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propose and study an iterative algorithm involving p-resolvent operators
of proper, convex and lowersemicontinuous functions for approximating
a common solution of a finite family of minimization problems which is
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in p-uniformly convex metric space. Our proposed algorithm converges
to a common element in the intersection of the set of minimizers of a fi-
nite family of proper, convex and lower semicontinuous functions and the
set of common fixed points of two multivalued nonexpansive mappings.
Finally, we demonstrate the applicability of our results with a numerical
example. Our results improve many important and recent results in this
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1. INTRODUCTION

Let (X, d) be a metric space. X is called a geodesic space if every two points
x,y € X are joined by a geodesic path v : [0,d(x,y)] = X such that v(0) = z,
v(d(z,y)) =y and d(y(t),y(t') = [t —¢/| for all ¢, € [0,d(x,y)]. In this case, v
is an isometry and the image of ~ is called a geodesic segment joining z to y.
The space X is said to be uniquely geodesic if every two points of X are joined
by exactly one geodesic segment, see [13, 36, 40] for further details. Let A be a
nonempty subset of X, then A is said to be convex if A includes every geodesic
segment joining any two of its points.

Let X be a geodesic convex metric space and A be a nonempty subset of X.
A subset A is called proximinal (see [15]), if for each x € X there exists a € A
such that

dist(z, A) = inf{d(x,a) : a € A}.

It is well known that if A is proximinal, then A is closed. We denote the
family of all nonempty proximinal subsets of X by P(X) and the family of
closed and bounded subsets of X by CB(X) respectively. If A and B are
nonempty subsets of X, then the Hausdorff metric H on P(X) is defined by

H(A, B) = max{sup dist(a,B), sup dist(b,A)}, V A,B € P(X).
acA beB

Let T : X — P(X) be a multivalued mapping. A point z € X is called
a fixed point of T if z € Tx. The point z is called a strict fixed point of T'
if Tw = {z} and T is said to satisfy the endpoint condition. The notion of
multivalued (or setvalued) mappings is more general than the single-valued
mappings and was introduced by Markin [32]. Multivalued fixed point theory
has interesting applications in control theory, convex optimization, differential
inclusion, graph theory and economics (see [14, 17, 26, 34, 51] and other refer-
ences therein). Due to this advantage, numerous researchers have extensively
studied approximation of fixed points of multivalued mappings in nonlinear
spaces like CAT(0) spaces, CAT(k) spaces (k > 0), Hadamard spaces, hy-
perbolic spaces and R-trees (see for example [6, 41, 42, 47, 50]). However,
the notion of multivalued mappings are yet to be studied in p-uniformly con-
vex metric spaces, which are more general than the aforementioned nonlinear
spaces.

The nonlinearity property of metric spaces often makes extension of known
results to nonlinear spaces tedious. Due to this limitation, Takahashi [53]
introduced convexity property in metric spaces which provides some sufficient
informations that enable the extension of some known results in Hilbert and
Banach spaces to metric spaces. In 2011, Noar and Siberman [35] introduced a
more general convex metric spaces known as p-uniformly convex metric spaces
(see Section 2 for details). The concept of p-uniformly convex metric spaces is
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a natural generalization of the p-uniformly convex Banach spaces (see [11, 20,
54)).

On the other hand, Minimization Problem (MP) is known to be a very
important optimization problem in optimization theory which has been studied
extensively by many authors due to its interesting applications to real life
problems. MPs are closely related to other optimization problems such as the
monotone inclusion problems [1, 24, 44], equilibrium problems [22, 37] (see also
[2]), variational inequality problems [3, 4, 23, 25, 38, 56] and many more. For
a proper, convex and lower semicontinuous function f on X, the MP is given
as follows: Find x € X such that

f(z) = min f(y). (1.1)

yeX

In this case, x is called a minimizer of f and the solution set (set of minimiz-
ers) of MP (1.1) is denoted by arg mi}r{l f(y). To solve MP (1.1), the Proximal
ye

Point Algorithm (PPA) remains one of the known effective methods. The PPA
was first introduced by Martinet [33] and was further developed by Rockafel-
lar [48]. The latter proved that the PPA converges weakly to a minimizer of
a proper convex and lower semicontinuous functional. Since then, numerous
researchers have devoted attention to finding solutions of MPs using the PPA
in Hilbert spaces, Banach spaces and their generalizations, see [18, 21, 46, 52]
and other references therein. In 2013, Bacdk [7] introduced and studied the
PPA in a complete CAT(0) space. He established the A-convergence of PPA

with the assumptions that f has a minimizer in X and > A\, = co. In an
n=1
attempt to introduce and generalize the PPA to a more general convex metric

space setting, Choi and Ji [11] introduced the notion of p-resolvent operator
in a p-uniformly convex metric space as a generalization of the Moreau-Yosida
resolvent in a CAT(0) space as follows:

H) = argmip (/) + 5odlw,2)), (1.2)
where f is a convex and lower semicontinuous function not identically co and
A > 0 (see [7]). They introduced the following PPA involving the p-resolvent
operator (1.2) and proved that it converges to a minimizer of f :

T, = J/]\Cn(xn_l), n > 1. (1.3)

Recently, Kuwae [28] defined another version of p-resolvent operator which
is more general than (1.2) in p-uniformly convex metric spaces as follows:

. 1
J{(:c) = argmin (f(v)JrWd(v,a:)p). (1.4)

He established the unique existence of the p-resolvent operator (1.4) associ-
ated to a coercive proper lower semicontinuous functional. In addition, he ap-

plied (1.4) to obtain solutions of initial boundary value problems for p-harmonic
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maps. Izuchukwu et al. [20] adopted (1.4) to approximate the solution of a
Split Minimization Problem (SMP) in p-uniformly convex metric spaces. They
proposed a Backward-Backward Algorithm and an Alternating Proximal Algo-
rithm that both converge to a solution of the SMP under some mild conditions.
Very recently, Aremu et al. [5] proposed and studied a multi-step iterative
algorithm that comprises of a finite family of asymptotically k-strictly pseudo-
contractive mappings and a p-resolvent operator of form (1.4) associated with
a proper, convex and lower semicontinuous function in a p-uniformly convex
metric space. They established the A-convergence of the proposed algorithm
to a common fixed point of a finite family of asymptotically k-strictly pseudo-
contractive mappings which is also a minimizer of the proper, convex and lower
semicontinuous function. For more, some researchers have used the p-resolvent
operator (1.2) to obtain solutions of MPs in p-uniformly convex metric spaces.
For more recent and interesting results in p-uniformly convex metric spaces,
see [, 10] and other references therein.

Motivated by the current research interest in this direction, we extend the
class of multivalued nonexpansive mappings to p-uniformly convex metric spaces.
Furthermore, we propose and study an iterative algorithm involving p-resolvent
operators (of type (1.4)) of proper, convex and lowersemicontinuous functions
for approximating a common solution of a finite family of minimization prob-
lems which is also a common fixed points of two multivalued nonexpansive
mappings in p-uniformly convex metric space. Our proposed algorithm con-
verges to a common element in the intersection of the set of minimizers of a
finite family of proper, convex and lower semicontinuous functions and the set
of common fixed points of two multivalued nonexpansive mappings. Finally,
we demonstrate the applicability of our results with a numerical example. Our
results improve many important and recent results in this direction.

2. PRELIMINARIES

In this section, we recall some results and definitions that will be needed in
the proof of our main results.

Let {z,} be a bounded sequence in a metric space X and r(-, {z,}) : X —
[0,00) be a continuous functional defined by r(z, {z,}) = limsup d(z, z,,). The

asymptotic radius of {x,, } is given by r({z,}) := inf{r(z, {xz_})i)o x € X}, while
the asymptotic center of {z,} is the set A({z,}) = {z € X : r(z,{z,}) =
r({zn})}. A sequence {z,} in X is said to be A-convergent to a point € X if
A({zn,}) = {x} for every subsequence {x,, } of {z,}. In this case, we say that
x is the A-limit of {z,,} (see [13, 27]). The notion of A-convergence in metric
spaces was introduced and studied by Lim [31], and it is known as analogue of
the notion of weak convergence in Banach spaces.
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Definition 2.1. [30] A convex metric space X is called uniformly convex, if
for any r > 0 and € € (0, 2], there exists a § € (0, 1] such that for all a,z,y € X,
we have that d(z,a) <r, d(y,a) <r and d(z,y) > er imply

1

d(§x ® %y, a) < (1—=90)r (2.1)

A mapping 7 : (0,00) % (0, 2] — (0,1] providing such a ¢ := n(r, €) for any given
r >0 and € € (0,2], is called the modulus of uniform convexity.

Definition 2.2. Let 1 < p < 0o, a metric space X is called p-uniformly convex
with parameter ¢ > 0 if and only if X is a geodesic space and

dv,(1=Ha @ty < (1-d(,) +tdw,y)" - St1 = Hd(,y)"(2.2)
for all z,y,v € X, t €[0,1].

Remark 2.3. [5] If X is a p-uniformly convex metric space for 1 < p < oo, with
parameter ¢ > 0. Then, the modulus of uniform convexity of X is given as

ox(e) = —.
0=
The following are typical examples of p-uniformly convex metric spaces:

1. Let X be a real Banach space. The modulus of convexity of X with
dim(X) > 2 is the function dx : [0,2] — [0, 1] defined by

x(e) s=inf {1 = || 22| el = llyll = 1, e =z — yll}.

The Banach space X is called p-uniformly convex for p > 1[12] (see also [8]),
if 5x(e) > 0 for all € € (0,2]. The L, space with p > 2, is a p-uniformly convex
Banach space with dx () > ;% [12]. If a Banach space X is p-uniformly convex

r+vy

for p > 2, then X is p-uniformly convex metric space (see [10, 29]).
2. Let X be a CAT(0) space. For any two elements z,y € X, there exists an
element m € X such that

1 1 1
d(z,m)? < id(z,x)2 + id(z,y)2 — Zd(x,y)2 VzeX.

For any z,y € X, there exists a unique geodesic v : [0,1] — X with v(0) =
and (1) = y. Furthermore, for any z € X and ¢ € [0, 1],

d(z,v())? < (1 —t)d(z,2)* + td(z,y)* — t(1 — t)d(z,y)*.
Then a CAT(0) space is 2-uniformly convex metric space with parameter ¢ = 2
and p = 2 (see [10, 20, 49]).
3. Let X be a CAT(k) space with diam(X) < for k > 0 and parameter
¢ = (1 — 2Vke) tan(vke) for any 0 < € < oV dzam(X). Let v :[0,1] - X
be any geodesic with v(0) =, y(1) =y, z € X and t € [0, 1], such that

d(z(1)* < (1= 1d(z,2)? + td(z,y)? = SH(1 = t)d(w,y)?
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holds. Then, CAT(k) space X with diam(X) < 77 1s a 2-uniformly convex
metric space (see [10, 29, 45]).

Remark 2.4. [16, 49] Let X be a complete p-uniformly convex metric space.
Then,

(i) every bounded sequence in X has a unique asymptotic center,
(ii) every bounded sequence in X has a A-convergent subsequence.

Definition 2.5. Let X be a complete convex metric space. A multivalued

nonlinear mapping 7' : X — 2% is said to be demiclosed if for any bounded

sequence {x,} in X such that A — lim x,, = v and lim d(z,,z,) =0, (where
n— oo n—oo

zn € Tx,) we have that v € F(T).

Lemma 2.6. [19] Let X be a metric space and A, B are nonempty subsets in

P(X). Then for all a € A, there exists b € B such that d(a,b) < H(A, B).

Definition 2.7. Let X be a p-uniformly convex metric space. A function
f:X — (—o0,00] is said to be

(i) convex, if
fOr@ (1= Ay) <Af(z) + (1= AN)f(y) Yo,y € X, A€ (0,1),

(ii) proper, if D := {z € X : f(z) < +oo} # 0, where D denotes the
domain of f,
(iii) lower semicontinuous at a point = € D, if

flz) < lirginf f(zn),

for each sequence {z,} in D such that lim z, =z,
n—oo

(iv) lower semicontinuous on D, if it is lower semicontinuous at every point
in D.

Lemma 2.8. [20] For 1 < p < oo, let X be a p-uniformly conver metric space
with parameter ¢ > 0 and f : X — (—o0,00] be a proper conver and lower
semicontinuous function. Then, for any A\ > 0 and x € X, there exists a
unique point, say ij (z) € X such that

J () + d(J{(x),z)? = inf (f(v) + d(v,z)P).

p)\i"_l veX

Lemma 2.9. [20] For 1 < p < oo, let X be a p-uniformly convex metric space
with parameter ¢ > 2 and f : X — (—o00,00] be a proper conver and lower
semicontinuous function. Then, the p-resolvent operator J/]\c of f is monexpan-
sive.

Lemma 2.10. [55] For 1 < p < oo, let X be a p-uniformly convex metric
space with parameter ¢ > 2 and f : X — (—o0,00| be a proper conver and
lower semicontinuous function. Let J{ be the p-resolvent mapping of f such

that F(J{) # 0, then for A > 0, we have the following:
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(i) ve F(J){) if and only if v is a minimizer of f;
(i) d(v, J/(z)” + d(J{:r,x)p < d(v,z)P for allz € X andv € F(J{);
(ili) d(Jrz,2)? < d(Juz,z)?forh < p and z € X.

3. MAIN RESULTS

In this section, we prove some lemmas which are crucial in establishing our
main results. We begin with the following definition of multivalued nonexpan-
sive mapping and example in p-uniformly convex metric spaces.

Definition 3.1. Let X be a p-uniformly convex metric space. A mapping
T:X — P(X) is said to be multivalued nonexpansive, if

H(Tz,Ty) <d(z,y) for all z,y € X.

EXAMPLE 3.2. Let YV := {(z,¢”) : € R} and X,, := {(n,y) : y > "} for

each n € Z. Set X :=Y U |J X,, equipped with a metric d: X x X — [0, c0),
nez
defined for all x = (z1,22),y = (y1,¥2) € X by

Y1
1Y (@®)l2dt + |z2 — ™| + [y2 — e, if 21 # y1,
d(z,y) = /a (3.1)

|2 — yal, if x1 =1,

where 4 is the derivative of the curve v : R — X given as v(t) := (¢,e?) for
each t € R (see [9]). Then (X, d) is a complete p-uniformly convex metric space
with p = 2 and parameter ¢ = 2.

Now, let T : X — P(X) be defined by Tz = {(z1,e"*),(0,0)} for all
x = (x1,22) € X. Clearly F(T) = {(0,0)}. We check that T is nonexpan-
sive. Indeed, for each (x1,x2), (y1,y2) € X, we have

dist((zq,e"), Ty) = inf{d((z1, ™), (y1,€"")),d((0,0), (z1,€e"))}.

But,

Y
I )adt + 67 — €™ | 4+ e — | i a1 # g,

d((z1, ™), (y1, ")) = /ml

|e®t — e¥t | if x1 =1,

Y1
/ () ladt if 21 # 1,

1

et — e¥1| if x1 =y,
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and
4((0,0), (o1, 7)) = [ 5@l 00 e e it 71 #0,
e if 2 =0,
) {/ (0 ladt + 1 if 2y 20,
R 10 if 21 = 0.
Therefore,
dist((1,¢™), Ty) = d((1,¢™), (41, €")).
Also,
dist((0,0), Ty) = inf{d((0,0), (31, ")), d((0,0), (0,0))}
=d((0,0),(0,0)).
Similarly,

dist((yr, ¢"), Te) = inf{d((x1,¢™), (g1, €")), d((0,0), (y1, "))}
= d((l’l, €I1), (yla eyl))
and
dist((0,0), Ty) = inf{d((0,0), (z1,€™)),d((0,0), (0,0))}
= d((oa 0)7 (07 0))

Hence,

H(Tz,Ty) = max{ sup dist(a,Ty), sup dist(b, Tac)}
a€Tx beTy

= max { Sup{d((l‘l, 611)’ (2117 eyl))v d((ov 0)’ (07 O))}7

sup{d((w1, e™), (y1, ")), d((0,0), (0,0))} }
= d((xlv 611)7 (yl’ eyl))

Y1
I AGIOI .
=< Ju
le™r — e¥1] if x1 =y,
<d(z,y).

Therefore, T' is a multivalued nonexpansive mapping.

Lemma 3.3. (Demiclosedness). Let X be a p-uniformly conver metric space
with 1 < p < oo and parameter ¢ > 2. Let T : X — P(X) be a multivalued
nonexpansive mapping. Suppose {x,} is a bounded sequence in X such that
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{zn} A-converges to v € X and 1Lm d(xp, zn) = 0 (where z, € Txy). Then
ve F(T).

Proof. Since {x,} is bounded, we get from Remark 2.4(i) that the asymptotic

center of the sequence {z,} is unique. Also, since {z,} A-converges to a

point v, it then follows that A({z,}) = {v}. Let ¢(z) = limsup d(x,, =), since
n—oo

lim d(xy,, z,) = 0, we obtain that
n—oo

o(z) = limsup d(zp, x).

n—oo

If v* € Tv, then

p(v*) = limsup d(zp, v™)

n— oo

< limsup H(Tz,,, Tv)

n— oo

< limsup d(z,, v)

n— oo

= ¢(v). (3.2)

If we let ¢t = £ in (2.2), we obtain that

1 1 1
d(xp, 5(1} G v*))P < id(x"’ v)P + §d(a:n, v*) — gd(v, v*)P. (3.3)

Taking the limsup of (3.3) as n — oo, we have that

1 * c *
P(0) + 50" = Sd(v,07)",

DO =

P(v) < p(5(0 v <
which implies
cd(w,0")? < A(p(0")? — p0)?). (3.4)

It is easy to see from (3.2), (3.4) and ¢ > 0 that d(v,v*) = 0, hence v € Tw.
This completes the proof. ([

Lemma 3.4. For 1 < p < oo, let X be a p-uniformly conver metric space

with parameter ¢ > 0. Then for all v,w,z,y,z € X and «, 3,7 € (0,1), with
a+ B +v=1, we have

dlaw @ By @ 72,0)" < ad(w,v)” + Bd(y, v)? +vd(z,v)".
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Proof. Let w = ax @ Py @ yz. We may rewrite w as w = ax @ (1 — a)(%y @
2=z). Then from (2.2), we have

[e3

d(w,v)p:d(owc@(l—a)d( p y b ’yaz),v)p

1-a” " 1-
< ad(z,v)’ + (1 — a)d (( Y B lzaz)ﬂ’)p
c I} 5 p
B 504(1 B a)d(:p, (1 - ay@ 1-— az))
< ad(z,v)?
+u—aﬂ1_aﬂ%wp+1jaaa@p—2d?2)a%)}

< ad(, ) + Bd(y, v)" +7d(z, V).
O

We are now ready to present the main results of this paper. Henceforth, for
each i =1,2..., N, we denote by J, « the p-resolvent operators of the form
(1.4) of finite family of proper, convex and lower semicontinuous functions f;.

Lemma 3.5. Let X be a p-uniformly convex metric space with 1 < p < o0
and parameter ¢ > 2 and f; : X — (—o00, 00| be a finite family of proper convex
and lower semicontinuous functions. Let T; : X — P(X), j = 1,2 be two

2
multivalued nonezpansive mappings such that Tjv = {v} and I' := () F(T;)N
j=1

N

N arg mi}r{l fi(y) # 0. For arbitrary 1 € X, let the sequence {x,} be generated
=1 Y€

by

(3.5)

Yn = J/\(TLN) o J)\glN—w O---0 JAS:") o JAS)‘T"’
Tntl = QpTp D ﬂnzn,l D Yn2n,2

where zp1 € ThYn, Zn,2 € Toyn and {)\Sf)} is a sequence for each
1=1,2,--- | N, such that the following conditions are satisfied:
(C1) AP > A0 >0,
(C2) an € [a,b] € (0,1), Bn €[d,e] C (0,1), m € [g,h] C(0,1),
an+ Bn+v, =1 forn>1.
Then,
(a) lim d(zp,v)? exists Vv €T,

n—oo

(b) lim d(cn ,J,\(>c ) =0, Vi=12-,N, where ¢i™ = chSZ), and
n—oo

(1)—mnforeachi:12 ,N, n>1 and
(¢) hm dist(Tjyn,yn) =0, for each j =1, 2.
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Proof. (a) Since it = g W =

A = x,, then

()Cn,foralln>1 and ¢y,

N+1 N
Cgl +1) = J)\g\mcg ) = JA%N) ] JA;NA) ©---0 )\%3) ] J)\f) OJ/\511).%'n.

Let v € T, we get from Lemma 2.10(i) that v = J)\gli)v forallt=1,2,---,N.

Then from (3.5), Lemma 2.6, Lemma 2.9 and Lemma 3.4, we have that
d(@n+1,0)" < and )P+ Brd(zn,1,0)? + ynd(zn,2,0)"

)P + BuH (T1yn, T1v)? + Yo H (T2yn, T2v)”

d(n, v) + Prd(yn, v)” + Ynd(yn, v)*

)P+ (Bn + ) d(Yn, v)”
)+ (B + ) (e, v)? (3.6)
)

P+ (B +n)d(c (N),,U)p

H
3
<

H
3
<

< and(l'na U)p =+ (ﬁn =+ %)d(cw, U)p
= d(zy,v)P.

Hence, lim d(z,,v)P exists.
n—oo
(b) From Lemma 2.10(ii), for all i = 1,2,..., N, we have that

d(cHD )P < d(elD | v)P — d(el?, TP, (3.7)

Setting ¢ = N in (3.7), we obtain from (3.6) that
d(@n+1,0)" < @nd(@n, v)" + (Ba + ya)d( VD 0)P

< and(zn, )P + (Bn + Vn) [d(cgv), )P — d(cN), CgN+1))p]

< @ d(Tn, )P + (Bn + Yn) [d(c,0)P — (et C;N+1))p]
= (w0, ) + (1 = ) [dn, 0)7 — (e, D)7
= d(zn,v)” — (1 — ap)d(cM), N TP, (3.8)
which implies from condition C2 and (a) that
(1 — an)d(cN) e NEDYP < (2, 0)P — d(xpy1,v)P =0, as n — oo, (3.9)
Hence,
d(cN) NFDY 50, as n — oo. (3.10)

Again, if we set i = N — 1 in (3.7) and following the same argument in (3.8),
we obtain that

ANV Ny 50, as n — . (3.11)
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Continuing in the same manner, we have that

d(cﬁf),c,(f"‘l)) —0,asn— o0, foralli=1,2,--- ,N — 2. (3.12)
Then, by (3.10), (3.11) and (3.12), we get
d(cgf%csf"‘l)) —0, asn— oo, foralli=1,2,---, N. (3.13)

Hence, for each i = 1,2,--- , N, we obtain by applying the triangle inequality
that

d(c), D) = d(zy, D) =0, asn — oo foralli =1,2,--- ,N+1. (3.14)
By condition C1, we have from Lemma 2.10(iii) and (3.13) that

d(c®, Ty ey < d(c, ch;”) — 0, asn — o0, foralli=1,2,--- N.
(3.15)

(¢) From (2.2), (3.5) and Lemma 2.6, we have

n P
Ani1, 0" = A((1 = 70) (720 @+ 201) © 22,0

Bn
1—, 11—,

< _%)[Ld(xmv)p + Bn

1_771 —Tn

d(zn,1,v)P

__confn » )
2(1 — ,Yn)Qd(xm Zn,l) :| + rYTLd(Zn,Qy 1])

- and(xn» ,U)p + Bnd(zn,lv ,U)p - canﬂn

7d l'n,Zn p
BT — ) T Z1)

+ ’Ynd(zn,% U)p
< O‘nd(xnv v)p + /BnH(leny Tlv)p

coun Bn
—d
2(1 - ’Vn)

< and($m U)p + (5n + ’Yn)d(cﬁzN)v ,U)p -

(mn7 Zn,l)p + ’YnH(TQyna TZU)p

Md(axn,zﬂ,m
2(1 - ’Yn)

< p (1) e ¥nbn p
= and(xn,v) + (Bn + 7n>d(cn ,U) 2(1 — ’Yn)d(xru Zn,l)

=d(zp,v)P — 72(1 )

d(:l?n, Zn,l)pa

which implies that
Canﬁn
2(1 - ’Yn)
Therefore, by condition C2 and the fact that ¢ > 0, we obtain that

d(xnv Zn,l)p < d(l‘n, U)'D - d(xn+17 U)p~

d(zy, 2n,1) — 0, as n — oo. (3.16)
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Similarly, from (3.5), (2.2) and Lemma 2.6, we have

d($n+1,1})p = d((l - /Bn)(l fnﬁ Tn © 1 '_Ynﬂ Zn,Q) 52 ﬁnzn,lav>p

Qo n
CQnYn

- Wd(xnazn,2>p:| + Bnd(zn,1,v)P
COlpYn

_ P p_ P
and(xmv) +7nd(2n727v) 2(1 — ﬁn)d(xmznﬂ)
+ Bnd(zn,h U)p

S and(xn7 U)p + VnH(szn, TQU)p -

(Zm?’ U)p

2(1 - Bn)

d(l‘n, Zn,Q)p
+ ,BnH(leny Tlv)p

< and(@n, 0) + (Bo + )N 0)P — T s )P

2(1— )
< and(in, v)? + (9 + Bu)d(clD, 0)P - mdm, 2n2)?
= d(zp,v)? — %d(mn,zmg)p,

which implies that

2(1 - Bn)
and hence, by condition C2 and the fact that ¢ > 0, we obtain that

d(x'ru Zn,Q)p < d((En, v)p - d($n+1u U)p

d(zy, 2n,2) — 0, as n — oo. (3.17)
Thus, from (3.16) and (3.17), we have that
d(zn,j,xn) — 0, asn — oo, for j =1,2. (3.18)
Therefore, we conclude from (3.14) (when ¢ = N + 1) and (3.18) that
dist(yYn, Tjyn) < d(yn, n) + d(2n, 2n,;) = 0, as n — oo, for j =1,2. (3.19)
Finally, from (3.14) (when ¢ = N + 1) and (3.19), we obtain
dist(xn, Tjzn) < d(Zn, yn) + d(Yn, Tjyn) + d(Tiyn, Tjzn)
< d(zp, Yn) + dYn, Tjyn) + d(Yn, zn) — 0, as n — oco. (3.20)
(]

Theorem 3.6. Let X be a complete p-uniformly convexr metric space with
1 < p < oo and parameter ¢ > 2 and f; : X — (—o00,00| be a finite family
of proper convex and lower semicontinuous functions. Let T; : X — P(X),
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7 =1, 2 be two multivalued nonexpansive mappings such that T;v = {v} and
ﬂ F(T;)n ﬂ arg mln fi(y) # 0. For arbitrary x1 € X, let the sequence

{zn} be genemted by (3. 5) such that conditions (C1) and (C2) in Lemma 3.5
are satisfied. Then, the sequence {x,} A-converges to an element of .

Proof. Since {z,} is bounded and X is a complete p-uniformly convex metric
space, then by Remark 2.4(i) the sequence {z,} has a unique asymptotic cen-
ter (that is A{zn}) = {v}). Let {x,,} be a subsequence of {z,} such that
A({zn,}) = {u}. Then by (3.20), we have kllrgo dist(Tjzp,, xn,) =0, j =1,2.
Thus, by Remark 2.4(ii) and Lemma 3.3, we obtain that u € T'. Also, since J )
is nonexpansive mapping for each ¢ = 1,2,--- | N, it then follows from Remark
2.4(ii), (3.14) and (3.15) that u € T.

Furthermore, since we have from Lemma 3.5(a) that nh_}ngc d(xy,u) exists. It

follows from the uniqueness of asymptotic center that

limsupd(x,,,u) < limsupd(zp,,v)

k—o0 k—o0
< limsupd(z,,v)
n—oo
< limsupd(zy,u)
n— oo
< limsupd(zp,,u)

k—o0

which implies that v = u. Therefore, {z,,} A-converges to an element of I'. [
The following is consequence of Theorem 3.6.

Corollary 3.7. Let X be a complete p-uniformly convex metric space with
1 < p < oo and parameter ¢ > 2 and f; : X — (—o00,00] be a finite family
of proper convex and lower semicontinuous functions. Let T : X — P(X),
be a multivalued nonexpansive mapping such that Tv = {v} and T := F(T) N

N

N arg Hli)I(l fi(y) # 0. For arbitrary x1 € X, let the sequence {x,} be generated
i=1 ye

by

yn:J(N)OJ(N—l)O"'O (2>OJ(1)$
{ An An An’ T T AR T (3.21)

Tna1 = nZn O (1 — ap)zp,
where z, € Ty, {)\gzi)} is a sequence for each i =1,2,---, N such that /\55) >

MDY >0 and {a,} € [a,b] C (0,1). Then, the sequence {x,} A-convergence to
an element of T.

Proof. If we set v, = 0 and 3, = (1 — a,) in (3.5), and applying (2.2) in place
of Lemma 3.4, then the proof follows as the proofs of Lemma 3.5 and Theorem
3.6. O

Now, we present some strong convergence results.
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Theorem 3.8. Let X be a complete p-uniformly convexr metric space with
1 < p < oo and parameter ¢ > 2 and f; : X — (—00,00| be a finite family
of proper convex and lower semicontinuous functions. Let T; : X — P(X),
Jj = 1,2 be two multivalued nonexpansive mappings such that Tjv = {v} and

2 N
I:= N F(T;)N ) arg mi)r(l fi(y) # 0. For arbitrary x1 € X, let the sequence
j=1 i=1 ye

{zn} be generated by (3.5) such that conditions (C1) and (C2) in Lemma 3.5
are satisfied. Then, the sequence {x,} strongly converges to an element of T if
and only if lini)inf dist(x,,T) = 0.

Proof. Suppose that {z,} converges to a point v € I'. Then, nl;ngo d(xp,v) =0
and since 0 < dist(z,,T') < d(x,,v), it follows that nli_)n;odist(xn,l“) = 0.
Thus, lif_l)ioréf dist(z,,I') = 0. Conversely, suppose linrr_l)ioréfdist(acn,F) =0, we
arbitrarily choose £ > 0, for a positive integer mg such that

§

dist(z,,T) < e ¥V n > mo.

In particular,

inf{d(zmy,v) ;v €T} < %

Then, there exists v* € T' such that d(z,,v*) < % Then, for all m,n > mo,
we have
d(xn-‘rma an) S d(xn-‘rma U*) + d(’U*, xn)

< 2d(xpmy, v™)

3
Therefore {x,} is a Cauchy sequence in X. Since X is complete, is implies that
the sequence {x,,} converges to some point v* in X. Also, since I is closed and
lim dist(z,,I') = 0, we have v* € I". This completes the proof. O
n—oo

Theorem 3.9. Let X be a complete p-uniformly convexr metric space with

1 < p < oo and parameter ¢ > 2 and f; : X — (—00,00] be a finite family

of proper convex and lower semicontinuous functions. Let T; : X — P(X),

Jj = 1,2 be two multivalued nonexpansive mappings such that Tjv = {v} and
2 N

I:= N F(T;)N N arg mi)r(l fi(y) # 0. For arbitrary x, € X, let the sequence
j=1 i=1 ye

J
{zn} be generated by (3.5) such that conditions (C1) and (C2) in Lemma 8.5
are satisfied. Let ® : [0,400) — [0,400) be a nondecreasing function with
®(0) =0 and @(r) > 0 for all v > 0 such that

O (dist(x,T)) < dist(x, Tjx) for j=1,2 (3.22)
or

O (dist(z,T)) < dist(z, Jywyx) fori=1,2,--- N, (3.23)
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for all x € D. Then, the sequence {x,} strongly converges to an element of T

Proof. 1t follows from Lemma 3.5(a) that li_)m d(zy,v) = 0. This implies that
n—oo
lim d(x,,T') = 0. Then, we have from (3.15) and (3.20) that

n—oo

lim ®(dist(z,I')) < lim dist(z, Tjz) =0 for j = 1,2

n—oo n—oo

or

lim ®(dist(z,I)) < lim dist(x, Jywyz) =0fori=1,2,--- N.

n—o0 n—o0

Thus, we obtain that
lim ®(dist(z,,T")) =0.

n—0o0

Since ® is nondecreasing, it implies that

lim dist(z,,T") =0.

n— oo

Following the same line of argument in the proof of Theorem 3.8, we conclude
that {z,} converges strongly to a point in I'. This completes the proof. (I

In what follows, we give some consequences of our main results.
By setting N =1 in Theorem 3.8, we obtain the following result:

Corollary 3.10. Let X be a complete p-uniformly convex metric space X with
1 < p < o0 and parameter ¢ > 2 and f : X — (—o00,00] be a proper convex
and lower semicontinuous function. Let T; : X — P(X), j = 1,2 be two

2
multivalued nonezpansive mappings such that Tjv = {v} and I := (| F(T;) N
j=1

arg mi}r{l f(y) # 0. For arbitrary x1 € X, the sequence {x,} is generated by
yE

=Jyx
Yn Andns (324)
Tp41 = Qpdp 3] ann,l @ TYnZn,2
where zp1 € T1Yn, Zn,2 € Toy, and {\,}, is a sequence for each i =1,2,--- | N,

such that A, > X\ > 0 and condition (C2) in Lemma 3.5 holds. Then, the
sequence {x,} strongly converges to an element of T if and only if

lim inf dist(x,,T') = 0.

n—oo

By setting Jy, = I in Corollary 3.10, we obtain the following result:

Corollary 3.11. Let X be a complete p-uniformly convexr metric space with
1 < p < oo and parameter ¢ > 2 and T; : X — P(X), j = 1,2 be two

2

multivalued nonexpansive mappings such that Tjv = {v} and T := (| F(Tj) #
j=1

0. For arbitrary x1 € X, the sequence {x,} is generated by

Tp+1 = Ondp S3) ﬁnzn,l 3] TnZn,2,
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where 2,1 € T1 Ty, 2n,2 € Ty, such that condition (C2) in Lemma 3.5 holds. Then,
the sequence {x,} strongly converges to an element of T if and only if
lim inf dist(x,,T') = 0.

n—00

If 71 and T3 are singlevalued nonexpansive mappings in Theorem 3.8, we
obtain the following result:

Corollary 3.12. Let X be a complete p-uniformly convexr metric space with
1 < p < oo and parameter ¢ > 2 and f; : X — (—o0,00] be a finite family of
proper convezr and lower semicontinuous functions Let T X=X 5=12

be two nonexpansive mappings such that T' := ﬂ F(T;)N ﬂ arg mln fily) # 0.

For arbitrary x; € X, let the sequence {x,} be genemted by

= oJ,(w-1y0---0 oJ,mx
{yn AN O Jyv-1) A2 © () Tn; (3.25)

Tn+1l = OpTn @ BnTIyn 3] ’YnTQiyn;

such that conditions (C1) and (C2) in Lemma 3.5 are satisfied. Then, the
sequence {x,} strongly converges to an element of T' if and only if

lim inf dist(x,,T') = 0.

n—oo

4. NUMERICAL EXAMPLE

In this section, we give a numerical example to demonstrate the applicability
of Algorithm (3.5).

Let (X,d) be a complete p-uniformly convex metric space and Ty : X —
P(X) be a multivalued noexpansive mapping both defined as in Example 3.2.
Similarly, let T5 : X — P(X) be defined by Tox = {(—z1,e7**),(0,0)} for
all x = (z1,22) € X. Clearly F(T3) = {(0,0)}. Indeed T is also multivalued
nonexpansive following the same line of argument for 77 in Example 3.2. Now,
define f; :==||.|]|3: X — R for i = 1,2,3. Then, f; are proper, convex and lower
semicontinuous in (X, d) for each i = 1,2,3 (see [9]).

Take o, = o+l g — 2nd3 = g4t% and Ay = 52 for i = 1,2,3 for

6n+9° 6n+9° n = Gnto
all n > 1. Hence, Algorithm (3.5) becomes

I :arggi)r(l(fl( v) + 2)\,, rd(v, zn)P),
gn:arglrﬂrél)r(l (f2( )+ 2Ap Sy p—T (U hn)p)7

(4.1)
Yn = argmin (f3(v) + 2)\,, ——d(v,gn)"),

Tn41 = gziéxn D 6n19 n,l 7] 6n+92n 2, N > 1.
We now consider the following 4 cases for our numerical experiments below.
Case 1: z; = (0.25, ¢%25)T and Case 2: z; = (0.5, 1)7,
Case 3: z; = (—0.25, ¢%%5)T and Case 4: z; = (—1,1)7.
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FIGURE 1. Errors vs Iteration numbers(n): Case 1 (top left);
Case 2 (top right); Case 3 (bottom left); Case 4 (bottom
right).
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