equations provide a $W_0^1 L_M(\Omega)$ bound for the corresponding solution u_n . This allows us to obtain a function u as a limit of the sequence u_n . Hence, appear two difficulties. The first one is how to give a sense to $\Phi(u)$, the second difficulty lies in the need of the convergence almost everywhere of the gradients of u_n in Ω . This is done by using suitable test functions built upon u_n which make licit the use of the divergence theorem for Orlicz functions. We note that the techniques we used in the proof are different from those used in [2, 5, 12, 17, 25].

Let us briefly summarize the contents of the paper. The Section 2 is devoted to developing the necessary preliminaries, we introduce some technical lemmas. Section 3 contains the basic assumptions, the definition of renormalized solution and the main result, while the Section 4 is devoted to the proof of the main result.

2. Preliminaries

Let $M : \mathbb{R}^+ \to \mathbb{R}^+$ be an *N*-function, i. e., *M* is continuous, increasing, convex, with $M(t) > 0$ for $t > 0$, $\frac{M(t)}{t} \to 0$ as $t \to 0$, and $\frac{M(t)}{t} \to +\infty$ as $t \to +\infty$. Equivalently, M admits the representation:

$$
M(t) = \int_0^t a(s) \, ds,
$$

where $a: \mathbb{R}^+ \to \mathbb{R}^+$ is increasing, right continuous, with $a(0) = 0$, $a(t) > 0$ for $t > 0$ and $a(t)$ tends to $+\infty$ as $t \to +\infty$.

The conjugate of M is also an N -function and it is defined by $M =$ \int_0^t 0 $\bar{a}(s) \, ds,$ where $\bar{a}: \mathbb{R}^+ \to \mathbb{R}^+$ is the function $\bar{a}(t) = \sup\{s : a(s) \leq t\}$ (see [1]).

An N-function M is said to satisfy the Δ_2 -condition if, for some k,

$$
M(2t) \le kM(t) \quad \forall t \ge 0,
$$
\n
$$
(2.1)
$$

when (2.1) holds only for $t \geq t_0 > 0$ then M is said to satisfy the Δ_2 -condition near infinity. Moreover, we have the following Young's inequality

$$
st \le M(t) + \overline{M}(s), \quad \forall s, t \ge 0.
$$

Given two N-functions, we write $P \ll Q$ to indicate P grows essentially less rapidly than Q; i. e. for each $\epsilon > 0$, $\frac{P(t)}{Q(\epsilon t)} \to 0$ as $t \to +\infty$. This is the case if and only if

$$
\lim_{t \to \infty} \frac{Q^{-1}(t)}{P^{-1}(t)} = 0.
$$

Let Ω be an open subset of \mathbb{R}^N . The Orlicz class $k_M(\Omega)$ (resp. the Orlicz space $L_M(\Omega)$ is defined as the set of (equivalence classes of) real valued measurable functions u on Ω such that

$$
\int_{\Omega} M(|u(x)|) dx < +\infty \quad (\text{resp. } \int_{\Omega} M\left(\frac{|u(x)|}{\lambda}\right) dx < +\infty \text{ for some } \lambda > 0).
$$

The set $L_M(\Omega)$ is a Banach space under the norm

$$
||u||_{M,\Omega} = \inf \left\{ \lambda > 0 : \int_{\Omega} M \left(\frac{|u(x)|}{\lambda} \right) dx \le 1 \right\},\
$$

and $k_M(\Omega)$ is a convex subset of $L_M(\Omega)$.

The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$. The dual of $E_M(\Omega)$ can be identified with $L_{\overline{M}}(\Omega)$ by means of the pairing $\int_{\Omega} uv dx$, and the dual norm of $L_{\overline{M}}(\Omega)$ is equivalent to $\|\cdot\|_{\overline{M},\Omega}$. We now turn to the Orlicz-Sobolev space, $W^1L_M(\Omega)$ [resp. $W¹E_M(\Omega)$] is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega)$ [resp. $E_M(\Omega)$]. It is a Banach space under the norm

$$
||u||_{1,M,\Omega} = \sum_{|\alpha|\leq 1} ||D^\alpha u||_{M,\Omega}.
$$

Thus, $W^1 L_M(\Omega)$ and $W^1 E_M(\Omega)$ can be identified with subspaces of product of $N+1$ copies of $L_M(\Omega)$. Denoting this product by $\prod L_M$, we will use the weak topologies $\sigma(\prod L_M, \prod E_{\overline{M}})$ and $\sigma(\prod L_M, \prod L_{\overline{M}})$.

The space $W_0^1 E_M(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^1E_M(\Omega)$ and the space $W_0^1L_M(\Omega)$ as the $\sigma(\prod L_M, \prod E_{\overline{M}})$ closure of $\mathcal{D}(\Omega)$ in $W^1L_M(\Omega)$. We say that u_n converges to u for the modular convergence in $W^1L_M(\Omega)$ if for some $\lambda > 0$, \int_{Ω} M $\int D^{\alpha} u_n - D^{\alpha} u$ λ \setminus $dx \to 0$ for all $|\alpha| \leq 1$. This implies convergence for $\sigma(\prod L_M, \prod L_{\overline{M}})$. If M satisfies the Δ_2 condition on \mathbb{R}^+ (near infinity only when Ω has finite measure), then modular convergence coincides with norm convergence.

Let $W^{-1}L_{\overline{M}}(\Omega)$ [resp. $W^{-1}E_{\overline{M}}(\Omega)$] denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\overline{M}}(\Omega)$ [resp. $E_{\overline{M}}(\Omega)$]. It is a Banach space under the usual quotient norm (for more details see [1]).

A domain Ω has the segment property if for every $x \in \partial \Omega$ there exists an open set G_x and a nonzero vector y_x such that $x \in G_x$ and if $z \in \overline{\Omega} \cap G_x$, then $z + ty_x \in \Omega$ for all $0 < t < 1$. The following lemmas can be found in [6].

Lemma 2.1. *Let* $F : \mathbb{R} \to \mathbb{R}$ *be uniformly Lipschitzian, with* $F(0) = 0$ *. Let* M *be an* N-function and let $u \in W¹L_M(\Omega)$ (resp. $W¹E_M(\Omega)$). Then $F(u) \in W¹L_M(\Omega)$ *(resp.* $W¹E_M(\Omega)$ *). Moreover, if the set* D of discontinuity *points of* F ′ *is finite, then*

$$
\frac{\partial}{\partial x_i}F(u) = \begin{cases} F'(u)\frac{\partial}{\partial x_i}u & a.e. \ in \ \{x \in \Omega : u(x) \notin D\}, \\ 0 & a.e. \ in \ \{x \in \Omega : u(x) \in D\}. \end{cases}
$$

Lemma 2.2. Let $F : \mathbb{R} \to \mathbb{R}$ be uniformly Lipschitzian, with $F(0) = 0$. We *suppose that the set of discontinuity points of* F ′ *is finite. Let* M *be an* N*function, then the mapping* $F: W^1 L_M(\Omega) \to W^1 L_M(\Omega)$ *is sequentially continuous with respect to the weak* topology* $\sigma(\prod L_M, \prod E_{\overline{M}})$.

Lemma 2.3. (21) Let Ω have the segment property. Then for each $\nu \in W_0^1 L_M(\Omega)$, there exists a sequence $\nu_n \in \mathcal{D}(\Omega)$ such that ν_n converges to ν *for the modular convergence in* $W_0^1 L_M(\Omega)$. *Furthermore,* $if \nu \in W_0^1 L_M(\Omega) \cap L^{\infty}(\Omega)$, then

$$
||\nu_n||_{L^{\infty}(\Omega)} \le (N+1)||\nu||_{L^{\infty}(\Omega)}.
$$

We give now the following lemma which concerns operators of the Nemytskii type in Orlicz spaces (see [8]).

Lemma 2.4. Let Ω be an open subset of \mathbb{R}^N with finite measure. Let M, P, Q *be* N-functions such that $Q \ll P$, and let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory *function such that, for a.e.* $x \in \Omega$ *and all* $s \in \mathbb{R}$ *:*

$$
|f(x,s)| \le c(x) + k_1 P^{-1} M(k_2|s|),
$$

where k_1, k_2 *are real constants and* $c(x) \in E_O(\Omega)$ *.*

Then the Nemytskii operator N_f *defined by* $N_f(u)(x) = f(x, u(x))$ *is strongly continuous from* $\mathcal{P}(E_M(\Omega), \frac{1}{k_2}) = \{u \in L_M(\Omega) : d(u, E_M(\Omega)) < \frac{1}{k_2}\}\$ into $E_O(\Omega)$.

We will also use the following technical lemma.

Lemma 2.5. *(*[26]*)* If $\{f_n\} \subset L^1(\Omega)$ *with* $f_n \to f \in L^1(\Omega)$ *a.e. in* $\Omega, f_n, f \ge 0$ *a.e. in* Ω *and* $\int_{\Omega} f_n(x) dx \rightarrow$ z Ω f(x) dx*, then* $f_n \to f$ in $L^1(\Omega)$.

3. Structural Assumptions and Main Result

Throughout the paper Ω will be a bounded subset of \mathbb{R}^N , $N \geq 2$, satisfying the segment property. Let M and P be two N-functions such that $P \ll M$. Let A be the non everywhere defined operator defined from its domain $\mathcal{D}(\Omega) \subset W_0^1 L_M(\Omega)$ into $W^{-1} L_{\overline{M}}(\Omega)$ given by

$$
A(u) := -\text{ div } a(\cdot, u, \nabla u),
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function. We assume that there exist a nonnegative function $c(x)$ in $E_{\overline{M}}(\Omega)$, $\alpha > 0$ and positive real constants k_1, k_2, k_3 and k_4 , such that for every $s \in \mathbb{R}, \xi \in \mathbb{R}^N, \xi' \in \mathbb{R}^N \ (\xi \neq \xi')$ and for almost every $x \in \Omega$

$$
|a(x,s,\xi)| \le c(x) + k_1 \overline{P}^{-1} M(k_2|s|) + k_3 \overline{M}^{-1} M(k_4|\xi|),
$$
 (3.1)

100 M. EL MOUMNI

$$
(a(x, s, \xi) - a(x, s, \xi'))(\xi - \xi') > 0,
$$
\n(3.2)

$$
a(x, s, \xi)\xi \ge \alpha M(|\xi|). \tag{3.3}
$$

Here, $g(x, s, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a Carathéodory function satisfying for almost every $x \in \Omega$ and for all $s \in \mathbb{R}, \xi \in \mathbb{R}^N$,

$$
|g(x, s, \xi)| \le b(|s|) (d(x) + M(|\xi|)), \tag{3.4}
$$

$$
g(x, s, \xi)s \ge 0,\tag{3.5}
$$

where $b : \mathbb{R} \to \mathbb{R}^+$ is a continuous and increasing function while d is a given nonnegative function in $L^1(\Omega)$.

The right-hand side of (1.1) and $\Phi : \mathbb{R} \to \mathbb{R}^N$, are assumed to satisfy

$$
f \in L^{1}(\Omega) \text{ and } |F| \in E_{\overline{M}}(\Omega), \tag{3.6}
$$

$$
\Phi \in \mathcal{C}^0(\mathbb{R}, \mathbb{R}^N). \tag{3.7}
$$

Our aim in this paper is to give a meaning to a possible solution of (1.1). In view of assumptions $(3.1), (3.2), (3.3)$ and $(3.6),$ the natural space in which one can seek for a solution u of problem (1.1) is the Orlicz-Sobolev space $W_0^1 L_M(\Omega)$. But when u is only in $W_0^1 L_M(\Omega)$ there is no reason for $\Phi(u)$ to be in $(L^1(\Omega))^N$ since no growth hypothesis is assumed on the function Φ . Thus, the term div $(\Phi(u))$ may be ill-defined even as a distribution. This hindrance is bypassed by solving some weaker problem obtained formally trough a pointwise multiplication of equation (1.1) by $h(u)$ where h belongs to $C_c^1(\mathbb{R})$, the class of $C^1(\mathbb{R})$ functions with compact support.

Definition 3.1. A measurable function $u : \Omega \to \mathbb{R}$ is called a renormalized solution of (1.1) if $u \in W_0^1 L_M(\Omega)$, $a(x, u, \nabla u) \in (L_{\overline{M}}(\Omega))^N$, $g(x, u, \nabla u) \in L^1(\Omega), g(x, u, \nabla u)u \in L^1(\Omega),$

$$
\lim_{m \to +\infty} \int_{\{x \in \Omega \colon m \le |u(x)| \le m+1\}} a(x, u, \nabla u) \nabla u \, dx = 0,
$$

and

$$
\begin{cases}\n-\text{div } a(x, u, \nabla u)h(u) - \text{div } (\Phi(u)h(u)) + h'(u)\Phi(u)\nabla u \\
+ g(x, u, \nabla u)h(u) = fh(u) - \text{div } (Fh(u)) + h'(u)F\nabla u \text{ in } \mathcal{D}'(\Omega),\n\end{cases}
$$
\n(3.8)

Remark 3.2*.* Every term in the problem (3.8) is meaningful in the distributional sense. Indeed, for h in $C_c^1(\mathbb{R})$ and u in $W_0^1L_M(\Omega)$, $h(u)$ belongs to

 $W¹L_M(\Omega)$ and for φ in $\mathcal{D}(\Omega)$ the function $\varphi h(u)$ belongs to $W₀¹L_M(\Omega)$. Since $(-\text{div } a(x, u, \nabla u)) \in W^{-1}L_{\overline{M}}(\Omega)$, we also have

$$
\langle -\text{div } a(x, u, \nabla u) h(u), \varphi \rangle_{\mathcal{D}'(\Omega), \mathcal{D}(\Omega)}
$$

=
$$
\langle -\text{div } a(x, u, \nabla u), \varphi h(u) \rangle_{W^{-1}L_{\overline{M}}(\Omega), W_0^1 L_M(\Omega)}
$$

$$
\forall \varphi \in \mathcal{D}(\Omega).
$$

Finally, since Φh and $\Phi h' \in (C_c^0(\mathbb{R}))^N$, for any measurable function u we have $\Phi(u)h(u)$ and $\Phi(u)h'(u) \in (L^{\infty}\Omega)^N$ and then div $(\Phi(u)h(u)) \in W^{-1,\infty}(\Omega)$ and $\Phi(u)h'(u) \in L_M(\Omega)$.

Our main result is the following

Theorem 3.3. *Suppose that assumptions* (3.1)*–*(3.7) *are fulfilled. Then, problem* (1.1) *has at least one renormalized solution.*

Remark 3.4*.* The condition (3.4) can be replaced by the weaker one

$$
|g(x,s,\xi)| \le d(x) + b(|s|)M(|\xi|),
$$

with $b: \mathbb{R} \to \mathbb{R}^+$ a continuous function belonging to $L^1(\mathbb{R})$ and $d(x) \in L^1(\Omega)$.

Actually the original equation (1.1) will be recovered whenever $h(u) \equiv 1$, but unfortunately this cannot happen in general strong additional requirements on u . Therefore, (3.8) is to be viewed as a weaker form of (1.1) .

4. Proof of the Main Result

From now on, we will use the standard truncation function T_k , $k > 0$, defined for all $s \in \mathbb{R}$ by $T_k(s) = \max\{-k, \min\{k, s\}\}.$

Step 1: Approximate problems. Let f_n be a sequence of $L^{\infty}(\Omega)$ functions that converge strongly to f in $L^1(\Omega)$. For $n \in \mathbb{N}$, $n \geq 1$, let us consider the following sequence of approximate equations

-div
$$
a(x, u_n, \nabla u_n)
$$
 + div $\Phi_n(u_n) + g_n(x, u_n, \nabla u_n) = f_n$ - div *F* in $\mathcal{D}'(\Omega)$,
\n(4.1)
\nwhere we have set $\Phi_n(s) = \Phi(T_n(s))$ and $g_n(x, s, \xi) = \frac{g(x, s, \xi)}{1 + \frac{1}{n} |g(x, s, \xi)|}$. For fixed $n > 0$, it's obvious to observe that

$$
g_n(x, s, \xi)s \ge 0
$$
, $|g_n(x, s, \xi)| \le |g(x, s, \xi)|$ and $|g_n(x, s, \xi)| \le n$.

Moreover, since Φ is continuous one has $|\Phi_n(t)| \leq \max_{|t| \leq n} |\Phi(t)|$. Therefore, applying both Proposition 1, Proposition 5 and Remark 2 of [22] one can deduces that there exists at least one solution u_n of the approximate Dirichlet problem (4.1) in the sense

$$
\begin{cases}\n u_n \in W_0^1 L_M(\Omega), a(x, u_n, \nabla u_n) \in (L_{\overline{M}}(\Omega))^N \text{ and} \\
 \int_{\Omega} a(x, u_n, \nabla u_n) \nabla v dx + \int_{\Omega} \Phi_n(u_n) \nabla v dx \\
 + \int_{\Omega} g_n(x, u_n, \nabla u_n) v dx = \langle f_n, v \rangle + \int_{\Omega} F \nabla v dx, \text{ for every } v \in W_0^1 L_M(\Omega). \n\end{cases}
$$
\n(4.2)

Step 2: Estimation in $W_0^1 L_M(\Omega)$. Taking u_n as function test in problem (4.2) , we obtain

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n dx + \int_{\Omega} \Phi_n(u_n) \nabla u_n dx \n+ \int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx = \langle f_n, u_n \rangle + \int_{\Omega} F \nabla u_n dx.
$$
\n(4.3)

Define $\widetilde{\Phi}_n \in (C^1(\mathbb{R}))^N$ as $\widetilde{\Phi}_n(t) = \int_0^t \Phi_n(\tau) d\tau$. Then formally $\text{div}(\Phi_n(u_n)) = \Phi_n(u_n)\nabla u_n, u_n = 0 \text{ on } \partial\Omega, \Phi_n(0) = 0 \text{ and by the Divergence}$ theorem

$$
\int_{\Omega} \Phi_n(u_n) \nabla u_n dx = \int_{\Omega} \operatorname{div} \left(\widetilde{\Phi}_n(u_n) \right) dx = \int_{\partial \Omega} \widetilde{\Phi}_n(u_n) \overrightarrow{n} ds = 0,
$$

where \vec{n} is the outward pointing unit normal field of the boundary $\partial\Omega$ (ds may be used as a shorthand for $\vec{\pi}$ ds). Thus, by virtue of (3.5) and Young's inequality, we get

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n dx \le C_1 + \frac{\alpha}{2} \int_{\Omega} M(|\nabla u_n|) dx, \tag{4.4}
$$

which, together with (3.3) give

$$
\int_{\Omega} M(|\nabla u_n|)dx \le C_2. \tag{4.5}
$$

Moreover, we also have

$$
\int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx \le C_3.
$$
\n(4.6)

As a consequence of (4.5) there exist a subsequence of $\{u_n\}_n$, still indexed by *n*, and a function $u \in W_0^1 L_M(\Omega)$ such that

$$
u_n \rightharpoonup u \text{ weakly in } W_0^1 L_M(\Omega) \text{ for } \sigma(\Pi L_M(\Omega), \Pi E_{\overline{M}}(\Omega)),
$$

$$
u_n \rightharpoonup u \text{ strongly in } E_M(\Omega) \text{ and a. e. in } \Omega.
$$
 (4.7)

Step 3: Boundedness of $(a(x, u_n, \nabla u_n))_n$ in $(L_{\overline{M}}(\Omega))^N$. Let $w \in (E_M(\Omega))^N$ with $||w||_M \leq 1$. Thanks to (3.2), we can write

$$
\left(a(x, u_n, \nabla u_n) - (a(x, u_n, \frac{w}{k_4}))\right)\left(\nabla u_n - \frac{w}{k_4}\right) \ge 0,
$$

which implies

$$
\frac{1}{k_4} \int_{\Omega} a(x, u_n, \nabla u_n) w dx \leq \int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n dx \n+ \int_{\Omega} a(x, u_n, \frac{w}{k_4}) \left(\frac{w}{k_4} - \nabla u_n\right) dx.
$$

Thanks to (4.4) and (4.5) , one has

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n dx \le C_5.
$$

Define $\lambda = 1 + k_1 + k_3$. By the growth condition (3.1) and Young's inequality, one can write

$$
\left| \int_{\Omega} a\Big(x, u_n, \frac{w}{k_4}\Big) \Big(\frac{w}{k_4} - \nabla u_n\Big) dx \right|
$$

\n
$$
\leq \left(1 + \frac{1}{k_4}\right) \left(\int_{\Omega} \overline{M}(c(x)) dx + k_1 \int_{\Omega} \overline{M} \overline{P}^{-1} M(k_2|u_n|) dx + k_3 \int_{\Omega} M(|w|) dx \right) + \frac{\lambda}{k_4} \int_{\Omega} M(|w|) dx + \lambda \int_{\Omega} M(|\nabla u_n|) dx.
$$

By virtue of $[18]$ and Lemma 4.14 of $[20]$, there exists an N-function Q such that $M \ll Q$ and the space $W_0^1 L_M(\Omega)$ is continuously embedded into $L_Q(\Omega)$. Thus, by (4.5) there exists a constant $c_0 > 0$, not depending on n, satisfying $||u_n||_Q \leq c_0$. Since $M \ll Q$, we can write $M(k_2 t) \leq Q(\frac{t}{c_0})$, for $t > 0$ large enough. As $P \ll M$, we can find a constant c_1 , not depending on n, such $\frac{1}{\pi}$ Ω $\overline{M}\overline{P}^{-1}M(k_2|u_n|)dx \leq$ Ω $Q\left(\frac{|u_n|}{\cdot}\right)$ c_0 $+ c_1$. Hence, we conclude that the quantity Z $a(x, u_n, \nabla u_n w dx)$ is bounded from above for all $w \in (E_M(\Omega))^N$ with $||w||_M \leq 1$. Using the Orlicz norm we deduce that

$$
(a(x, u_n, \nabla u_n))_n \text{ is bounded in } (L_{\overline{M}}(\Omega))^N. \tag{4.8}
$$

Step 4: Renormalization identity for the approximate solutions. For any $m \geq 1$, define $\theta_m(r) = T_{m+1}(r) - T_m(r)$. Observe that by [19, Lemma2] one has $\theta_m(u_n) \in W_0^1 L_M(\Omega)$. The use of $\theta_m(u_n)$ as test function in (4.2) yields

$$
\int_{\{m \leq |u_n| \leq m+1\}} a(x, u_n, \nabla u_n) \nabla u_n dx \leq \langle f_n, \theta_m(u_n) \rangle + \int_{\{m \leq |u_n| \leq m+1\}} F \nabla u_n dx,
$$

By Hölder's inequality and 4.5 we have

$$
\int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \nabla u_n dx \le \langle f_n, \theta_m(u_n) \rangle
$$

$$
+ C_6 \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx.
$$

It's not hard to see that

$$
\|\nabla \theta_m(u_n)\|_M \le \|\nabla u_n\|_M.
$$

So that by (4.5) and (4.7) one can deduce that

 $\theta_m(u_n) \rightharpoonup \theta_m(u)$ weakly in $W_0^1 L_M(\Omega)$ for $\sigma(\Pi L_M(\Omega), \Pi E_{\overline{M}}(\Omega)).$

Note that as m goes to ∞ , $\theta_m(u) \to 0$ weakly in $W_0^1 L_M(\Omega)$ for $\sigma(\Pi L_M(\Omega), \Pi E_{\overline{M}}(\Omega))$, and since f_n converges strongly in $L^1(\Omega)$, by Lebesgue's theorem we have

$$
\lim_{m \to \infty} \lim_{n \to \infty} \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx = \lim_{m \to \infty} \lim_{n \to \infty} \langle f_n, \theta_m(u_n) \rangle = 0.
$$

By (3.3) we finally have

$$
\lim_{m \to \infty} \lim_{n \to \infty} \int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \nabla u_n dx = 0.
$$
 (4.9)

Step 5: Almost everywhere convergence of the gradients. Define $\phi(s) = s e^{\lambda s^2}$ with $\lambda = \left(\frac{b(k)}{2\alpha}\right)$ 2α)². One can easily verify that for all $s \in \mathbb{R}$ $\phi'(s)-\frac{b(k)}{s}$ $\frac{(k)}{\alpha}|\phi(s)| \geq \frac{1}{2}$ (4.10)

For $m \geq k$, we define the function ψ_m by

$$
\label{eq:1.1} \left\{ \begin{array}{ll} \psi_m(s)=1 & \mbox{if} \quad \ \, |s|\leq m,\\ \psi_m(s)=m+1-|s| & \mbox{if} \quad \ m\leq |s|\leq m+1,\\ \psi_m(s)=0 & \mbox{if} \quad \ \, |s|\geq m+1. \end{array} \right.
$$

By virtue of [21, Theorem 4] there exists a sequence $\{v_j\}_j \subset D(\Omega)$ such that $v_j \to u$ in $W_0^1 L_M(\Omega)$ for the modular convergence and a.e. in Ω . Let us define the following functions $\theta_n^j = T_k(u_n) - T_k(v_j)$, $\theta_j^j = T_k(u) - T_k(v_j)$ and $z_{n,m}^j = \phi(\theta_n^j)\psi_m(u_n)$. Using $z_{n,m}^j \in W_0^1L_M(\Omega)$ as test function in (4.2) we get

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla z_{n,m}^j dx + \int_{\Omega} \Phi_n(u_n) \nabla \phi \big(T_k(u_n) - T_k(v_j) \big) \psi_m(u_n) dx \n+ \int_{\{m \le |u_n| \le m+1\}} \Phi_n(u_n) \nabla u_n \psi'_m(u_n) \phi \big(T_k(u_n) - T_k(v_j) \big) dx \n+ \int_{\Omega} g_n(x, u_n, \nabla u_n) z_{n,m}^j dx = \int_{\Omega} f_n z_{n,m}^j dx + \int_{\Omega} F \nabla z_{n,m}^j dx.
$$
\n(4.11)

From now on we denote by $\epsilon_i(n, j)$, $i = 0, 1, 2, \dots$, various sequences of real numbers which tend to zero, when n and $j \to +\infty$, i. e.

$$
\lim_{j \to +\infty} \lim_{n \to +\infty} \epsilon_i(n,j) = 0.
$$

In view of (4.7), we have $z_{n,m}^j \rightharpoonup \phi(\theta^j) \psi_m(u)$ weakly in $L^{\infty}(\Omega)$ for $\sigma^*(L^{\infty}, L^1)$ as $n \to +\infty$, which yields

$$
\lim_{n \to +\infty} \int_{\Omega} f_n z_{n,m}^j dx = \int_{\Omega} f \phi(\theta^j) \psi_m(u) dx,
$$

and since $\phi(\theta^j) \to 0$ weakly in $L^{\infty}(\Omega)$ for $\sigma(L^{\infty}, L^1)$ as $j \to +\infty$, we have

$$
\lim_{j \to +\infty} \int_{\Omega} f\phi(\theta^j) \psi_m(u) dx = 0.
$$

Thus, we write

$$
\int_{\Omega} f_n z_{n,m}^j dx = \epsilon_0(n,j).
$$

Thanks to (4.5) and (4.7), we have as $n \to +\infty$,

$$
z_{n,m}^j \rightharpoonup \phi(\theta^j) \psi_m(u) \text{ in } W_0^1 L_M(\Omega) \text{ for } \sigma(\Pi L_M(\Omega), \Pi E_{\overline{M}}(\Omega)),
$$

which implies that

$$
\lim_{n \to +\infty} \int_{\Omega} F \nabla z_{n,m}^{j} dx = \int_{\Omega} F \nabla \theta^{j} \phi'(\theta^{j}) \psi_{m}(u) dx + \int_{\Omega} F \nabla u \phi(\theta^{j}) \psi'_{m}(u) dx
$$

On the one hand, by Lebesgue's theorem we get

$$
\lim_{j \to +\infty} \int_{\Omega} F \nabla u \phi(\theta^j) \psi'_m(u) dx = 0,
$$

on the other hand, we write

$$
\int_{\Omega} F \nabla \theta^{j} \phi'(\theta^{j}) \psi_{m}(u) dx = \int_{\Omega} F \nabla T_{k}(u) \phi'(\theta^{j}) \psi_{m}(u) dx \n- \int_{\Omega} F \nabla T_{k}(v_{j}) \phi'(\theta^{j}) \psi_{m}(u) dx,
$$

so that, by Lebesgue's theorem one has

$$
\lim_{j \to +\infty} \int_{\Omega} F \nabla T_k(u) \phi'(\theta^j) \psi_m(u) dx = \int_{\Omega} F \nabla T_k(u) \psi_m(u) dx.
$$

Let $\lambda > 0$ such that $M\left(\frac{|\nabla v_j - \nabla u|}{\lambda}\right)$ $\Big) \rightarrow 0$ strongly in $L^1(\Omega)$ as $j \rightarrow +\infty$ and $M\left(\frac{|\nabla u|}{\lambda}\right)$ λ $\Big) \in L^1(\Omega)$, the convexity of the N-function M allows us to have

$$
M\left(\frac{|\nabla T_k(v_j)\phi'(\theta^j)\psi_m(u)-\nabla T_k(u)\psi_m(u)|}{4\lambda\phi'(2k)}\right)
$$

= $\frac{1}{4}M\left(\frac{|\nabla v_j-\nabla u|}{\lambda}\right)+\frac{1}{4}\left(1+\frac{1}{\phi'(2k)}\right)M\left(\frac{|\nabla u|}{\lambda}\right).$

Then, by using the modular convergence of $\{\nabla v_j\}$ in $(L_M(\Omega))^N$ and Vitali's theorem, we obtain

$$
\nabla T_k(v_j)\phi'(\theta^j)\psi_m(u) \to \nabla T_k(u)\psi_m(u) \text{ in } (L_M(\Omega))^N, \text{ as } j \text{ tends to } +\infty,
$$

for the modular convergence, and then

$$
\lim_{j \to +\infty} \int_{\Omega} F \nabla T_k(u) \phi'(\theta^j) \psi_m(u) dx = \int_{\Omega} F \nabla T_k(u) \psi_m(u) dx.
$$

We have proved that

$$
\int_{\Omega} F \nabla z_{n,m}^{j} dx = \epsilon_1(n,j).
$$

It's easy to see that by the modular convergence of the sequence $\{v_j\}_j$, one has

$$
\lim_{j \to +\infty} \lim_{n \to +\infty} \int_{\{m \le |u_n| \le m+1\}} \Phi_n(u_n) \nabla u_n \psi'_m(u_n) \phi \big(T_k(u_n) - T_k(v_j)\big) dx = 0,
$$

while for the third term in the left-hand side of (4.11) we can write

$$
\int_{\Omega} \Phi_n(u_n) \nabla \phi \big(T_k(u_n) - T_k(v_j) \big) \psi_m(u_n) dx \n= \int_{\Omega} \Phi_n(u_n) \nabla T_k(u_n) \phi' \big(\theta_n^j \big) \psi_m(u_n) dx - \int_{\Omega} \Phi_n(u_n) \nabla T_k(v_j) \phi' \big(\theta_n^j \big) \psi_m(u_n) dx.
$$

Firstly, we have

$$
\lim_{j \to +\infty} \lim_{n \to +\infty} \int_{\Omega} \Phi_n(u_n) \nabla T_k(u_n) \phi'(\theta_n^j) \psi_m(u_n) dx = 0.
$$

In view of (4.7), one has

$$
\Phi_n(u_n)\phi'(\theta_n^j)\psi_m(u_n) \to \Phi(u)\phi'(\theta^j)\psi_m(u),
$$

almost everywhere in Ω as n tends to $+\infty$. Furthermore, we can check that

$$
\|\Phi_n(u_n)\phi'(\theta_n^j)\psi_m(u_n)\|_{\overline{M}} \leq \overline{M}(c_m\phi'(2k))|\Omega| + 1,
$$

where $c_m = \max_{|t| \le m+1} \Phi(t)$. Applying [27, Theorem 14.6] we get

$$
\lim_{n \to +\infty} \int_{\Omega} \Phi_n(u_n) \nabla T_k(v_j) \phi'(\theta_n^j) \psi_m(u_n) dx = \int_{\Omega} \Phi(u) \nabla T_k(v_j) \phi'(\theta^j) \psi_m(u) dx.
$$

Using the modular convergence of the sequence $\{v_j\}_j$, we obtain

$$
\lim_{j \to +\infty} \lim_{n \to +\infty} \int_{\Omega} \Phi_n(u_n) \nabla T_k(v_j) \phi'(\theta_n^j) \psi_m(u_n) dx = \int_{\Omega} \Phi(u) \nabla T_k(u) \psi_m(u) dx.
$$

Then, using again the Divergence theorem we get

$$
\int_{\Omega} \Phi(u) \nabla T_k(u) \psi_m(u) dx = 0.
$$

Therefore, we write

$$
\int_{\Omega} \Phi_n(u_n) \nabla \phi \big(T_k(u_n) - T_k(v_j) \big) \psi_m(u_n) dx = \epsilon_2(n, j).
$$

Since $g_n(x, u_n, \nabla u_n) z_{n,m}^j \geq 0$ on the set $\{ | u_n | > k \}$ and $\psi_m(u_n) = 1$ on the set $\{ | u_n | \leq k \}, \text{ from } (4.11)$ we obtain

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla z_{n,m}^j dx + \int_{\{|u_n| \le k\}} g_n(x, u_n, \nabla u_n) \phi(\theta_n^j) dx \le \epsilon_3(n, j). \tag{4.12}
$$

We now evaluate the first term of the left-hand side of (4.12) by writing

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla z_{n,m}^j dx
$$
\n
$$
= \int_{\Omega} a(x, u_n, \nabla u_n) (\nabla T_k(u_n) - \nabla T_k(v_j)) \phi'(\theta_n^j) \psi_m(u_n) dx
$$
\n
$$
+ \int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n \phi(\theta_n^j) \psi_m'(u_n) dx
$$
\n
$$
= \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(v_j)) \phi'(\theta_n^j) dx
$$
\n
$$
- \int_{\{ |u_n| > k \}} a(x, u_n, \nabla u_n) \nabla T_k(v_j) \phi'(\theta_n^j) \psi_m(u_n) dx
$$
\n
$$
+ \int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n \phi(\theta_n^j) \psi_m'(u_n) dx,
$$

and then

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla z_{n,m}^j dx
$$
\n
$$
= \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \right)
$$
\n
$$
\left(\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s \right) \phi'(\theta_n^j) dx
$$
\n
$$
+ \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \left(\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s \right) \phi'(\theta_n^j) dx
$$
\n
$$
- \int_{\Omega \setminus \Omega_j^s} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \phi'(\theta_n^j) dx
$$
\n
$$
- \int_{\{|u_n| > k\}} a(x, u_n, \nabla u_n) \nabla T_k(v_j) \phi'(\theta_n^j) \psi_m(u_n) dx
$$
\n
$$
+ \int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n \phi(\theta_n^j) \psi_m'(u_n) dx,
$$
\n(4.13)

where by χ_j^s , $s > 0$, we denote the characteristic function of the subset

$$
\Omega_j^s = \{ x \in \Omega \, : \, |\nabla T_k(v_j)| \le s \}.
$$

For fixed m and s , we will pass to the limit in n and then in j in the second, third, fourth and fifth terms in the right side of (4.13). Starting with the second term, we have

$$
\int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s) \phi'(\theta_n^j) dx \n\to \int_{\Omega} a(x, T_k(u), \nabla T_k(v_j)\chi_j^s) (\nabla T_k(u) - \nabla T_k(v_j)\chi_j^s) \phi'(\theta_j^j) dx,
$$

as $n \to +\infty$. Since by lemma (2.4) one has

$$
a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s)\phi'(\theta_n^j) \to a(x, T_k(u), \nabla T_k(v_j)\chi_j^s)\phi'(\theta^j),
$$

strongly in $(E_{\overline{M}}(\Omega))^N$ as $n \to \infty$, while by (4.5)

$$
\nabla T_k(u_n) \rightharpoonup \nabla T_k(u),
$$

weakly in $(L_M(\Omega))^N$. Let χ^s denote the characteristic function of the subset

$$
\Omega^s = \{ x \in \Omega \, : \, |\nabla T_k(u)| \le s \}.
$$

As $\nabla T_k(v_j)\chi_j^s \to \nabla T_k(u)\chi^s$ strongly in $(E_M(\Omega))^N$ as $j \to +\infty$, one has

$$
\int_{\Omega} a(x, T_k(u), \nabla T_k(v_j)\chi_j^s) \cdot (\nabla T_k(u) - \nabla T_k(v_j)\chi_j^s)\phi'(\theta^j)dx \to 0,
$$

as $j \to \infty$. Then

$$
\int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \left(\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s\right) \phi'(\theta_n^j) dx = \epsilon_4(n, j). \tag{4.14}
$$

We now estimate the third term of (4.13) . It's easy to see that by (3.3) , $a(x, s, 0) = 0$ for almost everywhere $x \in \Omega$ and for all $s \in \mathbb{R}$. Thus, from (4.8) we have that $(a(x, T_k(u_n), \nabla T_k(u_n)))_n$ is bounded in $(L_{\overline{M}}(\Omega))^N$ for all $k \geq 0$. Therefore, there exist a subsequence still indexed by n and a function \boldsymbol{l}_k in $(L_{\overline{M}}(\Omega))^N$ such that

$$
a(x, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup l_k
$$
 weakly in $(L_{\overline{M}}(\Omega))^N$ for $\sigma(\Pi L_{\overline{M}}, \Pi E_M)$. (4.15)

Then, since $\nabla T_k(v_j)\chi_{\Omega\setminus\Omega_j^s} \in (E_{\overline{M}}(\Omega))^N$, we obtain

$$
\int_{\Omega\setminus\Omega_j^s} a(x,T_k(u_n),\nabla T_k(u_n))\nabla T_k(v_j)\phi'(\theta_n^j)dx\to \int_{\Omega\setminus\Omega_j^s} l_k\nabla T_k(v_j)\phi'(\theta^j)dx,
$$

as $n \to +\infty$. The modular convergence of $\{v_j\}$ allows us to get

$$
-\int_{\Omega\setminus\Omega_j^s}l_k\nabla T_k(v_j)\phi'(\theta^j)dx\to -\int_{\Omega\setminus\Omega^s}l_k\nabla T_k(u)dx,
$$

as $j \to +\infty$. This, proves

$$
-\int_{\Omega\setminus\Omega_j^s} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \phi'(\theta_n^j) dx = -\int_{\Omega\setminus\Omega^s} l_k \nabla T_k(u) dx + \epsilon_5(n, j).
$$
\n(4.16)

As regards the fourth term, observe that $\psi_m(u_n) = 0$ on the subset $\{|u_n|\geq m+1\}$, so we have

$$
-\int_{\{|u_n|>k\}} a(x, u_n, \nabla u_n) \nabla T_k(v_j)) \phi'(\theta_n^j) \psi_m(u_n) dx =
$$

$$
-\int_{\{|u_n|>k\}} a(x, T_{m+1}(u_n), \nabla T_{m+1}(u_n)) \nabla T_k(v_j) \phi'(\theta_n^j) \psi_m(u_n) dx.
$$

Since

$$
-\int_{\{|u_n|>k\}} a(x, T_{m+1}(u_n), \nabla T_{m+1}(u_n)) \nabla T_k(v_j) \phi'(\theta_n^j) \psi_m(u_n) dx =
$$

$$
-\int_{\{|u|>k\}} l_{m+1} \nabla T_k(u) \psi_m(u) dx + \epsilon_5(n, j),
$$

observing that $\nabla T_k(u) = 0$ on the subset $\{|u| > k\}$, one has

$$
-\int_{\{|u_n|>k\}} a(x, u_n, \nabla u_n) \nabla T_k(v_j) \phi'(\theta_n^j) \psi_m(u_n) dx = \epsilon_6(n, j). \tag{4.17}
$$

For the last term of (4.13), we have

$$
\left| \int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n \phi(\theta_n^j) \psi'_m(u_n) dx \right|
$$

\n
$$
= \left| \int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \nabla u_n \phi(\theta_n^j) \psi'_m(u_n) dx \right|
$$

\n
$$
\le \phi(2k) \int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \nabla u_n dx.
$$

To estimate the last term of the previous inequality, we use $(T_1(u_n - T_m(u_n)) \in W_0^1 L_M(\Omega))$ as test function in (4.2), to get

$$
\int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \nabla u_n dx + \int_{\{m \le |u_n| \le m+1\}} \Phi_n(u_n) \nabla u_n dx \n+ \int_{\{|u_n| \ge m\}} g_n(x, u_n, \nabla u_n) T_1(u_n - T_m(u_n)) dx = \langle f_n, T_1(u_n - T_m(u_n)) \rangle \n+ \int_{\{m \le |u_n| \le m+1\}} F \nabla u_n dx.
$$

By Divergence theorem, we have

$$
\int_{\{m \le |u_n| \le m+1\}} \Phi_n(u_n) \nabla u_n dx = 0.
$$

Using the fact that $g_n(x, u_n, \nabla u_n)T_1(u_n - T_m(u_n)) \geq 0$ on the subset ${ |u_n| \geq m }$ and Young's inequality, we get

$$
\int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \nabla u_n dx
$$
\n
$$
\le \langle f_n, T_1(u_n - T_m(u_n)) \rangle + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx.
$$

It follows that

$$
\left| \int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n \phi(\theta_n^j) \psi'_m(u_n) dx \right|
$$

\n
$$
\leq 2\phi(2k) \Big(\int_{\{m \leq |u_n|\}} |f_n| dx + \int_{\{m \leq |u_n| \leq m+1\}} \overline{M}(|F|) dx \Big). \tag{4.18}
$$

From (4.14), (4.16), (4.17) and (4.18) we obtain

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla z_{n,m}^j dx
$$
\n
$$
\geq \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \right)
$$
\n
$$
\left(\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s \right) \phi'(\theta_n^j) dx
$$
\n
$$
- \alpha \phi(2k) \Big(\int_{\{m \leq |u_n|\}} |f_n| dx + \int_{\{m \leq |u_n| \leq m+1\}} \overline{M}(|F|) dx \Big)
$$
\n
$$
- \int_{\Omega \setminus \Omega^s} l_k \cdot \nabla T_k(u) dx + \epsilon_7(n, j).
$$
\n(4.19)

Now, we turn to second term in the left-hand side of (4.12). We have

$$
\begin{split} &\Big|\int_{\{|u_n|\leq k\}}g_n(x,u_n,\nabla u_n)\phi(\theta_n^j)dx\Big|\\ &=\Big|\int_{\{|u_n|\leq k\}}g_n(x,T_k(u_n),\nabla T_k(u_n))\phi(\theta_n^j)dx\Big|\\ &\leq b(k)\int_{\Omega}M(|\nabla T_k(u_n)|)|\phi(\theta_n^j)|dx+b(k)\int_{\Omega}d(x)|\phi(\theta_n^j)|dx\\ &\leq \frac{b(k)}{\alpha}\int_{\Omega}a_n(x,T_k(u_n),\nabla T_k(u_n))\nabla T_k(u_n)|\phi(\theta_n^j)|dx+\epsilon_8(n,j). \end{split}
$$

Then

$$
\left| \int_{\{ |u_n| \le k\}} g_n(x, u_n, \nabla u_n) \phi(\theta_n^j) dx \right|
$$
\n
$$
\le \frac{b(k)}{\alpha} \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \right)
$$
\n
$$
\left(\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s \right) |\phi(\theta_n^j)| dx
$$
\n
$$
+ \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \left(\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s \right) |\phi(\theta_n^j)| dx
$$
\n
$$
+ \frac{b(k)}{\alpha} \int_{\Omega} a_n(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi_j^s |\phi(\theta_n^j)| dx + \epsilon_9(n, j).
$$
\n(4.20)

We proceed as above to get

$$
\frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \left(\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s \right) |\phi(\theta_n^j)| dx = \epsilon_9(n, j)
$$

and

$$
\frac{b(k)}{\alpha} \int_{\Omega} a_n(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi_j^s |\phi(\theta_n^j)| dx = \epsilon_{10}(n, j).
$$

Hence, we have

$$
\left| \int_{\{|u_n| \le k\}} g_n(x, u_n, \nabla u_n) \phi(\theta_n^j) dx \right|
$$

\n
$$
\le \frac{b(k)}{\alpha} \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \right) \qquad (4.21)
$$

\n
$$
\left(\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s \right) |\phi(\theta_n^j)| dx + \epsilon_{11}(n, j).
$$

Combining (4.12), (4.19) and (4.21), we get

$$
\int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \right) (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s) \n\left(\phi'(\theta_n^j) - \frac{b(k)}{\alpha} |\phi(\theta_n^j)| \right) dx \n\leq \int_{\Omega \setminus \Omega^s} l_k \nabla T_k(u) dx + \alpha \phi(2k) \Big(\int_{\{m \le |u_n|\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx \Big) \n+ \epsilon_{12}(n, j).
$$

By (4.10) , we have

$$
\int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \right) (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s) dx
$$
\n
$$
\leq 2 \int_{\Omega \setminus \Omega^s} l_k \nabla T_k(u) dx + 4\alpha \phi(2k) \Big(\int_{\{m \leq |u_n|\}} |f_n| dx + \int_{\{m \leq |u_n| \leq m+1\}} \overline{M}(|F|) dx \Big)
$$
\n
$$
+ \epsilon_{12}(n, j). \tag{4.22}
$$

On the other hand we can write

$$
\int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi^s) \right) (\nabla T_k(u_n) - \nabla T_k(u)\chi^s) dx
$$
\n
$$
= \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi^s_j) \right) (\nabla T_k(u_n) - \nabla T_k(v_j)\chi^s_j) dx
$$
\n
$$
+ \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(v_j)\chi^s_j - \nabla T_k(u)\chi^s) dx
$$
\n
$$
- \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)\chi^s) (\nabla T_k(u_n) - \nabla T_k(v_j)\chi^s_j) dx
$$
\n
$$
+ \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j)\chi^s_j) (\nabla T_k(u_n) - \nabla T_k(v_j)\chi^s_j) dx
$$

We shall pass to the limit in n and then in j in the last three terms of the right hand side of the above equality. In a similar way as done in (4.13) and (4.20), we obtain

$$
\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(v_j) \chi_j^s - \nabla T_k(u) \chi^s) dx = \epsilon_{13}(n, j),
$$
\n
$$
\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u) \chi^s) (\nabla T_k(u_n) - \nabla T_k(u) \chi^s) dx = \epsilon_{14}(n, j),
$$
\n
$$
\int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) (\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s) dx
$$
\n
$$
= \epsilon_{15}(n, j).
$$
\n(4.23)

So that

$$
\int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right) (\nabla T_k(u_n) - \nabla T_k(u)) \chi^s dx
$$
\n
$$
= \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)) \chi^s_j \right) (\nabla T_k(u_n) - \nabla T_k(v_j)) \chi^s_j dx
$$
\n
$$
+ \epsilon_{16}(n, j). \tag{4.24}
$$

Let $r \leq s$. Using (3.2), (4.22) and (4.24) we can write

$$
0 \leq \int_{\Omega^r} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right) \left(\nabla T_k(u_n) - \nabla T_k(u) \right) dx
$$

\n
$$
\leq \int_{\Omega^s} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right) \left(\nabla T_k(u_n) - \nabla T_k(u) \right) dx
$$

\n
$$
= \int_{\Omega^s} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u) \chi^s) \right) \left(\nabla T_k(u_n) - \nabla T_k(u) \chi^s \right) dx
$$

\n
$$
\leq \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u) \chi^s) \right) \left(\nabla T_k(u_n) - \nabla T_k(u) \chi^s \right) dx
$$

\n
$$
= \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi^s_j) \right) \left(\nabla T_k(u_n) - \nabla T_k(v_j) \chi^s_j \right) dx
$$

\n+ $\epsilon_{15}(n, j)$
\n
$$
\leq 2 \int_{\Omega \setminus \Omega^s} l_k \nabla T_k(u) dx + 2\alpha \phi(2k) \Big(\int_{\{m \leq |u_n| \}} |f_n| dx + \int_{\{m \leq |u_n| \leq m+1\}} \overline{M}(|F|) dx \Big)
$$

\n+ $\epsilon_{17}(n, j)$.

By passing to the superior limit over n and then over j

$$
0 \leq \limsup_{n \to +\infty} \int_{\Omega^r} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right) (\nabla T_k(u_n) - \nabla T_k(u)) dx
$$

$$
\leq 2 \int_{\Omega \setminus \Omega^s} l_k \nabla T_k(u) dx + 4\alpha \phi(2k) \Big(\int_{\{m \leq |u_n|\}} |f| dx + \int_{\{m \leq |u_n| \leq m+1\}} \overline{M}(|F|) dx \Big).
$$

Letting $s \to +\infty$ and then $m \to +\infty$, taking into account that $l_k \nabla T_k(u) \in$ $L^1(\Omega)$, $f \in L^1(\Omega)$, $|F| \in (E_{\overline{M}}(\Omega))^N$, $|\Omega \backslash \Omega^s| \to 0$, and $|\{m \le |u| \le m+1\}| \to 0$, one has

$$
\int_{\Omega^r} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right) \left(\nabla T_k(u_n) - \nabla T_k(u) \right) dx,
$$
\n(4.25)

tends to 0 as $n \to +\infty$. As in [20], we deduce that there exists a subsequence of $\{u_n\}$ still indexed by n such that

$$
\nabla u_n \to \nabla u \text{ a. e. in } \Omega. \tag{4.26}
$$

Therefore, having in mind (4.8) and (4.7), we can apply [27, Theorem 14.6] to get

$$
a(x, u, \nabla u) \in (L_{\overline{M}}(\Omega))^N
$$

and

$$
a(x, u_n, \nabla u_n)) \to a(x, u, \nabla u)
$$
 weakly in $(L_{\overline{M}}(\Omega))^N$ for $\sigma(\Pi L_{\overline{M}}, \Pi E_M)$. (4.27)

Step 6: Modular convergence of the truncations. Going back to equation (4.22), we can write

$$
\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx
$$
\n
$$
\leq \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi_j^s dx
$$
\n
$$
+ \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) (\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s) dx
$$
\n
$$
+ 2\alpha \phi(2k) \Big(\int_{\{m \le |u_n|\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx \Big)
$$
\n
$$
+ 2 \int_{\Omega \setminus \Omega^s} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx + \epsilon_{12}(n, j).
$$

By (4.23) we get

$$
\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx
$$
\n
$$
\leq \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi_j^s dx
$$
\n
$$
+ 2\alpha \phi(2k) \Big(\int_{\{m \leq |u_n|\}} |f_n| dx + \int_{\{m \leq |u_n| \leq m+1\}} \overline{M}(|F|) dx \Big)
$$
\n
$$
+ 2 \int_{\Omega \setminus \Omega^s} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx + \epsilon_{18}(n, j).
$$

We now pass to the superior limit over n in both sides of this inequality using (4.27) , to obtain

$$
\limsup_{n \to +\infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx
$$
\n
$$
\leq \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(v_j) \chi_j^s dx
$$
\n
$$
+ 2\alpha \phi(2k) \Big(\int_{\{m \le |u|\}} |f| dx + \int_{\{m \le |u| \le m+1\}} \overline{M}(|F|) dx \Big)
$$
\n
$$
+ 2 \int_{\Omega \setminus \Omega^s} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx.
$$

We then pass to the limit in j to get

$$
\limsup_{n \to +\infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx
$$
\n
$$
\leq \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) \chi^s dx
$$
\n
$$
+ 2\alpha \phi(2k) \Big(\int_{\{m \le |u|\}} |f| dx + \int_{\{m \le |u| \le m+1\}} \overline{M}(|F|) dx \Big)
$$
\n
$$
+ 2 \int_{\Omega \setminus \Omega^s} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx.
$$

Letting s and then $m \to +\infty$, one has

$$
\limsup_{n \to +\infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx \leq \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx.
$$

On the other hand, by (3.3) , (4.5) , (4.26) and Fatou's lemma, we have

$$
\int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx \le \liminf_{n \to \infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx.
$$

It follows that

$$
\lim_{n \to +\infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx = \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) dx.
$$

By Lemma 2.5 we conclude that for every $k > 0$

$$
a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) \to a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u), \qquad (4.28)
$$

strongly in $L^1(\Omega)$. The convexity of the N-function M and (3.3) allow us to have

$$
M\left(\frac{|\nabla T_k(u_n) - \nabla T_k(u)|}{2}\right) \le \frac{1}{2\alpha} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) + \frac{1}{2\alpha} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u).
$$

From Vitali's theorem we deduce

$$
\lim_{|E| \to 0} \sup_n \int_E M\left(\frac{|\nabla T_k(u_n) - \nabla T_k(u)|}{2}\right) dx = 0.
$$

Thus, for every $k > 0$

$$
T_k(u_n) \to T_k(u) \text{ in } W_0^1 L_M(\Omega),
$$

for the modular convergence.

Step 7: Compactness of the nonlinearities. We need to prove that

$$
g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u) \text{ strongly in } L^1(\Omega). \tag{4.29}
$$

By virtue of (4.7) and (4.26) one has

$$
g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u) \quad \text{a. e. in } \Omega. \tag{4.30}
$$

Let E be measurable subset of Ω and let $m > 0$. Using (3.3) and (3.4) we can write

$$
\int_{E} |g_n(x, u_n, \nabla u_n)| dx
$$
\n
$$
= \int_{E \cap \{|u_n| \le m\}} |g_n(x, u_n, \nabla u_n)| dx + \int_{E \cap \{|u_n| > m\}} |g_n(x, u_n, \nabla u_n)| dx
$$
\n
$$
\le b(m) \int_{E} d(x) dx + b(m) \int_{E} a(x, T_m(u_n), \nabla T_m(u_n)) \nabla T_m(u_n) dx
$$
\n
$$
+ \frac{1}{m} \int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx.
$$

From (3.5) and (4.6) , we deduce that

$$
0 \leq \int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx \leq C_3.
$$

So

$$
0 \le \frac{1}{m} \int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx \le \frac{C_3}{m}.
$$

Then

$$
\lim_{m \to +\infty} \frac{1}{m} \int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx = 0.
$$

Thanks to (4.28) the sequence $\{a(x,T_m(u_n),\nabla T_m(u_n))\nabla T_m(u_n)\}_n$ is equiintegrable. This fact allows us to get

$$
\lim_{|E| \to 0} \sup_n \int_E a(x, T_m(u_n), \nabla T_m(u_n)) \cdot \nabla T_m(u_n) dx = 0.
$$

This shows that $g_n(x, u_n, \nabla u_n)$ is equi-integrable. Thus, Vitali's theorem implies that $g(x, u, \nabla u) \in L^1(\Omega)$ and

$$
g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u)
$$
 strongly in $L^1(\Omega)$.

Step 8: Renormalization identity for the solutions. In this step we prove that

$$
\lim_{m \to +\infty} \int_{\{m \le |u| \le m+1\}} a(x, u, \nabla u) \nabla u dx = 0.
$$
 (4.31)

Indeed, for any $m \geq 0$ we can write

$$
\int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \nabla u_n dx
$$
\n
$$
= \int_{\Omega} a(x, u_n, \nabla u_n) (\nabla T_{m+1}(u_n) - \nabla T_m(u_n)) dx
$$
\n
$$
= \int_{\Omega} a(x, T_{m+1}(u_n), \nabla T_{m+1}(u_n)) \nabla T_{m+1}(u_n) dx
$$
\n
$$
- \int_{\Omega} a(x, T_m(u_n), \nabla T_m(u_n)) \nabla T_m(u_n) dx.
$$

In view of (4.28), we can pass to the limit as n tends to $+\infty$ for fixed $m \ge 0$

$$
\lim_{n \to +\infty} \int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \nabla u_n dx
$$
\n
$$
= \int_{\Omega} a(x, T_{m+1}(u), \nabla T_{m+1}(u)) \nabla T_{m+1}(u) dx
$$
\n
$$
- \int_{\Omega} a(x, T_m(u), \nabla T_m(u)) \nabla T_m(u) dx
$$
\n
$$
= \int_{\Omega} a(x, u, \nabla u) (\nabla T_{m+1}(u) - \nabla T_m(u)) dx
$$
\n
$$
= \int_{\{m \le |u| \le m+1\}} a(x, u, \nabla u) \nabla u dx.
$$

Having in mind (4.9), we can pass to the limit as m tends to $+\infty$ to obtain $(4.31).$

Step 9: Passing to the limit. Thanks to (4.28) and Lemma (2.5), we obtain

$$
a(x, u_n, \nabla u_n) \nabla u_n \to a(x, u, \nabla u) \nabla u \text{ strongly in } L^1(\Omega). \tag{4.32}
$$

Let $h \in C_c^1(\mathbb{R})$ and $\varphi \in \mathcal{D}(\Omega)$. Inserting $h(u_n)\varphi$ as test function in (4.2), we get

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n h'(u_n) \varphi dx + \int_{\Omega} a(x, u_n, \nabla u_n) \nabla \varphi h(u_n) dx \n+ \int_{\Omega} \Phi_n(u_n) \nabla (h(u_n) \varphi) dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) h(u_n) \varphi dx \n= \langle f_n, h(u_n) \varphi \rangle + \int_{\Omega} F \nabla (h(u_n) \varphi) dx.
$$
\n(4.33)

We shall pass to the limit as $n \to +\infty$ in each term of the equality (4.33). Since h and h' have compact support on \mathbb{R} , there exists a real number $\nu > 0$, such that supp $h \subset [-\nu, \nu]$ and supp $h' \subset [-\nu, \nu]$. For $n > \nu$, we can write

$$
\Phi_n(t)h(t) = \Phi(T_\nu(t))h(t) \text{ and } \Phi_n(t)h'(t) = \Phi(T_\nu(t))h'(t).
$$

Moreover, the functions Φh and $\Phi h'$ belong to $(C^0(\mathbb{R}) \cap L^{\infty}(\mathbb{R}))^N$. Observe first that the sequence $\{h(u_n)\varphi\}_n$ is bounded in $W_0^1L_M(\Omega)$. Indeed, let $\rho > 0$

be a positive constant such that $||h(u_n)\nabla\varphi||_{\infty} \leq \rho$ and $||h'(u_n)\varphi||_{\infty} \leq \rho$. Using the convexity of the N -function M and taking into account (4.5) we have

$$
\int_{\Omega} M\left(\frac{|\nabla (h(u_n)\varphi)|}{2\rho}\right) dx \leq \int_{\Omega} M\left(\frac{|h(u_n)\nabla\varphi| + |h'(u_n)\varphi||\nabla u_n|}{2\rho}\right) dx
$$

$$
\leq \frac{1}{2}M(1)|\Omega| + \frac{1}{2}\int_{\Omega} M(|\nabla u_n|) dx
$$

$$
\leq \frac{1}{2}M(1)|\Omega| + \frac{1}{2}C_2.
$$

This, together with (4.7), imply that

$$
h(u_n)\varphi \rightharpoonup h(u)\varphi \text{ weakly in } W_0^1 L_M(\Omega) \text{ for } \sigma(\Pi L_M, \Pi E_{\overline{M}}). \tag{4.34}
$$

This enables us to get

$$
\langle f_n, h(u_n)\varphi \rangle \to \langle f, h(u)\varphi \rangle.
$$

Let E be a measurable subset of Ω . Define $c_{\nu} = \max_{|t| \leq \nu} \Phi(t)$. Let us denote by $||v||_{(M)}$ the Orlicz norm of a function $v \in L_M(\Omega)$. Using strengthened Hölder inequality with both Orlicz and Luxemburg norms, we get

$$
\begin{array}{ll}\n\|\Phi(T_{\nu}(u_n))\chi_E\|_{(\overline{M})} & = \sup_{\|v\|_M \le 1} \left| \int_E \Phi(T_{\nu}(u_n))v dx \right| \\
& \le c_{\nu} \sup_{\|v\|_M \le 1} \|\chi_E\|_{(\overline{M})} \|v\|_M \\
& \le c_{\nu} |E|M^{-1}\left(\frac{1}{|E|}\right).\n\end{array}
$$

Thus, we get

$$
\lim_{|E| \to 0} \sup_n \|\Phi(T_\nu(u_n))\chi_E\|_{(\overline{M})} = 0.
$$

Therefore, thanks to (4.7) by applying [27, Lemma 11.2] we obtain

$$
\Phi(T_{\nu}(u_n)) \to \Phi(T_{\nu}(u))
$$
 strongly in $(E_{\overline{M}})^N$,

which jointly with (4.34) allow us to pass to the limit in the third term of (4.33) to have

$$
\int_{\Omega} \Phi(T_{\nu}(u_n)) \nabla(h(u_n)\varphi) dx \to \int_{\Omega} \Phi(T_{\nu}(u)) \nabla(h(u)\varphi) dx.
$$

We remark that

$$
|a(x, u_n, \nabla u_n)\nabla u_n h'(u_n)\varphi| \le \rho a(x, u_n, \nabla u_n)\nabla u_n.
$$

Consequently, using (4.32) and Vitali's theorem, we obtain

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n h'(u_n) \varphi dx \to \int_{\Omega} a(x, u, \nabla u) \nabla u h'(u) \varphi dx.
$$

and

$$
\int_{\Omega} F \nabla u_n h'(u_n) \varphi dx \to \int_{\Omega} F \nabla u h'(u) \varphi dx.
$$

For the second term of (4.33), as above we have

 $h(u_n)\nabla\varphi\to h(u)\nabla\varphi$ strongly in $(E_M(\Omega))^N$,

which together with (4.27) give

$$
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla \varphi h(u_n) dx \to \int_{\Omega} a(x, u, \nabla u) \nabla \varphi h(u) dx
$$

and

$$
\int_{\Omega} F \nabla \varphi h(u_n) dx \to \int_{\Omega} F \nabla \varphi h(u) dx.
$$

The fact that $h(u_n)\varphi \rightharpoonup h(u)\varphi$ weakly in $L^{\infty}(\Omega)$ for $\sigma^*(L^{\infty}, L^1)$ and (4.29) enable us to pass to the limit in the fourth term of (4.33) to get

$$
\int_{\Omega} g_n(x, u_n, \nabla u_n) h(u_n) \varphi \, dx \to \int_{\Omega} g(x, u, \nabla u) h(u) \varphi \, dx.
$$

At this point we can pass to the limit in each term of (4.33) to get

$$
\int_{\Omega} a(x, u, \nabla u)(\nabla \varphi h(u) + h'(u)\varphi \nabla u) dx + \int_{\Omega} \Phi(u)h'(u)\varphi \nabla u dx \n+ \int_{\Omega} \Phi(u)h(u)\nabla \varphi dx + \int_{\Omega} g(x, u, \nabla u)h(u)\varphi dx \n= \langle f, h(u)\varphi \rangle + \int_{\Omega} F(\nabla \varphi h(u) + h'(u)\varphi \nabla u) dx,
$$

for all $h \in C_c^1(\mathbb{R})$ and for all $\varphi \in \mathcal{D}(\Omega)$. Moreover, as we have (3.5), (4.6) and (4.30) we can use Fatou's lemma to get $g(x, u, \nabla u)u \in L^1(\Omega)$. By virtue of $(4.7), (4.27), (4.29), (4.31),$ the function u is a renormalized solution of problem $(1.1).$

ACKNOWLEDGMENTS

We would like to thank the referees for careful reading of the first version of this manuscript and providing many helpful suggestions and comments \cdots

REFERENCES

- 1. R. Adams, Sobolev Spaces, Ac. Press, New york, 1975.
- 2. L. Aharouch, J. Bennouna, A. Touzani, Existence of Renormalized Solution of Some Elliptic Problems in Orlicz Spaces, Rev. Mat. Complut., 22(1), (2009), 91–110.
- 3. A. Aissaoui Fqayeh, A. Benkirane, M. El Moumni, A. Youssfi, Existence of Renormalized Solutions for Some Strongly Nonlinear Elliptic Equations in Orlicz Spaces, Georgian Math. J., 22(3), (2015), 305–321.
- 4. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, An L^1 -theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22(2), (1995), 240–273.
- 5. A. Benkirane, J. Bennouna, Existence of Renormalized Solutions for Some Elliptic Problems Involving Derivatives of Nonlinear Terms in Orlicz Spaces, Partial differential equations, Lecture Notes in Pure and Appl. Math., 229, (2002), 125–138.
- 6. A. Benkirane, A. Elmahi, A Strongly Nonlinear Elliptic Equation Having Natural Growth Terms and L^1 Data, *Nonlinear Analysis*, **39**, (2000), 403-411.
- 7. A. Benkirane, A. Elmahi, Almost Everywhere Convergence of the Gradients of Solutions to Elliptic Equations in Orlicz Spaces and Application, Nonlinear Anal. T. M. A., 11(28), (1997), 1769–1784.

118 M. EL MOUMNI

- 8. A. Benkirane, A. Elmahi, An Existence Theorem for a Strongly Nonlinear Elliptic Problem in Orlicz Spaces, Nonlinear Anal., 36 (1999), 11–24.
- 9. M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio, Existence and Uniqueness Results for Nonlinear Elliptic Problems with a Lower Order Term and Measure Datum, C. R. Math. Acad. Sci., Paris 334(9), (2002), 757-762.
- 10. M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio, Existence of Renormalized Solutions to Nonlinear Elliptic Equations with a Lower-order Term and Right-hand Side a Measure, J. Math. Pures Appl., 82(9), (2003), 90–124.
- 11. M. F. Betta, O. Guib´e, A. Mercaldo, Neumann Problems for Nonlinear Elliptic Equations with L^1 Data, J. Differential Equations 259, (2015), 898-924.
- 12. L. Boccardo, D. Giachetti, J.I. Diaz, F. Murat, Existence and Regularity of Renormalized Solutions for Some Elliptic Problems Involving Derivatives of Nonlinear Terms, J. Differential Equations, 106(2), (1993), 215–237.
- 13. G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized Solutions of Elliptic Equations with General Measure Data, Ann. Scuola Norm. Pisa Cl. Sci., 28(4), (1999), 741–808.
- 14. A. Dall'Aglio, Approximated Solutions of Equations with L^1 Data. Application to the Hconvergence of Quasi-Linear Parabolic Equations, Ann. Mat. Pura Appl., 170(4), (1996), 207–240.
- 15. R. J. DiPerna, P.-L. Lions, On the Cauchy Problem for Boltzmannn Equations: Global Existence and Weak Stability, Ann. Mat., 130, (1989), 321–366.
- 16. R.J. DiPerna, P.-L. Lions, Global Existence for the Fokker-Planck-Boltzman Equations, Comm. Pure Appl. Math., 11(2) ,(1989), 729–758.
- 17. S. Djebali , O. Kavian, T. Moussaoui, Qualitative Properties and Existence of Solutions for a Generalized Fisher-like Equation, Iranian Journal of Mathematical Sciences and Informatics, 4(2), (2009), 65–81.
- 18. T. K. Donaldson, N. S. Trudinger, Orlicz-Sobolev Spaces and Imbedding Theorems, J. Funct. Anal., 8, (1971), 52–75.
- 19. J. Gossez, A Strongly Nonlinear Elliptic Problem in Orlicz-Sobolev Spaces, Proc. A.M.S. Sympos. Pure Math., 45, (1986), 455–462.
- 20. J. Gossez, Nonlinear Elliptic Boundary Value Problems for Equations with Rapidly (or slowly) Increasing Coefficients, Trans. Amer. Math. Soc., 190, (1974), 163–205.
- 21. J. Gossez, Some Approximation Properties in Orlicz-Sobolev Spaces, Studia Math., 74, (1982), 17–24.
- 22. J.-P. Gossez, V. Mustonen, Variational Inequality in Orlicz-Sobolev Spaces, Nonlinear Anal. Theory Appl., 11, (1987), 379–392.
- 23. O. Guibé, A. Mercaldo, Existence of Renormalized Solutions to Nonlinear Elliptic Equations with two Lower Order Terms and Measure Data, Trans. Amer. Math. Soc., 360(2), (2008), 643–669.
- 24. O. Guibé, A. Mercaldo, Existence and Stability Results for Renormalized Solutions to Noncoercive Nonlinear Elliptic Equations with Measure Data, Potential Anal., 25(3), (2006), 223–258.
- 25. B. Hazarika, Strongly Almost Ideal Convergent Sequences in a Locally Convex Space Defined by Musielak-Orlicz Function, Iranian Journal of Mathematical Sciences and Informatics, 9(2), (2014), 15–35.
- 26. E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin Heidelberg, New York, 1965.
- 27. M.A. Krasnosel'skii, Y.B. Rutickii, Convex Functions and Orlicz Space, Noordhoff, Groningen, 1961.

- 28. F. Murat, Soluciones Renormalizadas de EDP Ellipticas no Lineales, Cours à l'Université de Séville, Mars 1992. Publication 93023 du Laboratoire d'Analyse Numérique de l'Université Paris VI, 1993.
- 29. F. Murat, Équations Elliptiques non linéaires avec Second Membre L^1 ou Mesure, $26^{\grave{e}me}$ Congrès National d'Analyse Numérique. Les Karellis, Juin, (1994), 12-24.
- 30. J.M. Rakotoson, Uniqueness of Renormalized Solutions in a T-set for the L^1 -Data and the Link between Various Formulations, Indiana Univ. Math. J., 43(2), (1994), 685–702.
- 31. A. Youssfi, A. Benkirane, M. El Moumni, Bounded Solutions of Unilateral Problems for Strongly Nonlinear Equations in Orlicz Spaces, E. J. Qualitative Theory of Diff. Equ., 21, (2013), 1–25.