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Abstract. In this paper, we investigate the means of the values of primes

counting function π(x). First, we compute the arithmetic, the geometric,

and the harmonic means of the values of this function, and then we study

the limit value of their ratio.
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1. Introduction and Summary of the Results

1.1. Means of the values of primes counting function. Assume that

(an)n∈N is a strictly positive real sequence. The arithmetic mean of the numbers

a1, a2, . . . , an is defined by

A(a1, . . . , an) =
1

n

n∑
k=1

ak.

The geometric and harmonic means of the these numbers, defined in terms of

arithmetic mean, respectively, by

G(a1, . . . , an) = eA(log a1,...,log an),

and

H(a1, . . . , an) =
1

A( 1
a1
, . . . , 1

an
)
.
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All of the above means are special cases of the so-called generalized mean with

parameter r ∈ R, defined by

Mr(a1, . . . , an) = (A(ar1, . . . , a
r
n))

1
r .

We note that M1 = A, M0 = limr→ 0Mr = G, and M−1 = H.

Analogue to the above discrete case, we assume that for some fixed a ∈ R
the functions f with f : [a,∞) → (0,∞) is an integrable function. For any

real number b > 0, we define the arithmetic, the geometric and the harmonic

means of the values of f over the interval [a, b+ a] respectively by

Ab(f) =
1

b

∫ b+a

a

f(t) dt, Gb(f) = eAb(log f), and Hb(f) =
1

Ab(
1
f )
.

More generally, we define the generalized mean with parameter r ∈ R by

Mb,r(f) = Ab(f
r)

1
r .

Our intention in writing this paper is to investigate means of the values

of primes counting function π(x), which denotes the number of primes not

exceeding x. Since π(t) = 0 for t < 2, and π(t) > 0 for t > 2, we take the mean

values of this function over the interval [2, b+ 2]. We prove the following.

Theorem 1.1. Assume that Ab(π), Gb(π), and Hb(π) denote the arithmetic,

the geometric and the harmonic means of the values of the prime counting

function π(x), over the interval [2, b+ 2] with b > 5, and pn denotes the largest

prime not exceeding b+2. Then, as n→∞ (and equivalently b→∞), we have

Ab(π) =
n

2
+O

( log n

n

)
, (1.1)

Gb(π) = elogn+O(1), (1.2)

and

Hb(π) =
2n

log log n

(
1 +O

( 1

log log n

))
. (1.3)

To prove the above theorem, we need to compute
∫ b+2

2
g(π(t)) dt for g(x) =

x, g(x) = log x, and g(x) = 1
x . In Section 2 we give a result, which enables us

to compute the above mentioned integral for a certain function g, covering the

required cases.

1.2. The ratio of the arithmetic and geometric means. For the sequence

consisting of positive integers, Stirling’s approximation for n! implies that

A(1, . . . , n)

G(1, . . . , n)
=

e

2
+O

( log n

n

)
. (1.4)
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Motivated by this fact, recently we obtained similar asymptotic result concern-

ing the sequence of prime numbers, by proving

A(p1, . . . , pn)

G(p1, . . . , pn)
=

e

2
+O

( 1

log n

)
, (1.5)

where as usual pn denotes the nth prime number (see [2]).

Similar to the above, we denote

A

G
(f) = lim

b→∞

Ab(f)

Gb(f)
,

provided the above limit exits. For instance, if we let f(x) = [x], the integer

part of real x, then over the interval [1, b+ 1] we have

Ab(f) =
1

n

∫ n+1

1

[t] dt =
1

n

n∑
k=1

∫ k+1

k

[t] dt =
1

n

n∑
k=1

k = A(1, 2, . . . , n),

and Gb(f) = G(1, 2, . . . , n), which gives the limit relation (1.4) for A
G (f). More-

over, analogously to (1.4), one may consider A
G (f) for f(x) = x. For the case

of prime numbers, the prime number theorem asserts that pn ∼ n log n as

n →∞. Thus, analogously to the limit relation (1.5), one may consider A
G (f)

for f(x) = x log x. Straightforward computations imply that A
G (f) = e

2 for

f(x) = x and f(x) = x log x. We note that the appearance of the similar limit

value e
2 is not a global property. For example, a similar computation as the

above implies that A
G (f) = 1 for f(x) = log x. In general, Ab(f) > Gb(f),

and we observe that the limit value of the ratio A
G could be any arbitrary real

number β > 1, as the following constructive result confirms.

Theorem 1.2. For any real number β > 1 there exists a real positive function

f such that
A

G
(f) = β.

Remark 1.3. One may ask about existence and the value of limb→∞
Ab(f)
Gb(f)

,

for f(x) = π(x). The prime number theorem asserts that π(x) ∼ x
log x , as

x → ∞. For the function f(x) = x
log x , straightforward computation implies

that A
G (f) = e

2 . But, our computations in (1.1) and (1.2), mainly those of

geometric mean values, is not enough strong to get similar result for π(x).

Our argument in the next section, supports that the value of limb→∞
Ab(f)
Gb(f)

for

f(x) = π(x), if exists, is closely related to the value of the limit

lim
n→∞

S(n)− 1
2npn

n2
, (1.6)

provided it exists, where S(n) =
∑n
k=1 pk. In [2] we prove that

n

2
pn −

9

4
n2 < S(n) <

n

2
pn −

1

12
n2,
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where the left hand side inequality is valid for any integer n > 2, and the right

hand side inequality is valid for any integer n > 10. Thus, the value of the

limit (1.6) lies in the interval [− 9
4 ,−

1
12 ]. We guess that its true value is − 1

4 ,

and consequently, we conjecture that the true value of O(1) in (1.2) is also − 1
4 ,

and hence, A
G (f) =

4
√
e

2 for f(x) = π(x).

2. An Auxiliary General Result

The following results prepare the main tool of explicit and approximate

computing several means of the values of π(x).

Lemma 2.1. For S(n) =
∑n
k=1 pk and g be continuously differentiable on

[1, n− 1], we have

I : =

∫ n−1

e

S([t] + 1)(g′(t+ 1)− g′(t)) dt

= S(n)(g(n)− g(n− 1)) + 2g(1)− cg −
n−1∑
k=1

(g(k + 1)− g(k))pk+1,

where cg is a constant defined in terms of g.

Proof. We let I =
∫ n−1
1
−
∫ e

1
:= I3 −

∫ e

1
with

I3 : =

∫ n−1

1

S([t] + 1)(g′(t+ 1)− g′(t)) dt

=

n−2∑
k=1

∫ k+1

k

S(k + 1)(g′(t+ 1)− g′(t)) dt

=

n−2∑
k=1

S(k + 1)(g(k + 2)− g(k + 1))−
n−2∑
k=1

S(k + 1)(g(k + 1)− g(k))

=

n−1∑
k=2

S(k)(g(k + 1)− g(k))−
n−2∑
k=1

S(k + 1)(g(k + 1)− g(k))

= S(n)(g(n)− g(n− 1))− 2g(2) + 2g(1)−
n−1∑
k=1

pk+1(g(k + 1)− g(k)).

This completes the proof. �

Theorem 2.2. Assume that b > 0 is a real number, and pn denotes the largest

prime not exceeding b+ 2. Also, assume that g : (0,+∞)→ R is a continuous

function. Then, we have∫ b+2

2

g(π(t)) dt = g(n)(b+ 2− pn) +

n−1∑
k=1

(pk+1 − pk)g(k) (2.1)

= g(n)(b+ 2)− 2g(1)−
n−1∑
k=1

(g(k + 1)− g(k))pk+1.
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Moreover, if g is continuously differentiable on the interval [1, n−1] and g′(t) =
d
dtg(t), then for any b > 5 we have∫ b+2

2

g(π(t)) dt = (b+ 2)g(n)− S(n)(g(n)− g(n− 1)) (2.2)

+ cg +

∫ n−1

e

S([t] + 1)∆(t) dt,

where S(n) =
∑n
k=1 pk, cg = 10g(e + 1) − 10g(e) − 5g(3) + 2g(2) + g(1), and

∆(t) := g′(t+ 1)− g′(t). Also, as n→∞ (and equivalently b→∞), we have∫ b+2

2

g(π(t)) dt = G(n) +O(R(n)), (2.3)

where

G(n) =
(
g(n)− n

2
(g(n)− g(n− 1))

)
n`(n) + cg +

1

2

∫ n−1

e

t2`(t)∆(t) dt,

with `(t) = log t+ log log t, and

R(n) =
(
g(n) + n(g(n)− g(n− 1))

)
n+

∫ n−1

e

t2∆(t) dt.

As more as, we have

1

b

∫ b+2

2

g(π(t)) dt =
1

2n`(n)

∫ n−1

e

t2`(t)∆(t) dt+
cg

n`(n)
(2.4)

+
(
g(n)− n

2
(g(n)− g(n− 1))

)
+O

(
G(n)
logn +R(n)

n log n

)
.

Proof. Since pn is the largest prime not exceeding b+ 2, one may write∫ b+2

2

g(π(t)) dt =

∫ pn

2

g(π(t)) dt+

∫ b+2

pn

g(π(t)) dt := I1 + I2,

say, respectively. We note that π(t) = k−1 if and only if pk−1 6 t < pk. Thus,

we obtain I2 = g(n)(b+ 2− pn), and

I1 =

n∑
k=2

∫ p−k

pk−1

g(π(t)) dt =

n∑
k=2

g(k − 1)(pk − pk−1) := Tg(n− 1),

say. This implies validity of (2.1). Now, we apply the truth of Lemma 2.1 to

(2.2). Note that we take b > 5 to guarantee n > 4. Finally, we deduce (2.3) by

applying the known approximations (see [2] and [1], respectively)

S(n) =
1

2
npn +O(n2), as n→∞, (2.5)

and

pn = n(`(n) +O(1)), as n→∞, (2.6)
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from which we get S([t] + 1) = t2

2 `(t) +O(t2), and so∫ n−1

e

S([t] + 1)∆(t) dt =
1

2

∫ n−1

e

t2`(t)∆(t) dt+O

(∫ n−1

e

t2∆(t) dt

)
.

Moreover, the relations (2.5) and (2.6) yield

S(n) =
1

2
n2`(n) +O(n2).

Also, we have pn 6 b+ 2 6 pn+1, from which by applying (2.6) we get

b+ 2 = n(`(n) +O(1)).

By applying the three last relations in (2.2), we obtain validity of (2.3). Also,

we use b = n(`(n) +O(1)) to get

1

b
=

1

n`(n)

(
1 +O

( 1

log n

))
.

This implies validity of (2.4), and completes the proof. �

Remark 2.3. The constants of O-terms in the relations (2.5) and (2.6) are

known explicitly (see [2] and [3]). Thus, one may compute the constants of

O-terms in the relations (2.3) and (2.4) for the given function g.

3. Proofs of the Other Results

We will need some integration formulas, recalled here briefly. We recall that

Li is the logarithmic integral function defined by

Li(x) =

∫ x

0

1

log t
dt,

where we take the Cauchy principal value of the integral. Integration by parts

implies that

Li(x) =
x

log x

m∑
k=0

k!

logk x
+O

( x

logm+2 x

)
, (3.1)

for any integer m > 0. A simple computation verifies that∫
log log x dx = x log log x− Li(x), (3.2)

and this gives∫
`(x) dx =

∫
log(x log x) dx = x log x+ x log log x− x− Li(x). (3.3)

Moreover, by elementary computations, we have∫
`(x)

x
dx =

1

2
log2 x+ log x log log x− log x. (3.4)
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Proof of Theorem 1.1. We utilize the statement of Theorem 2.2 with g(x) = x.

We have cg = 0, and ∆(t) = 0. Thus, we get G(n) = 1
2n

2`(n), and R(n) = 2n2,

and these imply (1.1).

To compute the geometric mean, we apply the statement of Theorem 2.2 with

g(x) = log x. We have

∆(t) =
1

t2

(
−1 +

1

t
− 1

t(t+ 1)

)
.

Hence, we obtain∫ n−1

e

t2∆(t) dt = −n+ log n+ e + 1− log(e + 1) = O(n),

and

t2`(t)∆(t) = −`(t) +
`(t)

t
− `(t)

t(t+ 1)
,

from which by using the relations (3.3) and (3.4), together with the relation

(3.1), we deduce that∫ n−1

e

t2`(t)∆(t) dt = −n`(n) +O(n).

Also, (with g(x) = log x) we have

g(n)− n

2
(g(n)− g(n− 1)) = log n− 1

2
+O

( 1

n

)
,

and

g(n) + n(g(n)− g(n− 1)) = log n+ 1 +O
( 1

n

)
.

Therefore G(n) = `(n)(n log n− n) +O(n), and R(n) = n log n+O(n). Thus,

we obtain
1

b

∫ b+2

2

log π(t) dt = log n+O(1),

and this gives (1.2).

Similarly, we compute the harmonic mean, by using Theorem 2.2 with g(x) = 1
x .

We have

∆(t) =
2t+ 1

(t(t+ 1))2
=

2

t3
+O

( 1

t4

)
.

Thus,
∫ n−1
e

t2∆(t) dt = O(log n), and
∫ n−1
e

t2`(t)∆(t) dt = log2 n+2 log n log log n+

O(log n). Also, (with g(x) = 1
x ) we have g(n)− n

2 (g(n)−g(n−1)) = O( 1
n ) and

g(n)+n(g(n)−g(n−1)) = O( 1
n ). So, G(n) = 1

2 log2 n+log n log log n+O(log n),

and R(n) = O(log n). By using the expansion

1

`(n)
=

log log n

log2 n

(
1 +O

( log log n

log n

))
,

which is valid as n→∞, we obtain

1

b

∫ b+2

2

1

π(t)
dt =

log log n

2n
+O

( 1

n

)
.
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and this gives (1.3). The proof is completed. �

Proof of Theorem 1.2. For any real number η > 0, we set f(x) = xη. We have

Ab(f) =
(b+ 1)η+1 − 1

b(η + 1)
, and Gb(f) = exp

(
η
(b+ 1

b
log(b+ 1)− 1

))
.

Therefore, we obtain
A

G
(f) =

eη

η + 1
:= v(η),

say. We note that d
dηv(η) = v(η) η

η+1 , hence v(η) is strictly increasing for η > 0,

as well as v(0) = 1 and limη→∞ v(η) = ∞. Thus, for any real number β > 1

there exists a real number η > 0 such that v(η) = β, as desired. �
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