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Finally, we demonstrate the applicability of our results with a numerical

example. Our results improve many important and recent results in this

direction.
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1. Introduction

Let (X, d) be a metric space. X is called a geodesic space if every two points

x, y ∈ X are joined by a geodesic path γ : [0, d(x, y)] → X such that γ(0) = x,

γ(d(x, y)) = y and d(γ(t), γ(t′) = |t− t′| for all t, t′ ∈ [0, d(x, y)]. In this case, γ

is an isometry and the image of γ is called a geodesic segment joining x to y.

The space X is said to be uniquely geodesic if every two points of X are joined

by exactly one geodesic segment, see [13, 36, 40] for further details. Let A be a

nonempty subset of X, then A is said to be convex if A includes every geodesic

segment joining any two of its points.

Let X be a geodesic convex metric space and A be a nonempty subset of X.

A subset A is called proximinal (see [15]), if for each x ∈ X there exists a ∈ A

such that

dist(x,A) = inf{d(x, a) : a ∈ A}.

It is well known that if A is proximinal, then A is closed. We denote the

family of all nonempty proximinal subsets of X by P (X) and the family of

closed and bounded subsets of X by CB(X) respectively. If A and B are

nonempty subsets of X, then the Hausdorff metric H on P (X) is defined by

H(A,B) = max{sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)}, ∀ A,B ∈ P (X).

Let T : X → P (X) be a multivalued mapping. A point x ∈ X is called

a fixed point of T if x ∈ Tx. The point x is called a strict fixed point of T

if Tx = {x} and T is said to satisfy the endpoint condition. The notion of

multivalued (or setvalued) mappings is more general than the single-valued

mappings and was introduced by Markin [32]. Multivalued fixed point theory

has interesting applications in control theory, convex optimization, differential

inclusion, graph theory and economics (see [14, 17, 26, 34, 51] and other refer-

ences therein). Due to this advantage, numerous researchers have extensively

studied approximation of fixed points of multivalued mappings in nonlinear

spaces like CAT(0) spaces, CAT(k) spaces (k > 0), Hadamard spaces, hy-

perbolic spaces and R-trees (see for example [6, 41, 42, 47, 50]). However,

the notion of multivalued mappings are yet to be studied in p-uniformly con-

vex metric spaces, which are more general than the aforementioned nonlinear

spaces.

The nonlinearity property of metric spaces often makes extension of known

results to nonlinear spaces tedious. Due to this limitation, Takahashi [53]

introduced convexity property in metric spaces which provides some sufficient

informations that enable the extension of some known results in Hilbert and

Banach spaces to metric spaces. In 2011, Noar and Siberman [35] introduced a

more general convex metric spaces known as p-uniformly convex metric spaces

(see Section 2 for details). The concept of p-uniformly convex metric spaces is
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a natural generalization of the p-uniformly convex Banach spaces (see [11, 20,

54]).

On the other hand, Minimization Problem (MP) is known to be a very

important optimization problem in optimization theory which has been studied

extensively by many authors due to its interesting applications to real life

problems. MPs are closely related to other optimization problems such as the

monotone inclusion problems [1, 24, 44], equilibrium problems [22, 37] (see also

[2]), variational inequality problems [3, 4, 23, 25, 38, 56] and many more. For

a proper, convex and lower semicontinuous function f on X, the MP is given

as follows: Find x ∈ X such that

f(x) = min
y∈X

f(y). (1.1)

In this case, x is called a minimizer of f and the solution set (set of minimiz-

ers) of MP (1.1) is denoted by argmin
y∈X

f(y). To solve MP (1.1), the Proximal

Point Algorithm (PPA) remains one of the known effective methods. The PPA

was first introduced by Martinet [33] and was further developed by Rockafel-

lar [48]. The latter proved that the PPA converges weakly to a minimizer of

a proper convex and lower semicontinuous functional. Since then, numerous

researchers have devoted attention to finding solutions of MPs using the PPA

in Hilbert spaces, Banach spaces and their generalizations, see [18, 21, 46, 52]

and other references therein. In 2013, Bačák [7] introduced and studied the

PPA in a complete CAT(0) space. He established the ∆-convergence of PPA

with the assumptions that f has a minimizer in X and
∞∑

n=1
λn = ∞. In an

attempt to introduce and generalize the PPA to a more general convex metric

space setting, Choi and Ji [11] introduced the notion of p-resolvent operator

in a p-uniformly convex metric space as a generalization of the Moreau-Yosida

resolvent in a CAT(0) space as follows:

Jf
λ (x) = argmin

v∈X

(
f(v) +

1

2λ
d(v, x)p

)
, (1.2)

where f is a convex and lower semicontinuous function not identically ∞ and

λ > 0 (see [7]). They introduced the following PPA involving the p-resolvent

operator (1.2) and proved that it converges to a minimizer of f :

xn = Jf
λn

(xn−1), n ≥ 1. (1.3)

Recently, Kuwae [28] defined another version of p-resolvent operator which

is more general than (1.2) in p-uniformly convex metric spaces as follows:

Jf
λ (x) = argmin

v∈X

(
f(v) +

1

pλp−1
d(v, x)p

)
. (1.4)

He established the unique existence of the p-resolvent operator (1.4) associ-

ated to a coercive proper lower semicontinuous functional. In addition, he ap-

plied (1.4) to obtain solutions of initial boundary value problems for p-harmonic
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maps. Izuchukwu et al. [20] adopted (1.4) to approximate the solution of a

Split Minimization Problem (SMP) in p-uniformly convex metric spaces. They

proposed a Backward-Backward Algorithm and an Alternating Proximal Algo-

rithm that both converge to a solution of the SMP under some mild conditions.

Very recently, Aremu et al. [5] proposed and studied a multi-step iterative

algorithm that comprises of a finite family of asymptotically k-strictly pseudo-

contractive mappings and a p-resolvent operator of form (1.4) associated with

a proper, convex and lower semicontinuous function in a p-uniformly convex

metric space. They established the ∆-convergence of the proposed algorithm

to a common fixed point of a finite family of asymptotically k-strictly pseudo-

contractive mappings which is also a minimizer of the proper, convex and lower

semicontinuous function. For more, some researchers have used the p-resolvent

operator (1.2) to obtain solutions of MPs in p-uniformly convex metric spaces.

For more recent and interesting results in p-uniformly convex metric spaces,

see [5, 10] and other references therein.

Motivated by the current research interest in this direction, we extend the

class of multivalued nonexpansive mappings to p-uniformly convex metric spaces.

Furthermore, we propose and study an iterative algorithm involving p-resolvent

operators (of type (1.4)) of proper, convex and lowersemicontinuous functions

for approximating a common solution of a finite family of minimization prob-

lems which is also a common fixed points of two multivalued nonexpansive

mappings in p-uniformly convex metric space. Our proposed algorithm con-

verges to a common element in the intersection of the set of minimizers of a

finite family of proper, convex and lower semicontinuous functions and the set

of common fixed points of two multivalued nonexpansive mappings. Finally,

we demonstrate the applicability of our results with a numerical example. Our

results improve many important and recent results in this direction.

2. Preliminaries

In this section, we recall some results and definitions that will be needed in

the proof of our main results.

Let {xn} be a bounded sequence in a metric space X and r(·, {xn}) : X →
[0,∞) be a continuous functional defined by r(x, {xn}) = lim sup

n→∞
d(x, xn). The

asymptotic radius of {xn} is given by r({xn}) := inf{r(x, {xn}) : x ∈ X}, while
the asymptotic center of {xn} is the set A({xn}) = {x ∈ X : r(x, {xn}) =

r({xn})}. A sequence {xn} in X is said to be ∆-convergent to a point x ∈ X if

A({xnk
}) = {x} for every subsequence {xnk

} of {xn}. In this case, we say that

x is the ∆-limit of {xn} (see [13, 27]). The notion of ∆-convergence in metric

spaces was introduced and studied by Lim [31], and it is known as analogue of

the notion of weak convergence in Banach spaces.
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Definition 2.1. [30] A convex metric space X is called uniformly convex, if

for any r > 0 and ϵ ∈ (0, 2], there exists a δ ∈ (0, 1] such that for all a, x, y ∈ X,

we have that d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ ϵr imply

d(
1

2
x⊕ 1

2
y, a) ≤ (1− δ)r. (2.1)

A mapping η : (0,∞)×(0, 2] → (0, 1] providing such a δ := η(r, ϵ) for any given

r > 0 and ϵ ∈ (0, 2], is called the modulus of uniform convexity.

Definition 2.2. Let 1 < p < ∞, a metric space X is called p-uniformly convex

with parameter c > 0 if and only if X is a geodesic space and

d(v, (1− t)x⊕ ty)p ≤ (1− t)d(v, x)p + td(v, y)p − c

2
t(1− t)d(x, y)p,(2.2)

for all x, y, v ∈ X, t ∈ [0, 1].

Remark 2.3. [5] If X is a p-uniformly convex metric space for 1 < p < ∞, with

parameter c > 0. Then, the modulus of uniform convexity of X is given as

δX(ϵ) =
cϵp

8p
.

The following are typical examples of p-uniformly convex metric spaces:

1. Let X be a real Banach space. The modulus of convexity of X with

dim(X) ≥ 2 is the function δX : [0, 2] → [0, 1] defined by

δX(ϵ) := inf
{
1−

∣∣∣∣x+ y

2

∣∣∣∣ : ||x|| = ||y|| = 1, ϵ = ||x− y||
}
.

The Banach space X is called p-uniformly convex for p > 1[12] (see also [8]),

if δX(ϵ) > 0 for all ϵ ∈ (0, 2]. The Lp space with p ≥ 2, is a p-uniformly convex

Banach space with δX(ϵ) ≥ ϵp

p2p [12]. If a Banach space X is p-uniformly convex

for p ≥ 2, then X is p-uniformly convex metric space (see [10, 29]).

2. Let X be a CAT(0) space. For any two elements x, y ∈ X, there exists an

element m ∈ X such that

d(z,m)2 ≤ 1

2
d(z, x)2 +

1

2
d(z, y)2 − 1

4
d(x, y)2 ∀ z ∈ X.

For any x, y ∈ X, there exists a unique geodesic γ : [0, 1] → X with γ(0) = x

and γ(1) = y. Furthermore, for any z ∈ X and t ∈ [0, 1],

d(z, γ(t))2 ≤ (1− t)d(z, x)2 + td(z, y)2 − t(1− t)d(x, y)2.

Then a CAT(0) space is 2-uniformly convex metric space with parameter c = 2

and p = 2 (see [10, 20, 49]).

3. Let X be a CAT(k) space with diam(X) < π
2
√
k
for k > 0 and parameter

c = (π − 2
√
kϵ) tan(

√
kϵ) for any 0 < ϵ ≤ π

2
√
k
− diam(X). Let γ : [0, 1] → X

be any geodesic with γ(0) = x, γ(1) = y, z ∈ X and t ∈ [0, 1], such that

d(z, γ(t))2 ≤ (1− t)d(z, x)2 + td(z, y)2 − c

2
t(1− t)d(x, y)2
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holds. Then, CAT(k) space X with diam(X) < π
2
√
k
is a 2-uniformly convex

metric space (see [10, 29, 45]).

Remark 2.4. [16, 49] Let X be a complete p-uniformly convex metric space.

Then,

(i) every bounded sequence in X has a unique asymptotic center,

(ii) every bounded sequence in X has a ∆-convergent subsequence.

Definition 2.5. Let X be a complete convex metric space. A multivalued

nonlinear mapping T : X → 2X is said to be demiclosed if for any bounded

sequence {xn} in X such that ∆− lim
n→∞

xn = v and lim
n→∞

d(xn, zn) = 0, (where

zn ∈ Txn) we have that v ∈ F (T ).

Lemma 2.6. [19] Let X be a metric space and A,B are nonempty subsets in

P (X). Then for all a ∈ A, there exists b ∈ B such that d(a, b) ≤ H(A,B).

Definition 2.7. Let X be a p-uniformly convex metric space. A function

f : X → (−∞,∞] is said to be

(i) convex, if

f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ X, λ ∈ (0, 1),

(ii) proper, if D := {x ∈ X : f(x) < +∞} ≠ ∅, where D denotes the

domain of f,

(iii) lower semicontinuous at a point x ∈ D, if

f(x) ≤ lim inf
n→∞

f(xn),

for each sequence {xn} in D such that lim
n→∞

xn = x,

(iv) lower semicontinuous on D, if it is lower semicontinuous at every point

in D.

Lemma 2.8. [20] For 1 < p < ∞, let X be a p-uniformly convex metric space

with parameter c > 0 and f : X → (−∞,∞] be a proper convex and lower

semicontinuous function. Then, for any λ > 0 and x ∈ X, there exists a

unique point, say Jf
λ (x) ∈ X such that

Jf
λ (x) +

1

pλp−1
d(Jf

λ (x), x)
p = inf

v∈X

(
f(v) + d(v, x)p

)
.

Lemma 2.9. [20] For 1 < p < ∞, let X be a p-uniformly convex metric space

with parameter c ≥ 2 and f : X → (−∞,∞] be a proper convex and lower

semicontinuous function. Then, the p-resolvent operator Jf
λ of f is nonexpan-

sive.

Lemma 2.10. [55] For 1 < p < ∞, let X be a p-uniformly convex metric

space with parameter c ≥ 2 and f : X → (−∞,∞] be a proper convex and

lower semicontinuous function. Let Jf
λ be the p-resolvent mapping of f such

that F (Jf
λ ) ̸= ∅, then for λ > 0, we have the following:
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(i) v ∈ F (Jf
λ ) if and only if v is a minimizer of f ;

(ii) d(v, Jf
λx)

p + d(Jf
λx, x)

p ≤ d(v, x)p for all x ∈ X and v ∈ F (Jf
λ );

(iii) d(Jλx, x)
p ≤ d(Jµx, x)

pforλ < µ and x ∈ X.

3. Main results

In this section, we prove some lemmas which are crucial in establishing our

main results. We begin with the following definition of multivalued nonexpan-

sive mapping and example in p-uniformly convex metric spaces.

Definition 3.1. Let X be a p-uniformly convex metric space. A mapping

T : X → P (X) is said to be multivalued nonexpansive, if

H(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.

Example 3.2. Let Y := {(x, ex) : x ∈ R} and Xn := {(n, y) : y ≥ en} for

each n ∈ Z. Set X := Y ∪
⋃
n∈Z

Xn equipped with a metric d : X ×X → [0,∞),

defined for all x = (x1, x2), y = (y1, y2) ∈ X by

d(x, y) =


∫ y1

x1

||γ̇(t)||2dt+ |x2 − ex1 |+ |y2 − ey1 |, if x1 ̸= y1,

|x2 − y2|, if x1 = y1,

(3.1)

where γ̇ is the derivative of the curve γ : R → X given as γ(t) := (t, et) for

each t ∈ R (see [9]). Then (X, d) is a complete p-uniformly convex metric space

with p = 2 and parameter c = 2.

Now, let T : X → P (X) be defined by Tx = {(x1, e
x1), (0, 0)} for all

x = (x1, x2) ∈ X. Clearly F (T ) = {(0, 0)}. We check that T is nonexpan-

sive. Indeed, for each (x1, x2), (y1, y2) ∈ X, we have

dist((x1, e
x1), Ty) = inf{d((x1, e

x1), (y1, e
y1)), d((0, 0), (x1, e

x1))}.

But,

d
(
(x1, e

x1), (y1, e
y1)

)
=


∫ y1

x1

||γ̇(t)||2dt+ |ex1 − ex1 |+ |ey1 − ey1 | if x1 ̸= y1,

|ex1 − ey1 | if x1 = y1,

=


∫ y1

x1

||γ̇(t)||2dt if x1 ̸= y1,

|ex1 − ey1 | if x1 = y1,
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and

d
(
(0, 0), (x1, e

x1)
)
=


∫ x1

0

||γ̇(t)||2dt+ |0− e0|+ |ex1 − ex1 | if x1 ̸= 0,

ex1 if x1 = 0,

=


∫ x1

0

||γ̇(t)||2dt+ 1 if x1 ̸= 0,

1 if x1 = 0.

Therefore,

dist((x1, e
x1), Ty) = d((x1, e

x1), (y1, e
y1)).

Also,

dist((0, 0), T y) = inf{d((0, 0), (y1, ey1)), d((0, 0), (0, 0))}
= d((0, 0), (0, 0)).

Similarly,

dist((y1, e
y1), Tx) = inf{d((x1, e

x1), (y1, e
y1)), d((0, 0), (y1, e

y1))}
= d((x1, e

x1), (y1, e
y1))

and

dist((0, 0), T y) = inf{d((0, 0), (x1, e
x1)), d((0, 0), (0, 0))}

= d((0, 0), (0, 0)).

Hence,

H(Tx, Ty) = max
{

sup
a∈Tx

dist(a, Ty), sup
b∈Ty

dist(b, Tx)
}

= max
{
sup{d((x1, e

x1), (y1, e
y1)), d((0, 0), (0, 0))},

sup{d((x1, e
x1), (y1, e

y1)), d((0, 0), (0, 0))}
}

= d((x1, e
x1), (y1, e

y1))

=


∫ y1

x1

||γ̇(t)||2dt if x1 ̸= y1,

|ex1 − ey1 | if x1 = y1,

≤ d(x, y).

Therefore, T is a multivalued nonexpansive mapping.

Lemma 3.3. (Demiclosedness). Let X be a p-uniformly convex metric space

with 1 < p < ∞ and parameter c ≥ 2. Let T : X → P (X) be a multivalued

nonexpansive mapping. Suppose {xn} is a bounded sequence in X such that
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{xn} ∆-converges to v ∈ X and lim
n→∞

d(xn, zn) = 0 (where zn ∈ Txn). Then

v ∈ F (T ).

Proof. Since {xn} is bounded, we get from Remark 2.4(i) that the asymptotic

center of the sequence {xn} is unique. Also, since {xn} ∆-converges to a

point v, it then follows that A({xn}) = {v}. Let φ(x) = lim sup
n→∞

d(xn, x), since

lim
n→∞

d(xn, zn) = 0, we obtain that

φ(x) = lim sup
n→∞

d(zn, x).

If v∗ ∈ Tv, then

φ(v∗) = lim sup
n→∞

d(zn, v
∗)

≤ lim sup
n→∞

H(Txn, T v)

≤ lim sup
n→∞

d(xn, v)

= φ(v). (3.2)

If we let t = 1
2 in (2.2), we obtain that

d(xn,
1

2
(v ⊕ v∗))p ≤ 1

2
d(xn, v)

p +
1

2
d(xn, v

∗)− c

8
d(v, v∗)p. (3.3)

Taking the lim sup of (3.3) as n → ∞, we have that

φ(v)p ≤ φ(
1

2
(v ⊕ v∗))p ≤ 1

2
φ(v)p +

1

2
φ(v∗)p − c

8
d(v, v∗)p,

which implies

cd(v, v∗)p ≤ 4(φ(v∗)p − φ(v)p). (3.4)

It is easy to see from (3.2), (3.4) and c > 0 that d(v, v∗) = 0, hence v ∈ Tv.

This completes the proof. □

Lemma 3.4. For 1 < p < ∞, let X be a p-uniformly convex metric space

with parameter c > 0. Then for all v, w, x, y, z ∈ X and α, β, γ ∈ (0, 1), with

α+ β + γ = 1, we have

d(αx⊕ βy ⊕ γz, v)p ≤ αd(x, v)p + βd(y, v)p + γd(z, v)p.
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Proof. Let w = αx⊕ βy⊕ γz. We may rewrite w as w = αx⊕ (1− α)
(

β
1−αy⊕

γ
1−αz

)
. Then from (2.2), we have

d(w, v)p = d
(
αx⊕ (1− α)d

( β

1− α
y ⊕ γ

1− α
z
)
, v
)p

≤ αd(x, v)p + (1− α)d
(( β

1− α
y ⊕ γ

1− α
z
)
, v
)p

− c

2
α(1− α)d

(
x,

( β

1− α
y ⊕ γ

1− α
z
))p

≤ αd(x, v)p

+ (1− α)
[ β

1− α
d(y, v)p +

γ

1− α
d(z, v)p − cβγ

2(1− α)2
d(y, z)p

]
≤ αd(x, v)p + βd(y, v)p + γd(z, v)p.

□

We are now ready to present the main results of this paper. Henceforth, for

each i = 1, 2 . . . , N, we denote by Jλn
(i) the p-resolvent operators of the form

(1.4) of finite family of proper, convex and lower semicontinuous functions fi.

Lemma 3.5. Let X be a p-uniformly convex metric space with 1 < p < ∞
and parameter c ≥ 2 and fi : X → (−∞,∞] be a finite family of proper convex

and lower semicontinuous functions. Let Tj : X → P (X), j = 1, 2 be two

multivalued nonexpansive mappings such that Tjv = {v} and Γ :=
2⋂

j=1

F (Tj) ∩

N⋂
i=1

argmin
y∈X

fi(y) ̸= ∅. For arbitrary x1 ∈ X, let the sequence {xn} be generated

by {
yn = J

λ
(N)
n

◦ J
λ
(N−1)
n

◦ · · · ◦ J
λ
(2)
n

◦ J
λ
(1)
n
xn,

xn+1 = αnxn ⊕ βnzn,1 ⊕ γnzn,2
(3.5)

where zn,1 ∈ T1yn, zn,2 ∈ T2yn and {λ(i)
n } is a sequence for each

i = 1, 2, · · · , N, such that the following conditions are satisfied:

(C1) λ
(i)
n > λ(i) > 0,

(C2) αn ∈ [a, b] ⊂ (0, 1), βn ∈ [d, e] ⊂ (0, 1), γn ∈ [g, h] ⊂ (0, 1),

αn + βn + γn = 1 for n ≥ 1.

Then,

(a) lim
n→∞

d(xn, v)
p exists ∀ v ∈ Γ,

(b) lim
n→∞

d(c
(i)
n , Jλ(i)c

(i)
n ) = 0, ∀ i = 1, 2, · · · , N, where c

(i+1)
n = J

λ
(i)
n
c
(i)
n , and

c
(1)
n = xn for each i = 1, 2, · · · , N, n ≥ 1 and

(c) lim
n→∞

dist(Tjyn, yn) = 0, for each j = 1, 2.
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Proof. (a) Since c
(i+1)
n = J

λ
(i)
n
c
(i)
n , for all n ≥ 1, and c

(1)
n = xn, then

c(N+1)
n = J

λ
(N)
n

c(N)
n = J

λ
(N)
n

◦ J
λ
(N−1)
n

◦ · · · ◦ J
λ
(3)
n

◦ J
λ
(2)
n

◦ J
λ
(1)
n
xn.

Let v ∈ Γ, we get from Lemma 2.10(i) that v = J
λ
(i)
n
v for all i = 1, 2, · · · , N.

Then from (3.5), Lemma 2.6, Lemma 2.9 and Lemma 3.4, we have that

d(xn+1, v)
p ≤ αnd(xn, v)

p + βnd(zn,1, v)
p + γnd(zn,2, v)

p

≤ αnd(xn, v)
p + βnH(T1yn, T1v)

p + γnH(T2yn, T2v)
p

≤ αnd(xn, v)
p + βnd(yn, v)

p + γnd(yn, v)
p

= αnd(xn, v)
p + (βn + γn)d(yn, v)

p

= αnd(xn, v)
p + (βn + γn)d(c

(N+1)
n , v)p (3.6)

≤ αnd(xn, v)
p + (βn + γn)d(c

(N)
n , v)p

...

≤ αnd(xn, v)
p + (βn + γn)d(c

(1)
n , v)p

= d(xn, v)
p.

Hence, lim
n→∞

d(xn, v)
p exists.

(b) From Lemma 2.10(ii), for all i = 1, 2, . . . , N, we have that

d(c(i+1)
n , v)p ≤ d(c(i)n , v)p − d(c(i)n , c(i+1)

n )p. (3.7)

Setting i = N in (3.7), we obtain from (3.6) that

d(xn+1, v)
p ≤ αnd(xn, v)

p + (βn + γn)d(c
(N+1), v)p

≤ αnd(xn, v)
p + (βn + γn)

[
d(c(N)

n , v)p − d(c(N)
n , c(N+1)

n )p
]

...

≤ αnd(xn, v)
p + (βn + γn)

[
d(c(1)n , v)p − d(c(N)

n , c(N+1)
n )p

]
= αnd(xn, v)

p + (1− αn)
[
d(xn, v)

p − d(c(N)
n , c(N+1)

n )p
]

= d(xn, v)
p − (1− αn)d(c

(N)
n , c(N+1)

n )p, (3.8)

which implies from condition C2 and (a) that

(1− αn)d(c
(N)
n , c(N+1)

n )p ≤ d(xn, v)
p − d(xn+1, v)

p → 0, as n → ∞. (3.9)

Hence,

d(c(N)
n , c(N+1)

n ) → 0, as n → ∞. (3.10)

Again, if we set i = N − 1 in (3.7) and following the same argument in (3.8),

we obtain that

d(c(N−1)
n , c(N)

n ) → 0, as n → ∞. (3.11)
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Continuing in the same manner, we have that

d(c(i)n , c(i+1)
n ) → 0, as n → ∞, for all i = 1, 2, · · · , N − 2. (3.12)

Then, by (3.10), (3.11) and (3.12), we get

d(c(i)n , c(i+1)
n ) → 0, as n → ∞, for all i = 1, 2, · · · , N. (3.13)

Hence, for each i = 1, 2, · · · , N, we obtain by applying the triangle inequality

that

d(c(1)n , c(i)n ) = d(xn, c
(i)
n ) → 0, as n → ∞ for all i = 1, 2, · · · , N + 1. (3.14)

By condition C1, we have from Lemma 2.10(iii) and (3.13) that

d(c(i)n , Jλ(i)c(i)n ) ≤ d(c(i)n , J
λ
(i)
n
c(i)n ) → 0, as n → ∞, for all i = 1, 2, · · ·N.

(3.15)

(c) From (2.2), (3.5) and Lemma 2.6, we have

d(xn+1, v)
p = d

(
(1− γn)

( αn

1− γn
xn ⊕ βn

1− γn
zn,1

)
⊕ γnzn,2, v

)p

≤ (1− γn)
[ αn

1− γn
d(xn, v)

p +
βn

1− γn
d(zn,1, v)

p

− cαnβn

2(1− γn)2
d(xn, zn,1)

p
]
+ γnd(zn,2, v)

p

= αnd(xn, v)
p + βnd(zn,1, v)

p − cαnβn

2(1− γn)
d(xn, zn,1)

p

+ γnd(zn,2, v)
p

≤ αnd(xn, v)
p + βnH(T1yn, T1v)

p

− cαnβn

2(1− γn)
d(xn, zn,1)

p + γnH(T2yn, T2v)
p

≤ αnd(xn, v)
p + (βn + γn)d(c

(N)
n , v)p − cαnβn

2(1− γn)
d(xn, zn,1)

p

...

≤ αnd(xn, v)
p + (βn + γn)d(c

(1)
n , v)p − cαnβn

2(1− γn)
d(xn, zn,1)

p

= d(xn, v)
p − cαnβn

2(1− γn)
d(xn, zn,1)

p,

which implies that

cαnβn

2(1− γn)
d(xn, zn,1)

p ≤ d(xn, v)
p − d(xn+1, v)

p.

Therefore, by condition C2 and the fact that c > 0, we obtain that

d(xn, zn,1) → 0, as n → ∞. (3.16)
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Similarly, from (3.5), (2.2) and Lemma 2.6, we have

d(xn+1, v)
p = d

(
(1− βn)

( αn

1− βn
xn ⊕ γn

1− βn
zn,2

)
⊕ βnzn,1, v

)p

≤ (1− βn)
[ αn

1− βn
d(xn, v)

p +
γn

1− βn
d(zn,2, v)

p

− cαnγn
2(1− βn)2

d(xn, zn,2)
p
]
+ βnd(zn,1, v)

p

= αnd(xn, v)
p + γnd(zn,2, v)

p − cαnγn
2(1− βn)

d(xn, zn,2)
p

+ βnd(zn,1, v)
p

≤ αnd(xn, v)
p + γnH(T2yn, T2v)

p − cαnγn
2(1− βn)

d(xn, zn,2)
p

+ βnH(T1yn, T1v)
p

≤ αnd(xn, v)
p + (βn + γn)d(c

(N)
n , v)p − cαnγn

2(1− βn)
d(xn, zn,2)

p

...

≤ αnd(xn, v)
p + (γn + βn)d(c

(1)
n , v)p − cαnβn

2(1− βn)
d(xn, zn,2)

p

= d(xn, v)
p − cαnγn

2(1− βn)
d(xn, zn,2)

p,

which implies that
cαnγn

2(1− βn)
d(xn, zn,2)

p ≤ d(xn, v)
p − d(xn+1, v)

p

and hence, by condition C2 and the fact that c > 0, we obtain that

d(xn, zn,2) → 0, as n → ∞. (3.17)

Thus, from (3.16) and (3.17), we have that

d(zn,j , xn) → 0, as n → ∞, for j = 1, 2. (3.18)

Therefore, we conclude from (3.14) (when i = N + 1) and (3.18) that

dist(yn, Tjyn) ≤ d(yn, xn) + d(xn, zn,j) → 0, as n → ∞, for j = 1, 2. (3.19)

Finally, from (3.14) (when i = N + 1) and (3.19), we obtain

dist(xn, Tjxn) ≤ d(xn, yn) + d(yn, Tjyn) + d(Tjyn, Tjxn)

≤ d(xn, yn) + d(yn, Tjyn) + d(yn, xn) → 0, as n → ∞. (3.20)

□

Theorem 3.6. Let X be a complete p-uniformly convex metric space with

1 < p < ∞ and parameter c ≥ 2 and fi : X → (−∞,∞] be a finite family

of proper convex and lower semicontinuous functions. Let Tj : X → P (X),
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j = 1, 2 be two multivalued nonexpansive mappings such that Tjv = {v} and

Γ :=
2⋂

j=1

F (Tj) ∩
N⋂
i=1

argmin
y∈X

fi(y) ̸= ∅. For arbitrary x1 ∈ X, let the sequence

{xn} be generated by (3.5) such that conditions (C1) and (C2) in Lemma 3.5

are satisfied. Then, the sequence {xn} ∆-converges to an element of Γ.

Proof. Since {xn} is bounded and X is a complete p-uniformly convex metric

space, then by Remark 2.4(i) the sequence {xn} has a unique asymptotic cen-

ter (that is A({xn}) = {v}). Let {xnk
} be a subsequence of {xn} such that

A({xnk
}) = {u}. Then by (3.20), we have lim

k→∞
dist(Tjxnk

, xnk
) = 0, j = 1, 2.

Thus, by Remark 2.4(ii) and Lemma 3.3, we obtain that u ∈ Γ. Also, since Jλ(i)

is nonexpansive mapping for each i = 1, 2, · · · , N, it then follows from Remark

2.4(ii), (3.14) and (3.15) that u ∈ Γ.

Furthermore, since we have from Lemma 3.5(a) that lim
n→∞

d(xn, u) exists. It

follows from the uniqueness of asymptotic center that

lim sup
k→∞

d(xnk
, u) ≤ lim sup

k→∞
d(xnk

, v)

≤ lim sup
n→∞

d(xn, v)

≤ lim sup
n→∞

d(xn, u)

≤ lim sup
k→∞

d(xnk
, u)

which implies that v = u. Therefore, {xn} ∆-converges to an element of Γ. □

The following is consequence of Theorem 3.6.

Corollary 3.7. Let X be a complete p-uniformly convex metric space with

1 < p < ∞ and parameter c ≥ 2 and fi : X → (−∞,∞] be a finite family

of proper convex and lower semicontinuous functions. Let T : X → P (X),

be a multivalued nonexpansive mapping such that Tv = {v} and Γ := F (T ) ∩
N⋂
i=1

argmin
y∈X

fi(y) ̸= ∅. For arbitrary x1 ∈ X, let the sequence {xn} be generated

by {
yn = J

λ
(N)
n

◦ J
λ
(N−1)
n

◦ · · · ◦ J
λ
(2)
n

◦ J
λ
(1)
n
xn,

xn+1 = αnxn ⊕ (1− αn)zn,
(3.21)

where zn ∈ Tyn, {λ(i)
n } is a sequence for each i = 1, 2, · · · , N such that λ

(i)
n >

λ(i) > 0 and {αn} ∈ [a, b] ⊂ (0, 1). Then, the sequence {xn} ∆-convergence to

an element of Γ.

Proof. If we set γn = 0 and βn = (1−αn) in (3.5), and applying (2.2) in place

of Lemma 3.4, then the proof follows as the proofs of Lemma 3.5 and Theorem

3.6. □

Now, we present some strong convergence results.
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Theorem 3.8. Let X be a complete p-uniformly convex metric space with

1 < p < ∞ and parameter c ≥ 2 and fi : X → (−∞,∞] be a finite family

of proper convex and lower semicontinuous functions. Let Tj : X → P (X),

j = 1, 2 be two multivalued nonexpansive mappings such that Tjv = {v} and

Γ :=
2⋂

j=1

F (Tj) ∩
N⋂
i=1

argmin
y∈X

fi(y) ̸= ∅. For arbitrary x1 ∈ X, let the sequence

{xn} be generated by (3.5) such that conditions (C1) and (C2) in Lemma 3.5

are satisfied. Then, the sequence {xn} strongly converges to an element of Γ if

and only if lim inf
n→∞

dist(xn,Γ) = 0.

Proof. Suppose that {xn} converges to a point v ∈ Γ. Then, lim
n→∞

d(xn, v) = 0

and since 0 ≤ dist(xn,Γ) ≤ d(xn, v), it follows that lim
n→∞

dist(xn,Γ) = 0.

Thus, lim inf
n→∞

dist(xn,Γ) = 0. Conversely, suppose lim inf
n→∞

dist(xn,Γ) = 0, we

arbitrarily choose ξ > 0, for a positive integer m0 such that

dist(xn,Γ) <
ξ

4
, ∀ n ≥ m0.

In particular,

inf{d(xm0
, v) : v ∈ Γ} <

ξ

4
.

Then, there exists v∗ ∈ Γ such that d(xm0
, v∗) < ξ

2 . Then, for all m,n ≥ m0,

we have

d(xn+m, xn) ≤ d(xn+m, v∗) + d(v∗, xn)

≤ 2d(xm0
, v∗)

≤ ξ.

Therefore {xn} is a Cauchy sequence in X. Since X is complete, is implies that

the sequence {xn} converges to some point v∗ in X. Also, since Γ is closed and

lim
n→∞

dist(xn,Γ) = 0, we have v∗ ∈ Γ. This completes the proof. □

Theorem 3.9. Let X be a complete p-uniformly convex metric space with

1 < p < ∞ and parameter c ≥ 2 and fi : X → (−∞,∞] be a finite family

of proper convex and lower semicontinuous functions. Let Tj : X → P (X),

j = 1, 2 be two multivalued nonexpansive mappings such that Tjv = {v} and

Γ :=
2⋂

j=1

F (Tj) ∩
N⋂
i=1

argmin
y∈X

fi(y) ̸= ∅. For arbitrary x1 ∈ X, let the sequence

{xn} be generated by (3.5) such that conditions (C1) and (C2) in Lemma 3.5

are satisfied. Let Φ : [0,+∞) → [0,+∞) be a nondecreasing function with

Φ(0) = 0 and Φ(r) > 0 for all r > 0 such that

Φ(dist(x,Γ)) ≤ dist(x, Tjx) for j = 1, 2 (3.22)

or

Φ(dist(x,Γ)) ≤ dist(x, Jλ(i)x) for i = 1, 2, · · · , N, (3.23)



94 K. O. Aremu, C. Izuchukwu, O. T. Mewomo

for all x ∈ D. Then, the sequence {xn} strongly converges to an element of Γ.

Proof. It follows from Lemma 3.5(a) that lim
n→∞

d(xn, v) = 0. This implies that

lim
n→∞

d(xn,Γ) = 0. Then, we have from (3.15) and (3.20) that

lim
n→∞

Φ(dist(x,Γ)) ≤ lim
n→∞

dist(x, Tjx) = 0 for j = 1, 2

or

lim
n→∞

Φ(dist(x,Γ)) ≤ lim
n→∞

dist(x, Jλ(i)x) = 0 for i = 1, 2, · · · , N.

Thus, we obtain that

lim
n→∞

Φ(dist(xn,Γ)) = 0.

Since Φ is nondecreasing, it implies that

lim
n→∞

dist(xn,Γ) = 0.

Following the same line of argument in the proof of Theorem 3.8, we conclude

that {xn} converges strongly to a point in Γ. This completes the proof. □

In what follows, we give some consequences of our main results.

By setting N = 1 in Theorem 3.8, we obtain the following result:

Corollary 3.10. Let X be a complete p-uniformly convex metric space X with

1 < p < ∞ and parameter c ≥ 2 and f : X → (−∞,∞] be a proper convex

and lower semicontinuous function. Let Tj : X → P (X), j = 1, 2 be two

multivalued nonexpansive mappings such that Tjv = {v} and Γ :=
2⋂

j=1

F (Tj) ∩

argmin
y∈X

f(y) ̸= ∅. For arbitrary x1 ∈ X, the sequence {xn} is generated by{
yn = Jλn

xn,

xn+1 = αnxn ⊕ βnzn,1 ⊕ γnzn,2
(3.24)

where zn,1 ∈ T1yn, zn,2 ∈ T2yn and {λn}, is a sequence for each i = 1, 2, · · · , N,

such that λn > λ > 0 and condition (C2) in Lemma 3.5 holds. Then, the

sequence {xn} strongly converges to an element of Γ if and only if

lim inf
n→∞

dist(xn,Γ) = 0.

By setting Jλn
≡ I in Corollary 3.10, we obtain the following result:

Corollary 3.11. Let X be a complete p-uniformly convex metric space with

1 < p < ∞ and parameter c ≥ 2 and Tj : X → P (X), j = 1, 2 be two

multivalued nonexpansive mappings such that Tjv = {v} and Γ :=
2⋂

j=1

F (Tj) ̸=

∅. For arbitrary x1 ∈ X, the sequence {xn} is generated by

xn+1 = αnxn ⊕ βnzn,1 ⊕ γnzn,2,
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where zn,1 ∈ T1xn, zn,2 ∈ T2xn, such that condition (C2) in Lemma 3.5 holds.Then,

the sequence {xn} strongly converges to an element of Γ if and only if

lim inf
n→∞

dist(xn,Γ) = 0.

If T1 and T2 are singlevalued nonexpansive mappings in Theorem 3.8, we

obtain the following result:

Corollary 3.12. Let X be a complete p-uniformly convex metric space with

1 < p < ∞ and parameter c ≥ 2 and fi : X → (−∞,∞] be a finite family of

proper convex and lower semicontinuous functions. Let Tj : X → X, j = 1, 2

be two nonexpansive mappings such that Γ :=
2⋂

j=1

F (Tj)∩
N⋂
i=1

argmin
y∈D

fi(y) ̸= ∅.

For arbitrary x1 ∈ X, let the sequence {xn} be generated by{
yn = J

λ
(N)
n

◦ J
λ
(N−1)
n

◦ · · · ◦ J
λ
(2)
n

◦ J
λ
(1)
n
xn,

xn+1 = αnxn ⊕ βnT1yn ⊕ γnT2yn,
(3.25)

such that conditions (C1) and (C2) in Lemma 3.5 are satisfied. Then, the

sequence {xn} strongly converges to an element of Γ if and only if

lim inf
n→∞

dist(xn,Γ) = 0.

4. Numerical example

In this section, we give a numerical example to demonstrate the applicability

of Algorithm (3.5).

Let (X, d) be a complete p-uniformly convex metric space and T1 : X →
P (X) be a multivalued noexpansive mapping both defined as in Example 3.2.

Similarly, let T2 : X → P (X) be defined by T2x = {(−x1, e
−x1), (0, 0)} for

all x = (x1, x2) ∈ X. Clearly F (T2) = {(0, 0)}. Indeed T2 is also multivalued

nonexpansive following the same line of argument for T1 in Example 3.2. Now,

define fi := ||.||22 : X → R for i = 1, 2, 3. Then, fi are proper, convex and lower

semicontinuous in (X, d) for each i = 1, 2, 3 (see [9]).

Take αn = 3n+1
6n+9 , βn = 2n+3

6n+9 , γn = n+5
6n+9 and λni =

ni
2n+1 for i = 1, 2, 3 for

all n ≥ 1. Hence, Algorithm (3.5) becomes



hn = argmin
v∈X

(
f1(v) +

1

2λp−1
n

d(v, xn)
p
)
,

gn = argmin
v∈X

(
f2(v) +

1

2λp−1
n

d(v, hn)
p
)
,

yn = argmin
v∈X

(
f3(v) +

1

2λp−1
n

d(v, gn)
p
)
,

xn+1 = 3n+1
6n+9xn ⊕ 2n+3

6n+9zn,1 ⊕
n+5
6n+9zn,2, n ≥ 1.

(4.1)

We now consider the following 4 cases for our numerical experiments below.

Case 1: x1 = (0.25, e0.25)T and Case 2: x1 = (0.5, 1)T ,

Case 3: x1 = (−0.25, e0.25)T and Case 4: x1 = (−1, 1)T .
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Figure 1. Errors vs Iteration numbers(n): Case 1 (top left);

Case 2 (top right); Case 3 (bottom left); Case 4 (bottom

right).
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